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ON THE EXISTENCE OF ANALYTIC MAPPINGS, I1I

By Genko HiroMmi AND HiDeo MuTo

§1. Let R and S be Riemann surfaces which are the proper existence domains
of #- and m-valued entire algebroid functions f(z) and F(w), respectively, where f
and F are defined by irreducible equations

(1) I+ AR+ Ana(R) S+ An(2)=0,
( 2 ) Fm’FBl(lU)["m_l‘]' Tt +Bm—l(w)F+Bm(w):O:

where Ay, -+, Ay, By, -+, Bm_1 and B, are entire functions.

Let ¢ be an analytic mapping of R into S. Let PBr and PBs be the projection
maps: (2, f(z))—z and (w, F(w))—w, respectively. If ¢ preserves the projection
maps, then we say that ¢ is a rigid analytic mapping. This means that every #-
tuple of points on R having the same projection is carried to an m-tuple of points
on S having the same projection. In this paper we study the analytic mappings
of R into S. In the case of n=m=2, Ozawa obtained several interesting results
[5], [6], [7], [8]. Here an analytic mapping means a non-trivial one.

The authors wish to express their heartiest thanks to Professor M. Ozawa for
his valuable advices.

§2. In this section we assume that R and S have an infinite number of
branch points. Put #(z)=Psoo-Pz'(z). Let E be the projection of all the branch
points of R. Let z¢FE be an arbitrary but fixed point in the z-plane. Let
U(zy), U(z))NE=¢ be a disk whose center is z,. In U(z,) there exist » analytic
branches of PzI(2): BF(2)s, -+, BEH2)a. Put £:1(2)=PsooP&'(2)1, ++*, £n(2)=Pso @ Pr'(2)n.
For these functions we define the fundamental symmetric polynomials:

Hy(2)=hy(2)+ho(2) -+ +ha(2),
Hz(Z) = }h(Z)hz(Z)"l‘hl(z)hs(z) A +hn—1(z)hn(z)y

Hy(2)=h(2)ho(2) -+ ha(2).

We can extend these functions over the z-plane except E. The resulting f{unctions
denoting with the same symbols are single-valued regular functions except £
Hence /(z) satisfies the equation
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440 GENKO HIROMI AND HIDEO MUTO
(3) (2) — Ha(2)h(2)" -+ (— 1) [(2) =0,

It is easily seen that every point of the set I< is a removable singularity of //,(2)
(7=1,---,m). Thus 7A(z) is an entire algebroid (or algcbraic) function of z. Wec
shall prove the following

THEOREM 1. Assume that theve exists an analytic mapping ¢ of R inlo S. If
n is a prime number, then ¢ is rigid. If n is not a prime number, then lhe cor-
responding function h(z) of ¢ is k-valued where k is a proper divisor of n and ¢
may or may not be vigid.

Proof. We shall prove this along the same manner as in [9] pp. 29-34. In
the first place we assume that 4(z) is n-valued. Then R is the proper existence
domain of /%(z). Let po, Pr(po)=2, be a point on R whose order of ramification is
Ap,—1. Let go, Ps(go)=wo be the ¢-image of p, on S. Then we have

(4) ) =wot+a. "/ z—z) +,  a.x0.
Put

o S)= "t G S)—n(0: dat | 040, 5) .
(5)  Nesan ==\ (6 a0 9=l a0, ) G+ A vog
where

n(; qo, S)= > z.
o(P)=qo, IPrR(DI=T
Let ¢, and ¢, be distinct points on S. Then there exists a function «(q; ¢, ¢2)
which is harmonic in g on S save at ¢, and ¢z, has a positive normalized logarithmic
singularity at ¢, and a negative normalized logarithmic singularity at ¢, and is
bounded in the complement of some compact neighborhood of {gi, ¢-} [1];

1 1
u(q; q1, g2)+ T log To—w]’
1 1
w1 42— log To—wa

q2

are harmonic at ¢, and ¢, respectively, where w; and w, are the projections of ¢,
and ¢, respectively. Let R(r) be the part of R whose projection lies on |z| =7 and
I'(r) be the boundary of R(r). We take a small neighborhood whose projection is
a disk for every ¢i- and g¢,-points of ¢ and branch points of R. Then we have a
subset R/(#) of R(r) with boundary I”(#). We assume that there are no ¢;- and g.-
points of ¢ and no branch points of R on I'(*). Then we have

g ov
——ds=0
Sr(r) on S
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with o(p)=u(e(p); 41, gz), and

nwr, 4y, S)  w@; e S)
nl@ll n'lflz

.4

a’rJr

0,

where

)= 3  HUECBREE); g, @), 18)= BT ).

2nw
Using the continuity property of () we have
(6) UN+N(; g1 S)—N(7; g2, S)=A (const.)

for every 7.

Let K,, and K,,, Ky, N Ky,=¢ be neighborhoods of ¢; and ¢, whose projections
are disks with finite radii d,, and d,,, respectively. We define a function u,,(g) as
follows:

G S qu‘Il’

1 dq
”QI(Q)— X—q; lOg ‘w_wd ’

:O’ q¢Kq1‘

We also define a function #,,(¢) analogously. Put

mir; 4, S)= S e r.

2nm
Using u,,(g) we also define m(7; ¢z, S) analogously. By (6) we have
(7) m(r; qi, S)+N@; q1, S)=m(r; @2, S)+N; gz, S)+Q7),
where A—B=QM=A+B, B=sup |u(q; qi, gz)—ttq,(@)+te,(q)]. Let @(p)=q, ¢. for
every p with Pr(p)=0. Then we have

A tim u(r)= - 3 g BF 0% ¢, 420,

where the summation is taken for all choices of Pz'(0).

From (7) we can derive a simple relation between the sum m(7; g, S)+N(7; g, S)
and T'(r, ). In the following m(7; wo), N(r;wy) and T(»; k) are the Nevanlinna-
Selberg corresponding functions for X(z). Let ¢i, -+, q, (i=m) be the points on S
having the same projection w, Let j=1. Then we have

(8)  mlr; gy NG @, S)= i Ilr; 1)+ N0 )} +0(1)= —= T3 B)-O(D).

Let 7>1. Then we have
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Mt g SN @ = 5 Aoyl a1, S)+NG; 1, S} +0()

(9)
=m(7; wo)+N; wo)+O0L)=T(r; I)+-0O(1).

The above relation (9) holds for all ¢, (v=1, ---, 7 =m).
Let {w.,}*zl be the projections of all the branch pomts {¢.} of S. Put

n(r; Sw)= 2 (r—1),
R(1)
dt . n(0; Sp)

1 r
N, sh>=;¢-go{n<r; S—n0; S} + 252 dog 7,

where ¢ is the quantity given in (4). By the Nevanlinna-Selberg second funda-
mental theorem applicd to /(z) we have

k—1
(B—=20)T (r; )= 35 N(@r; w,)— N(r; Si)+O0og v T(r; )
y=1
outside a set of finite measure. Using (8) and (9) we have
1 ¥ k—1 K
(k=1 23 0) 703 O > 5 N3 0= 3, NG g, ),
y=1 v=1 y=1

where £’ is the number of branch points which liec over {w,}%-l. Hence we have

] k' .
<~% u;l 2,,),—2%—}—1) T, I)
o
= 214, N g, S)— Ny Sp)+-0(log v T(r; 1))
v=1

outside a set of finite measure. Since ¢ is an analytic mapping of R into S we
have

. had Apgy Illo
M(2)—wo= Z,ldn ~z2—2z)
where /4(z0)=wo, Pr(po)=2, and Ps(go)=wo. Hence we have
K’ i’ 14
2, g, N3 4.y S)=N; S = 2 N; 4., )= - T3 ) +0(L).
v=1 v=1
Consequently we have the following inequality:
k
<_1_ 5 (2,,y—1)—2n+]> T, iy<O(log r T(r: 1))

m =1

outside a set of finitc measure. On the other hand S has an infinite number of
branch points whose order of ramification ==1. This 18 a contradiction. Hence
M(2)=Psop-Pz(2) cannot be an n-valued function of z for every analytic mapping
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¢ of R into S whenever it exists. Thus the equation (3) is reducible. Therefore
the assertions of theorem 1 is proved by means of the same reason as in the
theory of algebraic functions [2]. This completes the proof of theorem 1.

There exists a pair of Riemann surfaces for which there is a non-rigid
analytic mapping. Let R and S be the proper existence domains of f(z) and F(w)
defined by

(=] z n o wn
mn — 1——), Fm= 1—— >,
s Z;l;ll ( " ) wJDI ( "
respectively. Then there exists an analytic mapping ¢ of R into S induced by
hz)=Y z, that is, p=Ps'o/Bx.

§3. In this section we study the analytic mappings of R, into S,, where R,
and S, are the proper existence domains of #- and m-valued entire algebroid func-
tions f(z) and F(w), respectively, defined by irreducible equations

f*=G{R), F"=gw),

where G and ¢ are entire functions having an infinite number of zeros whose
orders are less than # and m and are coprime to »z and s, respectively. Then R,
and S, are regularly branched z- and m-sheeted covering Riemann surfaces,
respectively.

We shall give a representation of an entire function | on R,. Let pi=(z, ¥G(2)),
12:=(2, © §G(2)), -+, pn_1=(2, ®" 2 ¥G(2)) and P.=(2, o" ' ¥G(2)), where o=exp(2zi/n).
Put

So={{(p0)+1(p2)+---+T(Pn)} I,
Si={{(p)+ 0" (po) 4+ +of(pa)} 1 VG (),

Fro1={{(p1)+ of(pa) 4+ 0" §(pu)} In YG(2)" 2.

Now we introduce a local parameter around a branch point of R, and expand | in
terms of the local parameter. Then the single-valuedness of f, (7=0,---,n—1) are
easily seen. Hence we have a representation of the form:

(=12, ¥G@N} =/o(2)+11(2) ¥G(2)+++-+fu-1(2) YG(2)" 7,

where f, and f; are entire functions of z and f, (j=2, :--, z—1) are meromorphic func-
tions of z which might have poles only at the zeros of G and the order of pole at
a zero of G with order k is at most [kj/n], where [ ] denotes the notation of
Gauss. In the subsequent we say that a system of z functions (i.e. Lo, -+, Ln_1)
satisfies the property (A) when L, and L, are entire functions and L, (j=2, -+, n—1)
are meromorphic functions which might have poles only at the zeros of G and the
order of pole at a zero of G with order % is at most [kj/z]. We shall prove the
following
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THEOREM 2. Assume lhal n is « prime number. Then lhere is no analylic
mapping of Ry inlo S, when nxm.

Proof. By theorem 1 every analytic mapping ¢ of R, into S,, is rigid whenever
it exists. Hence the corresponding function /(z)==Ls,,c0-PzL(2) is an entire function
of z. Let ¢g* be the function of S, defined by ¢*=%¥g-Ps,. Then wec have

10 7*o 0Pk (2)=20(2) + 2a(2) YG(@) -+ + An_(2) YG(2)",
where (4o, -+-, 4,—1) satisfies the property (A). On the other hand we have
(11) 750 PBrn(D=H0-Bs,, Bsno/t>Br, Brn(2) = ¥goh(z).
By (10) and (11) we have
9o h(2)={2(2)+4(2) YG(2) -+ Aur(2) ¥G ()"}
Since % is an entire function we have
{2 F 20 Y G Ao 2y g0 Gr 1y = (2o -2y § G Ay § GP1),

where w=exp (2ri/n). Hence at most one of A, -+, 4,_» and 2,_; does not vanish
identically. We have one of the following functional equations:

gom(2)=2,(z)"G(zy™™  (j=0, .-, n—1).

Using the Nevanlinna-Selberg ramification relation we can easily see that go/i(z)
=2(z)™ cannot hold in our case. Let (#, m)=1. Then G’™” cannot reduce to a
single-valued function of z. This is a contradiction. Hence there is no analytic
mapping of R, into S, when (n, m)=1. Let cn=m with a integer ¢=2. Then

we have
goh(2)=2;(2)"G(z)¢  (3=0, -, n—1).

However, since the orders of all the zeros of ¢ are not divisors of m, by the
Nevanlinna-Selberg ramification relation we can see that such functional equations
cannot hold in our case. Consequently there is no analytic mapping of R, into S,
when # is a prime number and #=n.

By the quite same method we can prove the following theorem.

THEOREM 3. Suppose that there exists a rigid analytic mapping ¢ of R, wmlo
Sw. Then n is an integral multiple of m by an inleger ¢ and the corrvesponding
entire function h(z) satisfy one of the following functional equations:

F1{(2)"G(2)E=g-h(2).
where k=cj is coprime to m and (fo, -+, fa-1) Satisfies the property (A).

§4. Let R, and S, be the regularly branched surfaces defined in §3. We
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give the following theorems which can be proved by means of the same method
as in [3], [4], [6]. Thus the proofs may be omitted here.

TureoreM 4 (cf. Theorem 3 in [4], Theorem 3 in [6]). Suppose that there
exists a rigid analytic mapping ¢ of R, into Sn. Then the covvesponding entire
Sunction h(z) satisfies

i M50, 6) _
R
Let G, and ¢, be canonical products having the same zeros with the same

orders as those of G and ¢, respectively. Let pg, and p,, be the orders of G. and
g, respectively. Then we have the following

THEOREM 5 (cf. Theorem 1 in [3]). Suppose that peg,<oco and 0<py,<oco and
that there exists a rigid analytic mapping ¢ of Ry into Sm. Then pg, is an in-
tegral multiple of py,.

THEOREM 6 (cf. Theorem 2 in [3]). Suppose that there exists a rigid analytic
mapping ¢ of Ry, into itself. Then ¢ is a univalent conformal mapping of R, onto
itself and the corresponding entive function h(z) is a linear function of the form
e*™P/9 z+-b with a suitable rational number plq.

Recently Ozawa [8] introduced the notion of a finite modification of an ultra-
hyperelliptic surface and proved two interesting theorems. According to his defini-
tion we say that S, is a finite modification of R, when G(z) and ¢(z) have the
same zeros for [z|=R, for a suitable R,.

THEOREM 7 (cf. Theorem 1 in [8]). Suppose that there exists a rigid analytic
mapping ¢ of Rn into Sn, which is a finite modification of R., then the cor-
responding entire function h(z) reduces to the form az-+Db, that is, ¢ is a univalent
conformal mapping of R, onto S.

TuarEOREM 8 (cf. Theorem 2 in [8]). Suppose thatl there exisis a rigid analytic
mapping ¢ of R, into S,, which is a finite modification of R, and that G and ¢
have the same number of zeros in |z| <R, then ¢ is a univalent conformal map-
ping of R, onto S, and the corrvesponding entive function h(z) veduces to the form
>4 z-+-b with a suitable rational number plq.

§5. Let R be a Riemann surface defined in §1. Let S* be a Riemann
surface which is the proper existence domain of m-valued algebraic function F*(w)
defined by an irreducible equation

F*m+P1(W)F*m—1+"'+Pm—1(w)F*+P’m(w)=0y

where P, (j=1, ---,m) are polynomials.
Let ¢ be an analytic mapping of R into S*. Let Ps. be the projection map:
(w, F*¥(w))—w. As before we define the corresponding function A(z)=Ps.o@Pz'(2).
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Then by the same method as in §2 we can prove the [ollowing

THEOREM 9. Assume that theve exists an analytic mappme ¢ of R wmio S*,
when the genus of S* is greater than m(n—1)-+1. If n is « prime number, then ¢ 1
vigid. If n is not a prime numbey, then the corvesponding function h(z) 1s k-valued
where k is a proper divisor of n and ¢ may or may not be rigid.

§6. Let R, be a regularly branched Riecmann surface defined in §3. Let S}
be a Riemann surface which is the proper cxistence domain of an m-valued
algebraic function F*(z0) defined by

(12) FEm= 11 (o—20,)

)=1

where ¢;<m are positive integers which arc coprime to m and w;xw, for z3).
Then Sp* is a closed and regularly branched m-sheeted covering Riemann surface.

Let ¢ be an analytic mapping of R, into S,*. Let z» be a prime number. By
theorem 9 the corresponding function /(z)=Ps%o¢-Px,(2) reduces to a single-valued

function of z, when the genus of S,* is greater than m(n—1)+1. Using the same
method as in the proof of theorem 2 we can prove the following

TaroreM 10. Assume that n is « prime numbey and nxm. Then there 1s no
analytic mapping of R, into Sy*, when the genus of Sn* is greater than m(n—1)-1.
Furthermore there is no vigid analytic mapping of R, into Syp*, when lhe genus of
Sw* is greatey than 1.

There exists a pair of Riemann surfaces for which there is a non-rigid analytic
mapping.

ExamprLe 1 (cf. [4], [6]). Let R, be the proper existence domain of ¥snz with
Jacobi’s sn-function. Let S;* be the hyperelliptic surface which is the proper
existence domain of &/(I—w®) (1—k%w®™). It is well-known that

(sn’z)?=(1—sn%) (1 —k%*sn’z)
=(1—%¥sn 2) (0—3sn 2)--(&" —¥sn 2)
- (=1—¥sn2) (—o—Fsn 2)- (0" —Ysn 2)
- (1—¥k'sn 2) (0—Yk sn 2)---(o" ' —¥k sn 2)

where w=exp(2zi/n). This shows that there exists agfmalytic mapping ¢ of R,
into S,*, which is induced by %sn z, that is, 4(z)=%snz, g0:ﬂ3;.§x<°h°s~]3la", when the
genus of S;* is 2n—1. This mapping is not rigid.

ExampLE 2 (cf. [4], [6]). Let R, be the proper existence domain of ¥§(z) with
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Weierstrass’ $-function with the primitive periods 2w, and 2w, where #=5 is an
odd integer. Let S,* be the hyperelliptic surface which is the proper existence of
/(" —e;) (W"—es) (W"—es), where e;=8(w,), ea=8(w.) and e;=¥(w,+w,). Evidently
the genus of Sy* is 3f—1, when n=2{+1. It is well-known that

§(2)°=4 {8(2)—e1} {8(2) —e2} {8(2) —es}
=4 ({§(z) e} (¥8(2) Ve, 0} - {(¥8(2)—Hes 0m7)
- (¥8(2)—Yeo} (V8 (2)—Hew 0} - (¥8(2)—New 0" '}
- {¥8(2)—Hes) (¥8(z)—Ves o) - {(¥o(2) —Nes 0"},
where w=exp(@2ri/n). This shows that there exists an analytic mapping ¢ of R,

into S.*, which is induced by %¥§(z), that is, A(z)=¥8(), ¢=q3;§k°/z°$gn. This
analytic mapping is not rigid.

ExampLE 3 (cf. [4]). Put

w dt _
o H{t—ar) t—az) (t—as)}?’

where a;, a; and «; are non-zero distinct complex numbers. Let w=f(z) be the in-
verse function, then it can be continued over the whole plane as a single-valued mero-
morphic function. Let S:* be the regularly branched three-sheeted covering Riemann
surface which is the proper existence domain of J{(w"—a,) W"—a) (wW"—as)}?. Let
R, be the proper existence domain of ¥f(z), then it is a regularly branched #-
sheeted covering Riemann surface. f(z) satisfies

z=71f(w)=g

F@P={(f(2)—a) (f(2)—a2) (f(2)—as)}*?
={{f@—Ha) W F@—Har o) F F(&)—Nas 0"
- W@ —Yas) G F (@) —Yaz 0)--{ F(&)—Yaz ™)
- WS @) —Han) §F@—Has o) F @) —Fas 0" ),

where w=exp(2ri/n). This shows that there exists an analytic mapping ¢ of R,
into Ss*, which is induced by ¥ f(z), that is, A(2)=%¥f(2), go:‘l‘s;%kohoﬂ}gn, when the
genus of S;* is 3#x—2. This analytic mapping is not rigid.

We can prove the following theorem by the same method as in theorem 2.

THEOREM 11. Suppose that there exists a vigid analytic mapping ¢ of R, into
Sn*, when the genus of Sp* is greater than 1. Then n is an integral multiple of
m and the corresponding mevomorphic function h(z) satisfies one of the following
Sfunctional equations:

(13) F@PG(2= n ((2)—w,)s,
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wheve k<m is an integer being coprvime to m and f is a mervomorphic [unction.
By this theorem we can prove the following theorem:

THEOREM 12. Suppose that theve exists a rigid analytic mapping ¢ of R, wnto
Sw*, when the genus of Sp* is greater than 1. Then the corresponding meromorphic
Sfunction h(z) satisfies

(p=ur) fonv= ity = e

Proof. In this case every branch point of R, has its ¢-image on a branch
point of Sp,*. This is proved as in [5]. Hence A(z) should be a transcendental
meromorphic function of z. In fact, assume that %(z) is a polynomial. Then every
branch point of Sp,* is covered only finitely often by ¢(R,) and every branch point
of R, is carried to a branch point of S,*. There is an infinite number of branch
points on R,. This is a contradiction. Using (13) we have

kNG, 0, )= 32 NG 1y, )= 3 ¢, T(r; h)+O(1),
7=1 J=1

Hence we have

—— N» 0, G) P
lm*m)— =16

700 =1

Let w,, -, wp1 and w, be the values defined in (12). Then by the second
fundamental theorem applied to /(z) we have

(p—2)T(; h)= i N (r; w,, B)+O(log » T'(v; 1))
J=1

outside a set of finitec measure. On the other hand we have

f} N (#; w,, b)= f} Noua(ry 0, )+ f} N a7y w,, 1),

(m— l)Z Nu(r; w,, ))=N@; 0, ')=2 T(r; h)+Olog r T(7; h))

outside a set of finite measure, where N,_; denotes the counting function of wi-
points whose multiplicities are less than m and N, that of other w;-points which
are counted only once, respectively. By (13) we have

Nowor(r; w,, )=k N 0, (3).

<
i

Therefore we have
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2m
<p— ~——> T(r; h)=k N(r; 0, G)+O(log » T(7; h))

outside a set of finite measure. Hence we have

(b= /o=

This completes the proof.

In the case of n=m=2, Ozawa proved the assertion of theorem 12. Further
he showed the sharpness of the left and right hand side inequalities of (14) [7].

We give the sharpness of the right hand side inequality of (14) in the case of
n=m and the sharpness of the left hand side inequality of (14) in the case of
n=m=3 by the following examples:

ExampLE 4. Let G(z) be e?’—1 and let P(w) be

s

(w—2w;)= n (w—a),

1

J

where ow=exp(2ri/p). Let R, and S,* be Riemann surfaces which are the proper
existence domains of ¥G(z) and ¥P(w), respectively. Then there exists a rigid
analytic mapping which is induced by A(z)=e? that is, @z%@}oho%nn. In this case

N(r; 0, G)=p T(r; e)=p T(r; ).
Hence we have

o M 0,G)
T By

ExAMPLE 5. Let G(z) be
{(f(@)—as) (f(2)—as)--(f(2)—ap)}?

where f(z) is the function defined in example 3 and ay, -, @, are p—3 different
complex numbers and they are different with @i, ¢, and «@s. Let Ry be the
proper existence domain of ¥G(z) and let S¥ be the proper existence domain of
Y{(w—ay) (w—as)---(w—ayp)}?. Then there is an analytic mapping ¢ whose cor-
responding function is f(z). In this case

2N(7; 0, G)=(p—3) T'(r; F(2)=(p—3) T(%; h).
Hence

= NI 0,6) _ p=3
T Ry 2
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