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ON SOME ALMOST ANALYTIC TENSOR FIELDS
IN ALMOST COMPLEX MANIFOLDS

By Yosio Muto

§1. Introduction, contravariant almost analytic vector ficlds in the strict
sense.

Almost analytic vectors and almost analytic tensors were studied by M. Ako,
S. Koto, I. Satd, S. Sawaki, S. Tachibana, K. Yano and others. In the present
paper we define contravariant almost analytic vector fields in the strict sense. A
contravariant vector field " is afmost analyltic in the strict semse when u" is
almost analytic in the ordinary sense and, moreover, #" satisfies N;*#/=0 where
N;* is the Nijenhuis tensor of the almost complex structure. An almost analytic
tensor field in the strict sense is similarly defined. As a consequence of such
definition we can treat these vector ficlds and tensor fields in a unified form. We
also find that almost analytic tensors always appcar in couples. In the last section
some local property of an integral manifold of a distribution associated with con-
travariant almost analytic vector fields is studied.

Let M be a C* manifold of dimension 2# admitting an almost complex struc-
ture J. The components of J are denoted by F,* when we use natural framcs
associated with local coordinates &, where indices such as %, i, j, £ run over the
range 1,--+,2n. Let N;"* be the Nijenhuis tensor of £}, hence

(1_ 1) Njih :],‘jl(allfih _ ai[{‘Lh) s p‘zl(all"]h . ajﬁwllb)n

Then Nj;* satisfies [10]
(1. 2) Mikan: _NMILF]/c — _Njkhi;‘ilc'

Let L. be the symbol of Lie derivatives [8] with respect to a contravariant
vector field #*. Then contravariant almost analytic vector fields are defined as

vector fields #* satisfying
(1.3) LuFt=uborFh— Frou + Fip 00 =0.

When #" is a contravariant vector field, let us define @ by @ —=Fy u. Then
we get

. 4) Labl= (oCuFll)Flh -+ Z\]lihﬂly
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which is equivalent to
~ I 7 1 7Ll k h m 1 1 kI m i/
1.5) quH—E%Nu Fylv= | Loy ——Z—MMi F™ ) Fo

because of (1.2).
(1.4) shows that #* is in general nol a contravariant almost analytic vector

field when #" is such a one.
A covariant almost analytic vector ficld [9] is defined to be a vector field w;

satisfying
(1 6) (ajl*‘if— ail"jk)wk — Fj‘“f)kwi +Fi“'ajwk ==(),

In contrast with the case of contravariant vector fields, @;=F*w; is then also a
covariant almost analytic vector field. Moreover w; satisfies

Under such circumstances we take an interest in almost analytic contravariant
vector fields #”* satisfying

1.8 Niub=0.

DEFINITION. A contravariant vector field #"* satisfying (1.3) and (1.8) simul-
taneously is said to be a contravariant almost analytic vector field in the strict

sense.

In the present paper we consider contravariant almost analytic vector fields
only in the strict sense. Hence we drop the phrase “in the strict sense”.
From this definition and (1.4) contravariant almost analytic vector fields also

appear in couples such as #”* and #".
As the main purpose of the present paper is to study local properties of vector
and tensor fields, we consider such fields defined on some domain of M.

§2. Almost analytic pairs of scalars.

Let u, @i be a pair of contravariant almost analytic vector fields different from
zero at every point of a domain ¢. If a contravariant vector field v given by

2.1) v =Ilu"—mai"

is also almost analytic, we have from £,F;*=0
—(F*0ul—0m)u"+(F om0y =0.

As #" and #" are linearly independent at each point of &), we get

2.2) F¥ol—0;m=0 (Fi*0xm+-0;1=0).
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This is also a sufficient condition for »* to be almost analytic. Thus we obtain
the following theorem.

THEOREM 2.1. Let u,ii be a pair of conlravariani almost analytic veclor
fields diffevent from zero al every poini of a domain 9). Then a necessary and
sufficient condition that a vector field v given by (2.1) be a contravariani almost
analytic vector field is that the functions I, m satisfy (2.2).

DerFINITION. A pair of C* scalar functions (/, m) satisfying (2.2) is called an
almost analytic pair of scalars [6].

The following propositions are immediately proved.

ProrosiTiON 2.2. If ¢, c¢i, c. are constants and (I, m) is an almost analytic
pair of scalars, then the following pairs ave almost analytic pairs of scalars,

( 1) (Clr Cm)y (11) (l+01, m+€z),

(i) (m, —D), (iv) <1—:m P

We do not consider (iv) at the points where /=m=0.

ProrosiTiON 2. 3. If (I, m) and (p, q) are almost analytic pairs of scalars,
then the following pairs are also almost analytic,

(i) U+p, m+q), (ii) (p—mag, lg+mp).

These propositions show similarities of almost analytic pairs of scalars to com-
plex numbers.

The next proposition shows a close resemblance between an almost analytic
pair of scalars and a complex analytic function.

ProrosiTioN 2.4. Let (I, m) be a non constant almost analytic pair of scalars
and let f(z,vy), o(x, v) be C° functions. A mecessary and sufficient condition that
a paiv of functions (f{, m), g(l, m)) be an almost analytic pair of scalars is that
f, g satisfy the Cauchy-Riemann equations

of dg of ag

@.3) A om’ om ol

Proof. The system of equations

o0&k o0&

L%

is equivalent to the system

<afak1+ F 5 > aagazz 22 m=0
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and the latter is equivalent Lo

af  dg \. of | 0g\,
< ol W)&m-— <W + ~5i>ail—0

because of (2.2). Since /, m are not constant, 8,/ and dgm are linearly independent.
Hence we get (2. 3).

The following theorem and proposition are also immediately proved. Related
theorems were obtained in [6].

THEOREM 2.5. Let w, w be a pair of covarviant almost analytic vector fields
different from zevo at every point of a domain 9. Then a necessary and sufficient
condition that a vector field lw,—mil; with C coefficients I, m be a covariant almost
analytic vector field is that (I, m) be an almost analytic pair of scalars.

PROPOSITION 2. 6. Let u" be a contravariant almost analytic vector field and
w; be a covariant almost analytic vector field, both defined on 9. Then the pair
of scalars (wu*, Wut) is an almost analytic pair on 9.

Let (/,m) be an almost analytic pair of scalars. Differentiating (2.2) and
eliminating derivatives of m we get

@. 4) (0, F £ —0,F )04l — F 0404+ F¥d 19, =0.

This shows that 9/ is a covariant almost analytic vector field. We immediately
find that 9;# is also a covariant almost analytic vector field and if we put w;=0a;/,
we have W;=0dm.

DerFINITION. Each of the scalars /, m in an almost analytic pair is called an
almost harmonic scalar.

Hence the gradient vector of an almost harmonic scalar is a covariant almost
analytic vector.
(2.4) is equivalent to

2.5) 0,04+ FF 0,01l — F(0;F*— 0, F %)0xl=0
and also to
2. 6) 000+ F 1 F#0,0,l+ F 340, FyF — 0:Fy%)0,l =0,

0;] satisfies
2.7 Nji*0,l=0.

From (2.5) we get

- m an
3 0t 3 PR — 3 F @ — )l =0,
=1 =1 =1
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which can be written in the form

where

2n

(kd _Gky + Z 14‘1;/»'[4‘2.,1,
1=1

2N

i = 3 FFO =001 )).
J=1

Since we have
GRIXeX, = 3 (X (1A X)),
1=1
the function / has no maximum in its domain according to Hopf’s theorem [7].
This proves the following proposition.

PROPOSITION 2.7. Any almost harmonic scalay has no maximum in ils dowmain.
Lf M is compaclt, every almost harmonic- scalar which is defined over M globally is
a constant [6].

§3. Almost analytic tensors.

We have found that contravariant almost analytic vectors and covariant almost
analylic vectors appear as pairs of such vectors, that is, that, if #* and w; are
respectively contravariant and covariant almost analytic vectors, #* and @; are also
almost analytic vectors.

DEFINITION. A pair of contravariant vectors (", #") is said to be an almost
analytic pair of contravariant vectors or simply an almost analytic pair when "
or #"* is a contravariant almost analytic vector. Similarly, a pair of covariant
vectors (w;, W;) is said to be an almost analytic pair of covariant vectors or simply
an almost analytic pair when w; or #; is a covariant almost analytic vector.

Remark that we consider contravariant almost analytic vectors only in the

strict sense.
We have defined almost analytic pairs for scalars, contravariant vectors and

covariant vectors. If ([, m), (u*, @"), (w;, W;) are almost analytic pairs, (—m, l),
(I —mit, lig"+mu®), (lw;—mi;, [0;+mw;) are also almost analytic pairs. Moreover
we find immediately that (#*w, @"w,) or equivalently (—@;#¢, Wu*) and hence

(uhwh - ﬂhwhy ﬂhwh '|‘ uleh)

are almost analytic pairs of scalars. These results suggest a rule for multiplica-
tion of pairs.



ALMOST ANALYTIC TENSOR FIELDS 459

We can generalize this rule and apply it to construct tensors from vectors.
For example we can construct from almost analytic pairs (#*, @"), (ws, W;) a pair

(u"wr—d"u”/i, u"ﬁ/,;—!—ﬂhwi)
of pure (1, 1)-tensors. If
(fy g)y (uh$ ﬁlb)y ) (uh, ﬂh): (wiy 12//2); Y (wiy wi)
1 1 D D 1 1 q q

are almost analytic pairs, we can construct a pair of pure (p, ¢)-tensors by making
a formal product

(a1 0) (/=L )0/ =1 8) (i /=T )01 o/ =L )

and arranging its real part and imaginary part.
Now, if p+qg=2, a pure (p, g)-tensor is a tensor of the form
Ty =Ty 2
such that
Fo BTt s Bl T gy ket

We define T by

T oy =F 5T,

=Fu" Thrg_ya, -

A pure (p, g@)-tensor T, ™ satisfying

(3. L)p. 4 F#0, Tty ™ —3,T i,

q
+ 2105, Fi¥) Togtoa, ™
r=1

+ i‘ (0, F s — 0 F ;) Ty oo =)
s=1

is called a @-tensor with respect to Fy* [5].

DeriNiTION. A pure (0, g)-tensor T.,.., (¢=2) satisfying (3.1),,, is called an
almost analytic (0, g)-tensor. A pure (p, g)-tensor Ti,..,"? ™ (p=1, g+p=2) satisfy-
ing (3.1),,q and

(3. 2)p.4 NjgsTp"v e m=0  (s=1, -, )

is called an almost analytic (p, ¢)-tensor in the strict sense.



460 YOSIO MUTO

Since we consider almost analytic (p, ¢)-tensors only in the strict sense, we
drop the phrase “in the strict sensc” in the sequel.
From (3.1) and (3.2) we get

TuroreM 3. 1. An almost analytic tensor Ty, (p=0, p+q=2, q=1) sutisfies
3.3) Nys 2 Togeotia, =0,
If Twy™ is an almost analytic tensor, then so is T .

If (/, m) is an almost analytic pair of scalars, we call / an almost analytic
(0, 0)-tensor and write m=1/. If («*, #*) is an almost analytic pair of contravariant
vectors, we call #"* an almost analytic (1, 0)-tensor. If (w;, @;) is an almost analytic
pair of covariant vectors, we call w; an almost analytic (0,1)-tensor. We regard
them as pure tensors. We find immediately that they satisfy (3.1) and (3.2).

The following theorem is also immediately obtained.

THEOREM 3.2. If Tand U are almost analytic tensors, TU—TU and TO+TU
are almost analytic tensors.

Thus we find that almost analytic tensors also appear as pairs. Moreover
Theorem 3.2 gives a method to construct an almost analytic pair of tensors from

two almost analytic pairs of tensors.
If Tey®="T,..,"»"™ is a pure tensor and p=1, ¢=1, then

V(i) Ch) — qu—r'-llkhp—lmhl
is also a pure tensor. As we get

(ajFlk) Tqu_lmzllhp>r“lu =)

from
055" (A A~ FiFy®) =0,

we find after straightforward calculation that, if 7, satisfies (3.1)p,q, Veiy™®
satisfies (3.1)p-1,¢-1. Moreover we find that, if p=2 and T, satisfies (3. 2)p,q¢,
then Vi, ™ satisfies (3.2)p-1,¢-1.

Thus we obtain the following

THEOREM 3.3. Let Tu,y™ be an almost analytic (p, q)-tensor where p=1, q 1.
Then a (p—1, g—1)-tensor V4, obtained from Tu,™ by contracting with vespect
to ome contravariant index and one covaviant index is also an almost analytic
tensor. Let T be a pure (p, q)-tensor where p=1, g=1 and let (T, T) be an almost
analytic pair. Then a pair of (p—1, g—1)-tensors (V, f/J) where V is obtained by
contracting T with respect to ome covariant index and one contravarviant index is
an almost analytic pair.
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§4. Lie derivatives of almost analytic tensors.

Let T, be an almost analytic (p, g)-tensor and #"* be an almost analytic
contravariant vector. Hence T, ™ satisfies (3.1)p.q, (3.2)p,q and #* satisfies

(4' 1) oCquh:()y
4. 2) Nt =0,

Then we can prove that £,T,® is also an almost analytic (p, ¢)-tensor.
As we have

D q
LTy ® =1k, Ty ™ — Z (akuhx)T(i)hP"'k“'h’—l- Z (ai,uk)Tzq...k...zl‘”’
s=1 r=1
and T, is pure, we get

-1
Fo"F? £ T b= Fi"F 200, T 4 33 (@) Teay™
s=1

q—-1
— B EP(03000) T 7 — 30 (05, 06F) T P - I " 2 (D 20®) T F
r=1

where it is understood that Ti..!” means T, ,..,”"»~"" and so on. As u" satisfies
(4.1), the second member becomes

p—1
=qusz"Pu’°8k T+ Z (akuhs) T(i)“ L
s=1
B @t 0) Fd T ot (010, 9) T
-1
S @) T P P2 (@, 0™ Fn T b+ F0 (00 ) T b
r=1
=F " F 200y T b+ " (R0 F2) T b (0 ™) V2 T b
yJ q
‘I‘ Z (8ku"s) T(i)"'k'"— Z (3iru’°)T.Ak...""
s=1 r=1
y4 q
= ——u"r’)k T(i)(h)'l' Z (('hcu"s) 7‘(1')""':'"- Z (Giru")T‘.k.‘.(’“
s=1 r=1

=—LuTe™®,

which proves that L£,7¢)™ is a pure tensor.
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We get
oc u,Niih =0

from L.F*=0. On the other hand we get Lu(Niu"sTuy *)=0 from (3.2)p..
ITence we have

(4 3) Ny’lchsoCuT(i)"’pmkm’"':o.

In order to calculate the Lic derivative of (3.1),,, we write (3.1),,, in the form

FHA Ty ™ —V (B g iy ™)
q .
(4. 4) A+ F) T,
r=1

P
+ Z (VjFA,hx_VkF‘jhs) 7‘(7.’)11,7;~~k---/ll'—_()y
$=1

where V' denotes covariant differentiation with respect to an arbitrary symmetric
connection I™,=I",. Then the Liec derivative of the left hand side of (4.4) is
equal to

Ff Ll i Ty ™ — (Ll F ) T
— (VR LT —Fo kLol ) T
+ é (Ll jFo— L oF ) Ty ™+ é (7 Fyo ) 0o Tty

4.5)
= ijVkoC’wT(i) " _Vj(Fqu£ uTk~-~(h’)) + i: (Vz,.F;k)oCuT-.kn.(h)
r=1

3

+ 2V iFds—ViF) Loy + FFE (Lol 15—V iLw) Ty ™

s=1

— (Lol iF ) T — F B (L oV 5=V 1 L) Tre

q D
+ 2 (L PR T + 2 (Lol sFits— Lol e F ) Ty
r=1 s=1

But we have
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LoV jFir =LV j—V , L)
=(Lul"F—(LuL 5 F
and

(£qu_Vk¢Cu)T(i)(m
p ; q
= Z Lud§) Tyt — Z:l('furllcz,)rulm(h)-
s=1 =

Besides, T, is pure and 7% is symmetric. Hence in the second member of
(4.5) the sum of the last five terms vanishes and we get

FPeL Ty ™ =V (Ff LuTe. )
q y4

+ 2V F)LuT e + 25 Vs =V F) Lo Ty =0
r=1 =1

from (4.4). This proves that £,7¢, is also an almost analytic tensor.
Thus we get

THEOREM 4. 1. If Tw, and u" are almost analytic, LuT,™ is also almost
analytic.

It must be remarked that our almost analytic tensors (vectors) are almost
analytic tensors (vectors) in the strict sense. From Theorem 4.1 we see easily
that the set of all almost analytic contravariant vectors is a Lie algebra. But we
are considering local properties and our fields are local. Hence we must state this
result in the following form.

THEOREM 4. 2. Let P be a point of M and U be a neighbourhood of P. The
set of all almost analytic contravarviant vector fields over Uis denoted by gy. Then
gr is a Lie algebra. If VO U, grCayp.

As we have Lyut=—L,i"=— L ('F;*)=0, we get [u, ii]=0. Hence an almost
analytic pair of contravariant vector fields spans a distribution which is involutive
in the domain where the pair does not vanish [6].

§5. Almost analytic distributions.
Let U be an open set in M and

W, ur=1ggt, wt, -, ut, ut= @
12 13 om—1 2m  2m—1

be 2m almost analytic contravariant vector fields on U such that the 2m vectors
u”, -+, u* are linearly independent at every point of U, For any given open set U,
1 2m
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let m(U) be the number such that, if m=m(U), such a set of 2m vector fields
exists and, if m>m(U), there exists no such set of 2m vector fields. It will be
easily seen that m(U)=#x and that, if VcU, m(V)=m(U). Let P be a point of
M. Then there exists a neighbourhood Up of P such that m(Up)=m(U) for every
neighbourhood U of P. We define m(P) by m(P)=m(Up).

If QeUp we see easily that m(Q)=m(P). Let us put

mo=max{m(P), PeM},
My={PeM, m(P)=m,}.

Then M, is an open set of M.
We get

ProrosiTION 5.1. Let P be a point of My. Then for a suitable neighbourhood
U of P we can take 2my, contravariant almost analytic vector fields

u (a=1, 2, +-+, 2my),

6.1
u' = ﬂh (1):1$ 2’ "'ym());
2p 2p—1

such that (5.1) are linearly independent at every point of U and sucl that, if u"
is any contrvavariant almost analylic vector field on some VU, lhe 2my+1-2 veclor
fields u", -, u", u", " are linearly independent al no pownl of V.

1

2mo
Hence we have
(.2) au"—bi" -+ g(z,,(—])"' ‘z(f”r()
where @, b, ¢, are functions and «®+5*>0. We get from (5.2)
bu"+-ag" -+ Za:(l,.(— H ]iih =0,
and, eliminating %", we get an expression of the form
6.9 W ST
As the vector #" is almost analytic, we have L,F;*=0 from which we get
an(aifn) (—1)"""?’L+ %:(lealfa) (—1)"%5”:0-
This proves that

(f?l)—-ly pr)y p:]-r ery Mo,y
are almost analytic pairs of scalars. Thus we have

PROPOSITION 5. 2. Let u' (a=1,---,2m0) be lhe contravariant almost analylic
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vector fields in Proposition 5.1, and let u" be an arbitrary contravariant almost
analytic vector field on VCU. Then u" is a linear combination of u" of the form

(5.3) wheve (fop-1, fop) (p=1, -, m0) arve almost analytic pairs of sca;ars.

Let U be as in Proposition 5.1 and let u, v be arbitrary contravariant almost
analytic vector fields on U. Then by Theorem 4.2 [u, v] is also a contravariant
almost analytic vector field on U. u,v,[u, v] are linear combinations of vector
fields (5.1). Hence (5.1) spans an involutive distribution 9y on U [1].

Let P, and P, be points of M, and let U, and U, be suitable neighbourhoods
of P and P, respectively such that there exist involutive distributions 9y, and
Dy, as stated above. The two distributions coincide in U:N U:. Hence we have

THEOREM 5. 3.  The 2mo-dimensional distribution on M, spanned by contravariant
almost analytic vector fields is involutive.

§6. Integral manifolds of contravariant almost analytic vector fields.

In this paragraph we study some local properties of integral manifolds X*™ of
the distribution in Theorem 5. 3.

THEOREM 6. 1. The number my satisfies moxn—1, that is, mo<n—1 except the
case of N;»=0.

Proof. Suppose my=n—1. Then there exist 2z—2 linearly independent vectors
u" satisfying #/N;*=0. Hence we can write

Nji=A;P{"+B;Q:".
Substituting this into Nj*+N;;»#=0 we get
€1 A;P{+BiQi"+ AP+ BRQ"=0.

If A, and B; are not linearly independent, we can put N;"=A;P* and get
AP+ AP»=0 from which we can conclude that N;"»=0. Hence we assume
that A, and B; are linearly independent. Transvecting C’ such that A.C'=1,
B:C*=0 we get

Pr=AS"+B;T*
and similarly
Qr=AU"+B; V"
Substituting these into (6.1) we get
2A;A.S*4-2B;B; V"
+(A;Bi+B,A) (T"+UM=0.
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Transvecting C’C* we get S*=0 and similarly 7*=0. Hence we get
T"4-U*=0, P"=BT"  Q/=—AT"
and N takes the form
Nyt =(A;Bi— A By)T".

As N;* must satisfy F,*Ny*=— N;*Fy", we get T"=0, N;»=0. This contradicts
mo=n—1.

Take a point P of M, and a neighbourhood U/ of P’ such that U admits a set
of 2m, contravariant almost analytic vector fields

(6. 2) u,  a=1, -, 2my,

a

linearly independent at each point of U. In general such a set of vectors (6.2)
satisfies

6. 3) -
8 B«
in stead of " = u* (p=1, ---,m,). The vectors (6.2) also satisfy
-1 2
6. 4) uFQ " — 1k = @, 1l
T B B r a

by virtue of Theorem 4.2.
Hence the system of partial differential equations

ukd, =0
8

in an unknown function " admits 2xn—2m, independent solutions f* which we write
Fe=n"E, -, & z=2mo+1, -, 2n.
We can take 2mz, functions
771(51’ c ey 5271), ey 7727”0(51’ ey SZn)
such that the system of 2z equations
=", -, &)
can be solved in the form
gh=E"n?, -+, ")

in a suitable neighbourhood V of P, VcU.
Hence (3, -+, 7% is a local coordinate system in V. The components of the
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vectors u with respect to this system will be denoted by 4!, ---, 4%". As we have
(6. 5) uk0,n" =0,
8

we obtain

h*=0, I =uk0,n",
B 5B
(6. 6)
o&h
ur=n" ——.
g 8 Oy

The components of the vectors @ with respect to the coordinate system (7)
. ~ ~ 8
will be denoted by h* where h*=0. Then we have
8 B

ﬁ“z}'/z“
B B r

from (6.3). On the other hand, since we have det(%2*)=0, therc must be a relation
8

of the form

he="F,"h’
8 8
between A and 4°. From these two relations we get
f 8

6.7) WORS = I
B B

It will be casily seen that } are the components of an almost complex struc-

. B
ture /J of X?™ with respect to the frame u and that 'Fj* are the components of

the same structure ’J with respect to the local coordinate system (). We say
that ’J is induced from J.

If we use the local coordinate system (») in M the structure J has the com-
ponents

o0& o
k>
Gh=Iy o
We get
6. 8) Gy"="Fy", G~=0,

for we have

. 7,
Wl = fut
8 Br
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which is equivalent to
T
WG = fhe,
B B r
WG, = f h*=0.
B B r
Let us consider the components of the Nijenhuis tensor of J with respect to
(). As we have G,°=0, we get
Nrﬁa:Grs(aeGﬂa'—aﬂGzﬂ)’_‘Gﬂe(aeGya—arGed>-
The components 'N,;* of the Nijenhuis tensor of /J with respect to () are given by
IN"="F 0. F—0, F—"Fg0. F,"—3,’F.").
Hence we get
(6.9) "Nig" =Ny

Let us write (1.3) and (1.8) with respect to the local coordinates (). Since
the components of the almost analytic vector are 4% and 4% where A”=0 and
G"="Fy", Gs°=0, we get from (1. 3)

RO/ Fy*—'Fyo.h*+'F,“0:h" =0.
We get from (1.8) and (6.9)
I N,s*=0.

This proves that a contravariant vector field of an integral manifold X?™ obtained
by restricting a contravariant almost analytic vector field of M to X?™ is an
almost analytic vector field of X?*™ with respect to the induced structure ’J.

But we have

N =0,  det A*%0.
4 8

Hence we get N,,“=0 and the integral manifold X?™ is a complex space by the
theorem of Newlander and Nirenberg.
Thus we have proved

THEOREM 6. 2. The distribution on M, spanned by the contravaviant almost
analytic veclor fields is involutive. Let 'M be any integral manifold of this dis-
tribution, dim 'M=2m,. Then 'M is a complex manifold by virtue of the almost
complex structure '] induced from the almost complex structure J of M. Any
contravaviant vector field obtained by vestricting to 'M a contravaviant almost
analytic vector field of M is an analytic vector field of 'M.
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