A RENEWAL TYPE THEOREM ON CONTINUOUS-TIME (J, X)-PROCESSES

By Hirohisa Hatori and Toshio Mori

1. Let $\{X(t); t \ge 0\}$ be a continuous-time, real-valued stochastic process. If the process X(t) is measurable, then the expected time during which X(t) stays in an interval [x, x+h] is given by

(1)
$$E\left\{\int_0^\infty I_{[x,x+h]}(X(t))dt\right\} = \int_0^\infty P\{x \le X(t) \le x+h\}dt,$$

where $I_B(\cdot)$ is the indicator function of the set *B*. Thus theorems which state that the expression on the right in (1) converges to a limit as $x\to\infty$ may be regarded as continuous-time analogues of ordinary renewal theorems. In this paper we shall prove one of such theorems for a special class of stochastic processes, which are continuous-time versions of (J, X)-processes introduced by Pyke [4]. The method of the proof is essentially that of Chung, Pollard [1] and Maruyama [3].

2. Let $\{(J(t), X(t)); t \ge 0\}$ be a Markov process with the state space $\{1, 2, \dots, N\} \times \mathbb{R}^{1}$, having the following properties:

(a) $X(0) \equiv 0$.

(b) Its transition probability function is written as

(2)
$$P_t\{(j, x), \{k\} \times (-\infty, y]\} = Q_{tjk}(y-x)$$

for any t>0 and $j, k \in \{1, 2, \dots, N\}$. It follows from this assumption that $\{J(t); t \ge 0\}$ is a Markov process with the transition probability function $Q_{tjk}(+\infty)$.

(c) For every $j \neq k$

$$a_{jk} = \lim_{t \to +0} \frac{Q_{tjk}(+\infty)}{t} < \infty.$$

Put $a_{jj} = -\sum_{k \neq j} a_{jk}$, and denote the matrix (a_{jk}) by A. (d) For each $j, k \in \{1, 2, \dots, N\}$

$$H_{tjk}(x) = Q_{tjk}(x)/Q_{tjk}(+\infty)$$

satisfies that

$$\lim_{k \to \infty} H_{tjk}(x) = H_{jk}(x)$$

in distribution if $j \neq k$ and $a_{jk} > 0$, and

$$(4) \qquad \qquad \lim_{t \to \pm 0} H_{ijj}^{(n)}(x) = H_{jj}(x)$$

Received March 6, 1967.

in distribution, where H_{jk} , j, $k \in \{1, 2, \dots, N\}$, is some distribution function, n = [1/t], and $H^{(n)}$ represents the *n*-fold convolution of *H*.

Denote by η_{jk} the characteristic function of H_{jk} . It follows from (4) that for every $j H_{jj}$ is an infinitely divisible distribution function, and therefore its characteristic function has the expression $\eta_{jj}(\theta) = e^{i_j(\theta)}$ with

$$\xi_{j}(\theta) = im_{j}\theta - \frac{v_{j}}{2}\theta^{2} + \int_{-\infty}^{\infty} \left\{ e^{i\theta u} - 1 - \frac{i\theta u}{1 + u^{2}} \right\} d\nu_{j}(u),$$

where m_j is real, $v_j \ge 0$ and ν_j is a measure defined on the class of Borel sets of the real line such that

$$\int_{|u|>1} d\nu_j(u) < \infty$$
 and $\int_{|u|\leq 1} u^2 d\nu_j(u) < \infty$.

Let φ_t denote the characteristic function of X(t), and let

$$\varphi_{jt}(\theta) = E\{e^{i\theta X(t)} | J(0) = j\}.$$

Then we have from (2)

$$\begin{aligned} \varphi_{jt+dt}(\theta) &= \sum_{k=1}^{N} \varphi_{kt}(\theta) \int_{-\infty}^{\infty} e^{i\theta x} dQ_{dtjk}(x) \\ &= (1 + a_{jj} \Delta t) e^{\xi_j(\theta) \Delta t} \varphi_{jt}(\theta) + \sum_{k \neq j} a_{jk} \Delta t \eta_{jk}(\theta) \varphi_{kt}(\theta) + o(\Delta t) \end{aligned}$$

as $\Delta t \rightarrow 0$, thus obtaining

$$\frac{\partial \varphi_{jl}(\theta)}{\partial t} = (a_{jj} + \xi_j(\theta))\varphi_{jl}(\theta) + \sum_{k \neq j} a_{jk} \eta_{jk}(\theta)\varphi_{kl}(\theta),$$

i. e.,

(5)
$$\frac{\partial \boldsymbol{\varphi}_{l}(\theta)}{\partial t} = H(\theta)\boldsymbol{\varphi}_{l}(\theta),$$

where $\varphi_{i}(\theta)$ represents the N-dimensional column vector whose *j*-th components are $\varphi_{ji}(\theta)$, and

$$H(\theta) = \begin{pmatrix} a_{11} + \xi_1(\theta) & a_{12}\eta_{12}(\theta) & \cdots & a_{1N}\eta_{1N}(\theta) \\ a_{21}\eta_{21}(\theta) & a_{22} + \xi_2(\theta) & \cdots & a_{2N}\eta_{2N}(\theta) \\ \vdots & \vdots & \cdots & \vdots \\ \vdots & \vdots & \cdots & \vdots \\ a_{N1}\eta_{N1}(\theta) & a_{N2}\eta_{N2}(\theta) & \cdots & a_{NN} + \xi_N(\theta) \end{pmatrix}.$$

Introducing the Laplace integral

$$\boldsymbol{\Phi}(\theta,s) = \int_0^\infty \boldsymbol{\varphi}_t(\theta) e^{-st} dt,$$

we obtain from (5) that

(6) $\boldsymbol{\Phi}(\theta, s) = (sI - H(\theta))^{-1}\boldsymbol{e},$

in distribution, where I is the N by N identity matrix, and e is the N-dimensional column vector whose components are all equal to 1.

Throughout the remainder of this paper we assume that the matrix A=H(0) is indecomposable. This assumption implies that s=0 is a proper value of A with multiplicity 1, and that every proper value except s=0 has negative real part.

Let $\zeta(\theta)$ denote the proper value of $H(\theta)$ such that $\lim_{\theta\to 0} \zeta(\theta)=0$. Then by the assumption on A, we can choose positive θ_0 and ε_0 so small that for $|\theta| < \theta_0$ $H(\theta)$ has no proper values except $\zeta(\theta)$ in the half plane $\Re(s) > -\varepsilon_0$. Moreover $\Re(\zeta(\theta)) \leq 0$ holds for every θ . In fact, let z be a proper vector corresponding the proper value $\zeta(\theta)$: $H(\theta)z = \zeta(\theta)z$. We can assume that every component z_j of zdoes not exceed 1 in absolute value and some z_{j_0} is equal to 1. Then

$$\Re(\zeta(\theta)) = \sum_{j \neq j_0} a_{j_0 j} \Re(\eta_{j_0 j}(\theta) z_j) + \Re(a_{j_0 j_0} + \xi_{j_0}(\theta)) z_{j_0} \leq \sum_{j \neq j_0} a_{j_0 j} + a_{j_0 j_0} = 0.$$

Now employing the same method as in [2], we can prove from (6) that

(7)
$$\Phi(\theta, s) = \frac{\sigma(\theta)}{s - \zeta(\theta)} + \Psi(\theta, s),$$

where $\Phi(\theta, s)$ is the Laplace transform of $\varphi_t(\theta)$, $\sigma(0)=1$, $\Psi(\theta, s)$ is uniformly bounded for s>0 in a neighborhood of $\theta=0$, and finite $\lim_{s\to+0} \Psi(\theta, s)$ exists. Moreover we can prove that there exist positive constants K and ε such that

$$(8) \qquad \qquad |\varphi_t(\theta) - \sigma(\theta) e^{\zeta(\theta)t}| < K e^{-\varepsilon t}$$

for $|\theta| < \theta_0$ and for t > 0.

If we assume that every $\eta_{jk}(\theta)$ has continuous second derivatives in a neighborhood of $\theta = 0$, then it is easy to show that $\zeta(\theta)$ and $\sigma(\theta)$ have the same property. Applying the method of [2], we see that $m = -i\zeta'(0)$ is real and $\zeta''(0) < 0$. From $\sigma(-\theta) = \overline{\sigma(\theta)}$ it follows that $\sigma'(0)$ is pure imaginary.

REMARK 1. The inequality (8) with the assumption above enables us to prove a central limit theorem for the process X(t). The method of the proof is similar to that of [2].

Lastly we add the following assumption: for every $\theta \neq 0$, either at least one $\xi_j(\theta) \neq 0$ or there exist $j, k \in \{1, 2, \dots, N\}$ $(j \neq k)$ such that $a_{jk} > 0$ and $|\eta_{jk}(\theta)| < 1$. This assumption implies that for every $\theta \neq 0$ the matrix $H(\theta)$ is regular. In fact, if det $H(\theta)=0$, $\theta \neq 0$, then there exists a column vector $z \neq 0$ such that $H(\theta)z=0$. We may assume that every component z_j of z does not exceed 1 in absolute value and some z_{j_0} is equal to 1. Then

(9)
$$-a_{j_0j_0} - \xi_{j_0}(\theta) = \sum_{j \neq j_0} z_j a_{j_0j} \eta_{j_0j}(\theta).$$

From $\Re(\xi_{j_0}(\theta)) \leq 0$, $|\eta_{j_0j}(\theta)| \leq 1$ and $|z_j| \leq 1$, (9) holds only if $\xi_{j_0}(\theta) = 0$ and $z_j\eta_{j_0j}(\theta) = 1$ for every j such that $a_{j_0j} > 0$. Therefore $|z_j| = 1$ if $a_{j_0j} > 0$. Since the equality (9) replaced j_0 by j_1 must hold if $|z_{j_1}| = 1$, and since A is indecomposable, it follows that $\xi_j(\theta) = 0$ for every j and $|\eta_{jk}(\theta)| = 1$ for every j, k such that $a_{jk} > 0$. This proves our assertion.

406

3. We shall now prove the following

THEOREM. Under the assumptions in the preceding section

(10)
$$\lim_{x \to \infty} \int_0^\infty P\{x \le X(t) \le x + h\} dt = \begin{cases} \frac{h}{m} & \text{if } m > 0, \\ 0 & \text{if } m < 0. \end{cases}$$

Proof. The theorem follows from the following:

(11)
$$\lim_{x \to \infty} \int_0^\infty E\{F(X(t) - x)\} dt = \begin{cases} \frac{1}{m} \int_{-\infty}^\infty F(x) dx & \text{if } m > 0, \\ 0 & \text{if } m < 0, \end{cases}$$

where $F(x) \in L^1(\mathbb{R}^1)$ is an arbitrary non-negative continuous even function such that its Fourier transform

$$f(\theta) = \int_{-\infty}^{\infty} F(x) e^{-i\theta x} dx$$

belongs to $L^1(\mathbb{R}^1)$ and vanishes outside a finite interval (-c, c). In order to prove that (11) implies (10), we may apply the same method as that employed by Maruyama [3], and therefore we do not reproduce it. The remaining part of the proof, i. e., the proof of (11) is also quite similar to [1] and [3].

The integral on the left in (11) is written as

(12)
$$\lim_{\alpha \to +0} \int_{0}^{\infty} e^{-\alpha t} E\{F(X(t)-x)\} dt$$
$$= \lim_{\alpha \to +0} \frac{1}{2\pi} \int_{0}^{\infty} e^{-\alpha t} dt \int_{-c}^{c} e^{-i\theta x} f(\theta) \varphi_{\ell}(\theta) d\theta$$
$$= \lim_{\alpha \to +0} \frac{1}{2\pi} \int_{-c}^{c} e^{-i\theta x} f(\theta) \Phi(\theta, \alpha) d\theta.$$

For any $\delta > 0$, it follows from the regularity of matrix $H(\theta)$, $\theta \neq 0$, that $\lim_{\alpha \to +0} \Phi(\theta, \alpha) = \Phi(\theta, 0)$ is bounded on every compact interval excluding the origin, and therefore by Riemann-Lebesgue lemma

(13)
$$\lim_{x\to\infty} \lim_{\alpha\to+0} \frac{1}{2\pi} \int_{c>|\theta|>\delta} e^{-i\theta x} f(\theta) \Phi(\theta, \alpha) d\theta = 0.$$

If δ is sufficiently small, then by (7) and again by Riemann-Lebesgue lemma

(14)
$$\lim_{x\to\infty} \lim_{\alpha\to+0} \frac{1}{2\pi} \int_{-\delta}^{\delta} e^{-i\theta x} f(\theta) \left\{ \Phi(\theta, \alpha) - \frac{\sigma(\theta)}{\alpha - \zeta(\theta)} \right\} d\theta = 0.$$

Now we shall evaluate

(15)
$$\lim_{x \to \infty} \lim_{\alpha \to +0} \frac{1}{2\pi} \int_{-\delta}^{\delta} e^{-i\theta x} \frac{f(\theta)\sigma(\theta)}{\alpha - \zeta(\theta)} d\theta = \lim_{x \to \infty} \lim_{\alpha \to +0} \frac{1}{2\pi} \int_{-\delta}^{\delta} f(\theta) \Re \left\{ \frac{e^{-i\theta x}\sigma(\theta)}{\alpha - \zeta(\theta)} \right\} d\theta.$$

Denote by $R(\theta)$, $I(\theta)$ and $R_1(\theta)$, $I_1(\theta)$ the real part and imaginary part of $-\zeta(\theta)$ and $\sigma(\theta)$ respectively. Then $R(\theta)=O(\theta^2)$ is non-negative for small θ , $I(\theta)=-m\theta+O(\theta^2)$, $R_1(\theta)=1+O(\theta^2)$ and $I_1(\theta)=-i\sigma'(0)\theta+O(\theta^2)$. Divide the integrand on the right in (15) as follows:

(16)
$$\frac{\alpha f \cdot R_{1}(\cos \theta x - 1)}{(\alpha + R)^{2} + I^{2}} + \frac{f \cdot (RR_{1} + II_{1})}{(\alpha + R)^{2} + I^{2}} \cos \theta x + \frac{\alpha f \cdot R_{1}}{(\alpha + R)^{2} + I^{2}} + \frac{f \cdot \{(\alpha + R)I_{1} - IR_{1}\}}{(\alpha + R)^{2} + I^{2}} \sin \theta x.$$

We have easily

(17)
$$\lim_{\alpha \to +0} \frac{1}{2\pi} \int_{-\delta}^{\delta} \frac{\alpha f \cdot R_{\mathrm{I}}(\cos \theta x - 1)}{(\alpha + R)^2 + I^2} \, d\theta = 0,$$

and by Riemann-Lebesgue lemma

(18)
$$\lim_{x \to \infty} \lim_{\alpha \to +0} \frac{1}{2\pi} \int_{-\delta}^{\delta} \frac{f \cdot (RR_1 + II_1)}{(\alpha + R)^2 + I^2} \cos \theta x d\theta = \lim_{x \to \infty} \frac{1}{2\pi} \int_{-\delta}^{\delta} \frac{f \cdot (RR_1 + II_1)}{R^2 + I^2} \cos \theta x d\theta = 0.$$

The boundedness of $(d/d\theta)(\zeta(\theta)/\theta)$ implies that $(f \cdot (RI_1 - IR_1)\theta)/(R^2 + I^2)$ is of bounded variation at the origin, and therefore

(19)
$$\lim_{x \to \infty} \lim_{\alpha \to +0} \frac{1}{2\pi} \int_{-\delta}^{\delta} \frac{f \cdot \{(\alpha + R)I_1 - IR_1\}\theta}{(\alpha + R)^2 + I^2} \cdot \frac{\sin \theta x}{\theta} d\theta$$
$$= \lim_{x \to \infty} \frac{1}{2\pi} \int_{-\delta}^{\delta} \frac{f \cdot (RI_1 - IR_1)\theta}{R^2 + I^2} \cdot \frac{\sin \theta x}{\theta} d\theta$$
$$= \lim_{\theta \to 0} \frac{f \cdot (RI_1 - IR_1)\theta}{2(R^2 + I^2)}$$
$$= \frac{f(0)}{2m}.$$

To evaluate the integral corresponding the third term of (16), we note that

(20)
$$\lim_{\delta \to +0} \lim_{\alpha \to +0} \frac{1}{2\pi} \int_{-\delta}^{\delta} \frac{\alpha f \cdot R_1}{\alpha^2 + m^2 \theta^2} d\theta = \frac{f(0)}{2|m|},$$

and

(21)
$$\lim_{\delta \to +0} \lim_{\alpha \to +0} \frac{1}{2\pi} \int_{-\delta}^{\delta} f \cdot R_1 \left\{ \frac{\alpha}{\alpha^2 + m^2 \theta^2} - \frac{\alpha}{(\alpha + R)^2 + I^2} \right\} d\theta = 0.$$

To prove (21) let us write the integral in (21) as follows:

$$\int_{-\delta}^{\delta} f \cdot R_1 \frac{\alpha (R^2 + I^2 - m^2 \theta^2)}{(\alpha^2 + m^2 \theta^2) \left((\alpha + R)^2 + I^2 \right)} d\theta + \int_{-\delta}^{\delta} f \cdot R_1 \frac{2\alpha^2 R}{(\alpha^2 + m^2 \theta^2) \left((\alpha + R)^2 + I^2 \right)} d\theta.$$

The first integral does not exceed

$$\int_{-\delta}^{\delta} f \cdot R_1 \frac{\alpha}{\alpha^2 + m^2 \theta^2} \cdot \frac{|R^2 + I^2 - m^2 \theta^2|}{R^2 + I^2} \, d\theta$$

in absolute value, which converges as $\alpha \rightarrow +0$ to

$$\lim_{\theta \to 0} f \cdot R_1 \frac{|R^2 + I^2 - m^2 \theta^2|}{R^2 + I^2} = 0.$$

The integrand of the second integral is uniformly bounded and converges to 0 as $\alpha \rightarrow +0$, hence the integral converges to 0. From (20) and (21) it follows that

(22)
$$\lim_{\delta \to +0} \lim_{\alpha \to +0} \frac{1}{2\pi} \int_{-\delta}^{\delta} \frac{\alpha f \cdot R_1}{(\alpha + R)^2 + I^2} d\theta = \frac{f(0)}{2|m|}.$$

(17), (18), (19) and (22) together prove

(23)
$$\lim_{\delta \to +0} \lim_{x \to \infty} \lim_{\alpha \to +0} \frac{1}{2\pi} \int_{-\delta}^{\delta} e^{-i\theta x} \frac{f(\theta)\sigma(\theta)}{\alpha - \zeta(\theta)} d\theta = \frac{f(0)}{2} \left(\frac{1}{m} + \frac{1}{|m|}\right),$$

and the theorem follows from (13), (14) and (23).

Remark 2. This proof is also applicable to show that under the assumptions of the theorem

$$\lim_{x \to \infty} \int_0^\infty P\{J(t) = k, x \le X(t) \le x + h\} dt = \begin{cases} \frac{\pi_k h}{m} & \text{if } m > 0, \\ 0 & \text{if } m < 0 \end{cases}$$

holds, where $\pi_k = \lim_{t\to\infty} P\{J(t) = k\}$.

References

- CHUNG, K. L., AND H. POLLARD, An extension of renewal theory. Proc. Amer. Math. Soc. 3 (1952), 303-309.
- [2] HATORI, H., AND T. MORI, On continuous-time Markov processes with rewards, II. Kodai Math. Sem. Rep. 18 (1966), 353-356.
- [3] MARUYAMA, G., Fourier analytic treatment of some problems on the sums of random variables. Natural Sci. Rep., Ochanomizu Univ. 6 (1955), 7-24.
- [4] PYKE, R., Markov renewal processes: definitions and preliminary properties. Ann. Math. Statist. 32 (1961), 1231-1242.

SCIENCE UNIVERSITY OF TOKYO, AND CHŪBU INSTITUTE OF TECHNOLOGY.