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A RENEWAL TYPE THEOREM
ON CONTINUOUS-TIME (J, J¥>PROCESSES

BY HIROHISA HATORI AND TOSHIO MORI

1. Let (X(f)', t^Q} be a continuous-time, real- valued stochastic process. If the
process X(f) is measurable, then the expected time during which X(f) stays in an
interval [x, x+h\ is given by

(1)

where ZB( ) is the indicator function of the set B. Thus theorems which state
that the expression on the right in (1) converges to a limit as x— >CXD may be
regarded as continuous-time analogues of ordinary renewal theorems. In this paper
we shall prove one of such theorems for a special class of stochastic processes,
which are continuous-time versions of (/, JO-processes introduced by Pyke [4]. The
method of the proof is essentially that of Chung, Pollard [1] and Maruyama [3].

2. Let {(/(O, X(t)); £^0} be a Markov process with the state space {1, 2, , N}
1, having the following properties:
(a) *(0)Ξ=0.

(b) Its transition probability function is written as

(2) Pt{(j\x\ {k}X(-™,y]}=Qtjk(y-χ)

for any t>Q and /, &€{!, 2, • • • , N}. It follows from this assumption that {7(0; ^0}
is a Markov process with the transition probability function

(c) For every j^k

Γajk= lim
I

Put ajj= — Σk*jajk, and denote the matrix (ajk) by A.
(d) For each /, &€{1,2, • • • , TV}

/ίyι(Λ?) = 0^(Λ?)/0^( + oo)

satisfies that

(3) lim Htβ,(x)-ΠJk(x)
1-++0

in distribution if j^k and #/&>(), and

(4) lim
ί->+0

Received March 6, 1967.

404



RENEWAL TYPE THEOREM 405

in distribution, where Hjk,j,k€{l,2,'~,N}, is some distribution function, n=[l/t],
and H^ represents the n-ίolά convolution of H.

Denote by ηjk the characteristic function of Hjk. It follows from (4) that for
every j HJJ is an infinitely divisible distribution function, and therefore its charac-
teristic function has the expression ηjj(θ)=eζι^ with

l+u2

where m3 is real, #/i^O and v3 is a measure defined on the class of Borel sets of
the real line such that

S \U\>1
and \

J|ω|

Let φt denote the characteristic function of X(t\ and let

Then we have from (2)

N poo

k=l J-oo

dt

as Δt—»0, thus obtaining

i. e.,

(5) ^L=H(θ)φt(θ\

where φt(0} represents the Λf-dimensional column vector whose -th components
are ψjt(0\ and

\

Introducing the Laplace integral

Φ(

we obtain from (5) that

(6) Φ(
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in distribution, where / is the N by N identity matrix, and e is the Af-dimensional
column vector whose components are all equal to 1.

Throughout the remainder of this paper we assume that the matrix A=H(Q)
is indecomposable. This assumption implies that 5=0 is a proper value of Λ with
multiplicity 1, and that every proper value except 5=0 has negative real part.

Let ζ(0) denote the proper value of H(θ) such that lim^0 ζ(0)=0. Then by
the assumption on A, we can choose positive #0 and ε0 so small that for |0|<00

H(θ) has no proper values except ζ(0) in the half plane 3ϊ(s) >— ε0. Moreover
9i(C(0))=0 holds for every θ. In fact, let z be a proper vector corresponding the
proper value ζ(0): H(θ)z=ζ(θ)z. We can assume that every component z3 of z
does not exceed 1 in absolute value and some zJo is equal to 1. Then

Now employing the same method as in [2], we can prove from (6) that

(7) *(M)=

where Φ(θ,s) is the Laplace transform of φt(θ\ σ(0)=l, Φ(0,s) is uniformly bounded
for 5>0 in a neighborhood of 0=0, and finite lims_+o Ψ(θ,s) exists. Moreover we
can prove that there exist positive constants K and ε such that

(8)

for |0|<00 and for
If we assume that every ηjk(θ) has continuous second derivatives in a neigh-

borhood of Θ=Q, then it is easy to show that ζ(0) and σ(0) have the same property.
Applying the method of [2], we see that m=—iζ'(0) is real and ζ"(0)<0. From
σ(—θ)=σ(θ) it follows that σ'(Q) is pure imaginary.

REMARK 1. The inequality (8) with the assumption above enables us to prove
a central limit theorem for the process X(t). The method of the proof is similar
to that of [2].

Lastly we add the following assumption: for every #^0, either at least one
£/0)=*pO or there exist ;',&€{ 1,2, • • • , TV} (j*K) such that aJk>Q and |^*(0)|<1
This assumption implies that for every 0ΦO the matrix H(θ) is regular. In fact,
if άetH(θ)=Q, O^Q, then there exists a column vector z^Q such that H(θ)z=0.
We may assume that every component z3 of z does not exceed 1 in absolute value
and some zJo is equal to 1. Then

( 9 ) -*,oJo-£joW= Σ *A0^o/tf)
'̂̂ ^0

From 5R(ί,0(0))^0, |^oχ0)|^l and |z,|^l, (9) holds only if ί,0(0)=0 and ZjηJoJ(θ)=l
for every j such that ajQj>Q. Therefore \Zj\=l if ^o7>0. Since the equality (9)
replaced jQ by ^ must hold if I^J^l, and since A is indecomposable, it follows
that ί/0)=0 for every j and \^jk(θ)\ =l for every j,k such that ajk>Q. This
proves our assertion.
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3. We shall now prove the following

THEOREM. Under the assumptions in the preceding section

h
poo — if m>0,

m(10) lim\
x-HX) Jo

0 if m<0.

Proof. The theorem follows from the following:

POO ί— Γ F(x)dx if m>0,
(11) l im\ E{F(X(t)-x)}dt=\ m J-~

tf->oo J 0
1 0 if m<0,

where F(x)sLl(Rl) is an arbitrary non-negative continuous even function such
that its Fourier transform

F(x)e-iβxdx
o

belongs to L\Rl) and vanishes outside a finite interval (—c, c). In order to prove
that (11) implies (10), we may apply the same method as that employed by
Maruyama [3], and therefore we do not reproduce it. The remaining part of the
proof, i. e., the proof of (11) is also quite similar to [1] and [3].

The integral on the left in (11) is written as

lim
α->+0 JO

(12) = lim -T^M
α-»+o Δπ jo

= lira Tr e-ί>xf(θ)Φ(θ,ά}dθ.
α_>+0 Δπ J _ c

For any <5>0, it follows from the regularity of matrix H(θ\ #^0, that
lim«->+o Φ(θ, a)=Φ(θ, 0) is bounded on every compact interval excluding the origin,
and therefore by Riemann-Lebesgue lemma

(13) lim lim-^-ί e-
ioxf(θ}Φ(θ,ά)dθ^.

j ̂  oo α-* + 0 Δ7ΐ Jc>|^|>5

If δ is sufficiently small, then by (7) and again by Riemann-Lebesgue lemma

(14) lim l i m -
^oo a^+02

Now we shall evaluate

(15) lim lim

Φ(0,a)-
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Denote by R(ϋ), 1(0) and Rι(0), IL(0) the real part and imaginary part of —ζ(0) and
σ(θ) respectively. Then R(0)=O(02) is non-negative for small 0, I(0)=-mO+O(0*),
R1(θ)=l-\-O(θ2) and I1(θ)=-iσ/(Q)θ+O(02). Divide the integrand on the right in
(15) as follows:

l) f (RR1+Π1)

af.Rl

We have easily

..
(17) lιm

α_+

and by Riemann-Lebesgue lemma

The boundedness of (d/dθ)(ζ(θ)/θ) implies that (f (RL-IRι)θ)l(R*+P) is of bounded
variation at the origin, and therefore

f {(a+R)Iι-IRι}0 sin Ox ̂~~

(19)

sin Ox

2m '

To evaluate the integral corresponding the third term of (16), we note that

«/'*! ,*, /«»(20)

and

(21)

lim l i m T -
2\m\ '

lim lim ~^—
δ-++0 a->+0 £K

To prove (21) let us write the integral in (21) as follows:

The first integral does not exceed

n

f Ri-
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in absolute value, which converges as α— *+0 to

r n \R*+I*-m*0*\ πlim f-R, - ̂ —γ-2 - -0.
0->o K -\-l

The integrand of the second integral is uniformly bounded and converges to 0 as
«-»+(), hence the integral converges to 0. From (20) and (21) it follows that

rlim

lim lim lim f Γ ̂ -̂ ,0 ™ (_L + 1 N
δ_+0 ^co α->+o 2ττ J_ δ α— W) 2 \m \m\ /

τr , PN2 , T2β-H-o «->+o 2τr J_ β (a+R)2+P

(17), (18), (19) and (22) together prove

(23)

and the theorem follows from (13), (14) and (23).

REMARK 2. This proof is also applicable to show that under the assumptions
of the theorem

f-*** if m>0,
l i m \ P{J(t)=k,x^X(f)^x+h}dt=\ m

O
1 0 if m<0

,
l i m \
X-+00 J

holds, where πk=limt^00P{f(t)=k}.
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