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ON SOME ALMOST ANALYTIC TENSOR FIELDS

IN ALMOST COMPLEX MANIFOLDS

BY Yosio MUTO

§ 1. Introduction, contra variant almost analytic vector fields in the strict
sense.

Almost analytic vectors and almost analytic tensors were studied by M. Ako,
S. Koto, I. Sato, S. Sawaki, S. Tachibana, K. Yano and others. In the present
paper we define contravariant almost analytic vector fields in the strict sense. A
contravariant vector field uh is almost analytic in the strict sense when uh is
almost analytic in the ordinary sense and, moreover, uh satisfies Nj%

huJ = Q where
Njih is the Nijenhuis tensor of the almost complex structure. An almost analytic
tensor field in the strict sense is similarly defined. As a consequence of such
definition we can treat these vector fields and tensor fields in a unified form. We
also find that almost analytic tensors always appear in couples. In the last section
some local property of an integral manifold of a distribution associated with con-
travariant almost analytic vector fields is studied.

Let M be a C°° manifold of dimension 2n admitting an almost complex struc-
ture /. The components of / are denoted by Fjl when we use natural frames
associated with local coordinates ξh, where indices such as h, i, j, k run over the
range 1, ~ ,2n. Let Nμh be the Nijenhuis tensor of P\h, hence

(1.1) Nji^F^diFJ^diF^-F^dtF^djF^.

Then Nji11 satisfies [10]

(1. 2) NjfFt

h= -NkSFf= -N^Ff.

Let £w be the symbol of Lie derivatives [8] with respect to a contravariant
vector field uh. Then contravariant almost analytic vector fields are defined as
vector fields uh satisfying

(1.3) ZuFf^u^Ff-Ffd^+F^u^V.

When uh is a contravariant vector field, let us define ΰh by ufi—P\/cu\ Then
we get

(1- 4) ZZFS^UuFW+NuW,
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which is equivalent to

(1. 5) £«

because of (1.2).
(1.4) shows that ύh is in general not a contravariant almost analytic vector

field when uh is such a one.
A covariant almost analytic vector field [9] is defined to be a vector field Wi

satisfying

(1.6) (djFf-diFfywt-FfdtWi+Fi'djwt^Q.

In contrast with the case of contravariant vector fields, wi=Ffwk is then also a
covariant almost analytic vector field. Moreover Wi satisfies

(1.7) Nji*wk=0.

Under such circumstances we take an interest in almost analytic contravariant
vector fields uh satisfying

(1.8) Nki

huk=Q.

DEFINITION. A contravariant vector field uh satisfying (1. 3) and (1.8) simul-
taneously is said to be a contravariant almost analytic vector field in the strict
sense.

In the present paper we consider contravariant almost analytic vector fields
only in the strict sense. Hence we drop the phrase "in the strict sense".

From this definition and (1.4) contravariant almost analytic vector fields also
appear in couples such as uh and ΰh.

As the main purpose of the present paper is to study local properties of vector
and tensor fields, we consider such fields defined on some domain of M.

§2. Almost analytic pairs of scalars.

Let u, u be a pair of contravariant almost analytic vector fields different from
zero at every point of a domain S). If a contravariant vector field i? given by

(2.1) vh=luh—muh

is also almost analytic, we have from «CwFίΛ=0

ύh=0.

As uh and ΰfl are linearly independent at each point of £D, we get

(2.2)
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This is also a sufficient condition for v]l to be almost analytic. Thus we obtain
the following theorem.

THEOREM 2. 1. Let u, U be a pair of conlravananί almost analytic vector
fields different from zero at every point of a domain <£). Then a necessary and
sufficient condition that a vector field v given by (2. 1) be a contravarianl almost
analytic vector field is that the functions I, m satisfy (2. 2).

DEFINITION. A pair of C°° scalar functions (/, m) satisfying (2. 2) is called an
almost analytic pair of scalars [6].

The following propositions are immediately proved.

PROPOSITION 2. 2. If c, Ci, c2 are constants and (I, m) is an almost analytic
pair of scalars, then the following pairs are almost analytic pairs of scalars,

(i) (cl, cm), (ii) (l+Ci, m+cz),

I —m
(iii) (m, -/), (iv)

' l2+m2

We do not consider (iv) at the points where ί=m=0.

PROPOSITION 2. 3. If (I, m) and (p, q) are almost analytic pairs of scalars,
then the following pairs are also almost analytic,

(i) (l+p, m+q), ( i i) (lp—mq,lq+mp).

These propositions show similarities of almost analytic pairs of scalars to com-
plex numbers.

The next proposition shows a close resemblance between an almost analytic
pair of scalars and a complex analytic function.

PROPOSITION 2. 4. Let (I, m) be a non constant almost analytic pair of scalars
and let f ( x , y), g(x, y) be C°° functions. A necessary and sufficient condition that
a pair of functions (/(/, m), g(l, m)) be an almost analytic pair of scalars is that
f, g satisfy the Cauchy-Riemann equations

31 3m ' 3m 31 '

Proof. The system of equations

tt*jς._jL=(}

is equivalent to the system

o / , 5/ . \ 3g _ y 5g
Fi* - — — -~r—

ol dm / ol dm
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and the latter is equivalent to

because of (2. 2). Since /, m are not constant, dzl and d^m are linearly independent.
Hence we get (2. 3).

The following theorem and proposition are also immediately proved. Related
theorems were obtained in [6].

THEOREM 2. 5. Let w, w be a pair of coυariant almost analytic vector fields
different from zero at every point of a domain 2). Then a necessary and sufficient
condition that a vector field Iwi—mWi with C°° coefficients l,m be a covariant almost
analytic vector field is that (I, m) be an almost analytic pair of scalars.

PROPOSITION 2. 6. Let un be a contravariant almost analytic vector field and
Wi be a covariant almost analytic vector field, both defined on 3). Then the pair
of scalars (WiUτ, wiu1) is an almost analytic pair on 3).

Let (/, m) be an almost analytic pair of scalars. Differentiating (2.2) and
eliminating derivatives of m we get

(2.4) (djFf-dtFtfdtl-FfdiflJ+FtdjdiJ^Q.

This shows that dtl is a covariant almost analytic vector field. We immediately
find that dim is also a covariant almost analytic vector field and if we put Wi=dil,
we have Wi=c

DEFINITION. Each of the scalars /, m in an almost analytic pair is called an
almost harmonic scalar.

Hence the gradient vector of an almost harmonic scalar is a covariant almost
analytic vector.

(2.4) is equivalent to

(2.5)

and also to

(2.6)

dil satisfies

(2.7) JV9ft/=0.

From (2.5) we get

2n 2ra 2τ&

Σ dtdil+ Σ FίFtddJ- Σ Fί

l

1=1
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which can be written in the form

where

Since we have

the function / has no maximum in its domain according to Hopf's theorem [7].
This proves the following proposition.

PROPOSITION 2. 7. Any almost harmonic scalar has no maximum in its domain.
If M is compact, every almost harmonic scalar which is defined over M globally is
a constant [6].

§ 3. Almost analytic tensors.

We have found that contravariant almost analytic vectors and covariant almost
analytic vectors appear as pairs of such vectors, that is, that, if uh and Wi are
respectively contravariant and covariant almost analytic vectors, ΰh and wι are also
almost analytic vectors.

DEFINITION. A pair of contravariant vectors (uh, ΰh) is said to be an almost
analytic pair of contravariant vectors or simply an almost analytic pair when uh

or ύh is a contravariant almost analytic vector. Similarly, a pair of covariant
vectors (Wi, wt) is said to be an almost analytic pair of covariant vectors or simply
an almost analytic pair when Wi or wi is a covariant almost analytic vector.

Remark that we consider contravariant almost analytic vectors only in the
strict sense.

We have defined almost analytic pairs for scalars, contravariant vectors and
covariant vectors. If (/, m\ (uh, ύh\ (wίy ϊύί) are almost analytic pairs, (—m, I),
(luh—mύh, lύhjrmuh\ (Iwi—mWi, Iwi+mwi) are also almost analytic pairs. Moreover
we find immediately that (uhwh, ΰhwh} or equivalently (~Wiΰ\ wiu

i'} and hence

are almost analytic pairs of scalars. These results suggest a rule for multiplica-
tion of pairs.
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We can generalize this rule and apply it to construct tensors from vectors.
For example we can construct from almost analytic pairs (uh, uh), (Wi, m) a pair

of pure (1, l)-tensors. If

(/, 0), (Uh, Uh), ~ , (Uh, Uh), (Wif Wi), •••, (Wi, Wi)
1 1 p p I I q q

are almost analytic pairs, we can construct a pair of pure (p, <?)-tensors by making
a formal product

I p p i

and arranging its real part and imaginary part.
Now, if p+q^2, a pure (p, #)-tensor is a tensor of the form

7V cw ..... -71 lip-in
-L (i) — ^ iq ii

such that

F^TV.*..^^-^-^*)

We define f by

A pure (/>, q)- tensor jΓ«)CΛ) satisfying

r=l

+
5 = 1

is called a Φ-tensor with respect to Fί1 [5].

DEFINITION. A pure (0, #)-tensor Tιq...τι (q^2) satisfying (3. l)0,g is called an
almost analytic (0, ̂ )-tensor. A pure (p, #)-tensor Tϊq...ll

hp-hl (p^l, q+P^2) satisfy-
ing (3.1)ptί and

(3. 2)piβ ΛΓ^ Γci)ft*"* Λl=0 (5=1, -,Λ

is called an almost analytic (p, #)-tensor in the strict sense.
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Since we consider almost analytic (/>, #)-tensors only in the strict sense, we
drop the phrase " in the strict sense " in the sequel.

From (3. 1) and (3. 2) we get

THEOREM 3. 1. An almost analytic tensor T{ί)

Ul) (pl^Q, ρ+q^2, q^l) satisfies

(3.3) Λ^ ?;,...,. V'°-^.

If T(i)
C/0 is an almost analytic tensor, then so is T^Uί).

If (/, m) is an almost analytic pair of scalars, we call / an almost analytic
(0, 0)-tensor and write m~L If (uh, ΰh) is an almost analytic pair of contra variant
vectors, we call uh an almost analytic (1, 0)-tensor. If (wiy Wi) is an almost analytic
pair of covariant vectors, we call Wi an almost analytic (0, 1)- tensor. We regard
them as pure tensors. We find immediately that they satisfy (3. 1) and (3. 2).

The following theorem is also immediately obtained.

THEOREM 3. 2. // T and U are almost analytic tensors, TU-TU and TU+fU
are almost analytic tensors.

Thus we find that almost analytic tensors also appear as pairs. Moreover
Theorem 3.2 gives a method to construct an almost analytic pair of tensors from
two almost analytic pairs of tensors.

If Γ(i)CΛ) = Γlςr.t1

Λιr Λl is a pure tensor and p^l, q^l, then

is also a pure tensor. As we get

from

we find after straightforward calculation that, if T(ί)

c/0 satisfies (3. l)^, FCί)CΛO

satisfies (3. l)p_ι,e_ι. Moreover we find that, if p^2 and Γ(ί)

CΛ) satisfies (3. 2)pff/,
then FCOCΛ) satisfies (3.2)^-1,^1.

Thus we obtain the following

THEOREM 3. 3. Let 7W0 be an almost analytic (p, q)-tensor where />i^l, q^.1.
Then a (p—1, q—l)-tensor F(ί)

CΛ) obtained from r(i)

C7i) by contracting with respect
to one contravariant index and one covariant index is also an almost analytic
tensor. Let T be a pure (p, q)-tensor where pl^l, q^l and let (T, T) be an almost
analytic pair. Then a pair of (/>—!, q—V)-tensors (F, F) where V is obtained by
contracting T with respect to one covariant index and one contravariant index is
an almost analytic pair.
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§ 4. Lie derivatives of almost analytic tensors.

Let Γ(ί)

c/0 be an almost analytic (p, #)-tensor and uh be an almost analytic
contravariant vector. Hence Tcί)

α) satisfies (3. l)p,q, (3. 2)p>ί and uh satisfies

(4.1) £«F»Λ=0,

(4.2) Njihu*=Q.

Then we can prove that £MT(ί)

CΛ) is also an almost analytic (p, #)-tensor.
As we have

£«ΓCi><Λ> = «*d*Γcl)<»- Σ (9t«
ΛOΓci>Λιr*"Λl+ Σ (dίXOΪV*..^

s = l r=l

and jΓ(i)
CΛ) is pure, we get

«Γ1».̂ =F,̂
S=l

where it is understood that Tm,.z- means Tmtq_l..Λl

lh*>-ί'"tί* and so on. As uh satisfies
(4. 1), the second member becomes

+Σ (3*«* )Γ(β * - Σ (
β=l r=l

Σ ί^w*')^)"*"- Σ (
s=l r=l

— _ P T (/i)

" — cL M -ί (I) ,

which proves that jCwT(i)

(7l) is a pure tensor.
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We get

£JV = 0

from £uFt

h =Q. On the other hand we get £M(Λr/*Λ'7\if*")-0 from (3.2)^.
Hence we have

(4.3) Nj^£uT^p"*"'hl=0.

In order to calculate the Lie derivative of (3.1)^ we write (3. 1)7M/ in the form

(4.4)

where F denotes covariant differentiation with respect to an arbitrary symmetric
connection jΓJ4 = /"'*,. Then the Lie derivative of the left hand side of (4.4) is
equal to

Σ (£«Fs^V*)2i.*...<w + Σ
r=l r=l

+ Σ (£«F/Ft*«-£.FtF/ )71<i) *"+ Σ
S=l 8=1

(4.5)
ί

— F kP, Γ T C Λ ) _ _ |7 γ/? fc p Tr c/i)"i4- V f
— ΓjVkJ^uJ W v J\f^q <Lu L k )^ / Λ

r=l

+ Σ

+ Σ (£uPlrFί

!c)T,..kJ» +
r=l s=l

But we have
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and

= Σ (£«rίί)Γ«> * - Σ (jCΛr)7U..<«.
s-1 r=l

Besides, Tci/70 is pure and /^ is symmetric. Hence in the second member of
(4. 5) the sum of the last five terms vanishes and we get

+ Σ (rtrr=l

from (4.4). This proves that Γ^Tα/70 is also an almost analytic tensor.
Thus we get

THEOREM 4. 1. If T^hy and uh are almost analytic, JC^TW0 is also almost
analytic.

It must be remarked that our almost analytic tensors (vectors) are almost
analytic tensors (vectors) in the strict sense. From Theorem 4. 1 we see easily
that the set of all almost analytic contravariant vectors is a Lie algebra. But we
are considering local properties and our fields are local. Hence we must state this
result in the following form.

THEOREM 4. 2. Let P be a point of M and U be a neighbourhood of P. The
set of all almost analytic contravariant vector fields over U is denoted by &/• Then
§u is a Lie algebra. If

As we have £uUrι=—£uΰ
h= — £u(uίFi

h)=Q, we get [M, u\=Q. Hence an almost
analytic pair of contravariant vector fields spans a distribution which is involutive
in the domain where the pair does not vanish [6].

§ 5. Almost analytic distributions.

Let U be an open set in M and

uh, uh=ύh, uh, •••, uh, uh— ύh

1 2 1 3 2m-l 2 m 2m-l

be 2m almost analytic contravariant vector fields on U such that the 2m vectors
uh, ,uh are linearly independent at every point of ίΛ For any given open set U,
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let m(U) be the number such that, if m^m(U), such a set of 2m vector fields
exists and, if m>m(U), there exists no such set of 2m vector fields. It will be
easily seen that m(U)^n and that, if Fc£7, m(V)^m(U). Let P be a point of
M. Then there exists a neighbourhood UP of P such that m(UP)^m(U) for every
neighbourhood U of P. We define m(P} by m(P)=m(UP).

If Qet/p we see easily that m(Q)^m(P). Let us put

M0={PeM,

Then Mo is an open set of M.
We get

PROPOSITION 5. 1. Let P be a point of M0. 7%0w /6>r <z suitable neighbourhood
U of P we can take 2mo contravariant almost analytic vector fields

uh («=1, 2, - ,2w0),

(5. 1)
«Λ = ^Λ (/>=!, 2, •• ,w0),
2p 2p-l

sz/c/z /to/ (5. 1) #T£ linearly independent at every point of U and such that, if uh

is any contravariant almost analytic vector field on some Fc C7, the 2m0+2 vector
fields uh, ~,uh, uh, ύ'1' are linearly independent at no point of V.

1 2mo

Hence we have

(5. 2) auh-hΰh + Σaa(-ΪΓ V'-O

where a, b, aa are functions and <72+/;2>0. We get from (5.2)

and, eliminating ύh, we get an expression of the form

(5.3) ^-ΣΛ(-Ό1 1V< .

As the vector uh is almost analytic, we have £uFih=Q from which we get

This proves that

(f f ) />=! ••• win,

are almost analytic pairs of scalars. Thus we have

PROPOSITION 5.2. Let uh (α=l,-- ,2wo) ^ //^ contravariant almost analytic
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vector fields in Proposition 5.1, and let uh be an arbitrary contravariant almost
analytic vector field on Vd U. Then uh is a linear combination of uh of the form

(5.3) where (f2p-ι, f2p) (/>=!, •• ,Wo) are almost analytic pairs of scalars.

Let U be as in Proposition 5.1 and let u, v be arbitrary contravariant almost
analytic vector fields on U. Then by Theorem 4.2 [u, v] is also a contravariant
almost analytic vector field on U. u, v, [u, v] are linear combinations of vector
fields (5.1). Hence (5.1) spans an involutive distribution ^)σ on U [1].

Let Pi and P2 be points of Mo and let UΊ and U2 be suitable neighbourhoods
of Pi and P2 respectively such that there exist involutive distributions ^)uλ and
£Du2 as stated above. The two distributions coincide in U\ Π U2. Hence we have

THEOREM 5. 3. The 2m^ dimensional distribution on M0 spanned by contravariant
almost analytic vector fields is involutive.

§ 6. Integral manifolds of contravariant almost analytic vector fields.

In this paragraph we study some local properties of integral manifolds Xzm° of
the distribution in Theorem 5. 3.

THEOREM 6. 1. The number m^ satisfies m^n—l, that is, mQ<n—l except the
case of Njth=Q.

Proof. Suppose mQ=n—'L. Then there exist 2n—2 linearly independent vectors
uh satisfying uJ'Njih=0. Hence we can write

Substituting this into Njih+Nijh=Q we get

(6. 1)

If A^ and Bi are not linearly independent, we can put Njih=AjPih and get
AjPih+AiPjh=Q from which we can conclude that Njih=0. Hence we assume
that Az and Bi are linearly independent. Transvecting C3 such that AtC

z=l,
z=Q we get

and similarly

Qih

Substituting these into (6. 1) we get
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Transvecting CJCl we get SΛ=0 and similarly FΛ=0. Hence we get

and Nμh takes the form

Njt^AjBi-AiBW.

As Njih must satisfy FJ

kNuh=-NJ ί

kFk

h

) we get ΓΛ=0, Njih=Q. This contradicts
mQ^=n— 1.

Take a point P of Mo and a neighbourhood U of P such that U admits a set
of 2mQ contravariant almost analytic vector fields

(6.2) uh, a=I," ,2m0,

linearly independent at each point of U. In general such a set of vectors (6. 2)
satisfies

(6.3) ΰh^fuh

β β «

in stead of ΰh = uh (/>=!, •••, m0). The vectors (6.2) also satisfy
2p— 1 2p

(6. 4) ukdku
h—ukdkUίl-=:φrβ

auh

by virtue of Theorem 4. 2.
Hence the system of partial differential equations

in an unknown function /'admits 2n—2m0 independent solutions fx which we write

We can take 2w0 functions

such that the system of 2n equations

can be solved in the form

in a suitable neighbourhood F oί P, Fc C7.
Hence O?1, « ,^2w) is a local coordinate system in F. The components of the
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vectors u with respect to this system will be denoted by h1, ~-,h2n. As we have
a a a

(6. 5)

we obtain

β β β
(6.6)

dξh

uh=ha-f^.
β β Oη

The components of the vectors ύ with respect to the coordinate system (η)
β

will be denoted by hh where hx=0. Then we have

from (6.3). On the other hand, since we have det(//α)^0, there must be a relation
β

of the form

h*='Fr"hr

β β

between h" and h". From these two relations we get
β β

(6.7) hr'Fr

a=fha.
β β 7

It will be easily seen that / are the components of an almost complex struc-
β

ture '/ of X2m° with respect to the frame u and that 'Fβ

a are the components of
a

the same structure '/ with respect to the local coordinate system (η). We say
that '/ is induced from /.

If we use the local coordinate system (η) in M the structure / has the com-
ponents

We get

(6.8) Gβ

a='Fβ

a, Gβ*=0,

for we have

=fuh

β r
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which is equivalent to

Let us consider the components of the Nijenhuis tensor of / with respect to
As we have Gβ

x=Q, we get

The components fNrβ
a of the Nijenhuis tensor of '/ with respect to (η) are given by

'Nrf^'FrWFf-diF^-'Fitf/FS-d/F:).

Hence we get

(6.9) 'NJ=-NJ.

Let us write (1. 3) and (1. 8) with respect to the local coordinates (η}. Since
the components of the almost analytic vector are ha and hx where hx=Q and
Gβ

a='Fβa, Gβ*=0, we get from (1.3)

hrdτ'Fβa-'Fprdrh°+'Fr

adphr=Q.

We get from (1. 8) and (6. 9)

h"Nrβ

tt=0.

This proves that a contravariant vector field of an integral manifold X2m° obtained
by restricting a contravariant almost analytic vector field of M to X2m° is an
almost analytic vector field of X2m° with respect to the induced structure '/.

But we have

h£Nεβ

a=Q, det h"*Q.
r β

Hence we get Nΐβ

a=0 and the integral manifold X2m° is a complex space by the
theorem of Newlander and Nirenberg.

Thus we have proved

THEOREM 6. 2. The distribution on Mo spanned by the contravariant almost
analytic vector fields is involutive. Let 'M be any integral manifold of this dis-
tribution, dim 'M=2mQ. Then 'M is a complex manifold by virtue of the almost
complex structure fj induced from the almost complex structure J of M. Any
contravariant vector field obtained by restricting to 'M a contravariant almost
analytic vector field of M is an analytic vector field of 'M.
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