A RENEWAL TYPE THEOREM ON CONTINUOUS-TIME (J, X)-PROCESSES

By Hirohisa Hatori and Toshio Mori

1. Let $\{X(t) ; t \geqq 0\}$ be a continuous-time, real-valued stochastic process. If the process $X(t)$ is measurable, then the expected time during which $X(t)$ stays in an interval $[x, x+h]$ is given by

$$
\begin{equation*}
E\left\{\int_{0}^{\infty} I_{[x, x+h]}(X(t)) d t\right\}=\int_{0}^{\infty} P\{x \leqq X(t) \leqq x+h\} d t, \tag{1}
\end{equation*}
$$

where $I_{B}(\cdot)$ is the indicator function of the set B. Thus theorems which state that the expression on the right in (1) converges to a limit as $x \rightarrow \infty$ may be regarded as continuous-time analogues of ordinary renewal theorems. In this paper we shall prove one of such theorems for a special class of stochastic processes, which are continuous-time versions of (J, X)-processes introduced by Pyke [4]. The method of the proof is essentially that of Chung, Pollard [1] and Maruyama [3].
2. Let $\{(J(t), X(t)) ; t \geqq 0\}$ be a Markov process with the state space $\{1,2, \cdots, N\}$ $\times R^{1}$, having the following properties:
(a) $X(0) \equiv 0$.
(b) Its transition probability function is written as

$$
\begin{equation*}
P_{t}\{(j, x),\{k\} \times(-\infty, y]\}=Q_{t j k}(y-x) \tag{2}
\end{equation*}
$$

for any $t>0$ and $j, k \in\{1,2, \cdots, N\}$. It follows from this assumption that $\{J(t) ; t \geqq 0\}$ is a Markov process with the transition probability function $Q_{t j k}(+\infty)$.
(c) For every $j \neq k$

$$
a_{j k}=\lim _{t \rightarrow+0} \frac{Q_{t j k}(+\infty)}{t}<\infty .
$$

Put $a_{j j}=-\sum_{k \neq j} a_{j k}$, and denote the matrix $\left(a_{j k}\right)$ by A.
(d) For each $j, k \in\{1,2, \cdots, N\}$

$$
H_{t j k}(x)=Q_{l, j k}(x) / Q_{l j k k}(+\infty)
$$

satisfies that

$$
\begin{equation*}
\lim _{t \rightarrow+0} H_{t j k}(x)=I I_{j k}(x) \tag{3}
\end{equation*}
$$

in distribution if $j \neq k$ and $a_{j k}>0$, and

$$
\begin{equation*}
\lim _{t \rightarrow+0} H_{t j j}^{(n)}(x)=I I_{j j}(x) \tag{4}
\end{equation*}
$$

Received March 6, 1967.
in distribution, where $H_{j k}, j, k \in\{1,2, \cdots, N\}$, is some distribution function, $n=[1 / t]$, and $H^{(n)}$ represents the n-fold convolution of H.

Denote by $\eta_{j k}$ the characteristic function of $H_{j k}$. It follows from (4) that for every $j H_{j j}$ is an infinitely divisible distribution function, and therefore its characteristic function has the expression $\eta_{j j}(\theta)=e^{\xi_{j}(\theta)}$ with

$$
\xi_{j}(\theta)=i m_{j} \theta-\frac{v_{j}}{2} \theta^{2}+\int_{-\infty}^{\infty}\left\{e^{i \theta u}-1-\frac{i \theta u}{1+u^{2}}\right\} d \nu_{j}(u),
$$

where m_{\jmath} is real, $v_{j} \geqq 0$ and ν_{\jmath} is a measure defined on the class of Borel sets of the real line such that

$$
\int_{|u|>1} d \nu_{j}(u)<\infty \quad \text { and } \quad \int_{|u| \leqq 1} u^{2} d \nu_{j}(u)<\infty .
$$

Let φ_{t} denote the characteristic function of $X(t)$, and let

$$
\varphi_{j t}(\theta)=E\left\{e^{i \theta X(t)} \mid J(0)=j\right\} .
$$

Then we have from (2)

$$
\begin{aligned}
\varphi_{j t+\Delta t}(\theta) & =\sum_{k=1}^{N} \varphi_{k t}(\theta) \int_{-\infty}^{\infty} e^{i \theta x} d Q_{\Delta t j k}(x) \\
& =\left(1+a_{j j} \Delta t\right) e^{\xi}(\theta) \Delta t \varphi_{j t}(\theta)+\sum_{k \neq j} a_{j k} \Delta t \eta_{j k}(\theta) \varphi_{k t}(\theta)+o(\Delta t)
\end{aligned}
$$

as $\Delta t \rightarrow 0$, thus obtaining

$$
\frac{\partial \varphi_{j t}(\theta)}{\partial t}=\left(a_{j j}+\xi_{j}(\theta)\right) \varphi_{j t}(\theta)+\sum_{k \neq j} a_{j k} \eta_{j k}(\theta) \varphi_{k t}(\theta),
$$

i. e.,

$$
\begin{equation*}
\frac{\partial \varphi_{t}(\theta)}{\partial t}=H(\theta) \boldsymbol{\varphi}_{t}(\theta), \tag{5}
\end{equation*}
$$

where $\varphi_{t}(\theta)$ represents the N-dimensional column vector whose j-th components are $\varphi_{j t}(\theta)$, and

$$
H(\theta)=\left(\begin{array}{cccc}
a_{11}+\xi_{1}(\theta) & a_{12} \eta_{12}(\theta) & \cdots & a_{1 N} \eta_{1 N}(\theta) \\
a_{21} \eta_{21}(\theta) & a_{22}+\xi_{2}(\theta) & \cdots & a_{2 N} \eta_{2 N}(\theta) \\
\vdots & \vdots & \cdots & \vdots \\
\vdots & \vdots & \cdots & \vdots \\
a_{N 1} \eta_{N 1}(\theta) & a_{N 2} \eta_{N 2}(\theta) & \cdots & a_{N N}+\xi_{N}(\theta)
\end{array}\right) .
$$

Introducing the Laplace integral

$$
\Phi(\theta, s)=\int_{0}^{\infty} \varphi_{t}(\theta) e^{-s t} d t
$$

we obtain from (5) that

$$
\begin{equation*}
\boldsymbol{\Phi}(\theta, s)=(s I-H(\theta))^{-1} \boldsymbol{e} \tag{6}
\end{equation*}
$$

in distribution, where I is the N by N identity matrix, and \boldsymbol{e} is the N-dimensional column vector whose components are all equal to 1 .

Throughout the remainder of this paper we assume that the matrix $A=H(0)$ is indecomposable. This assumption implies that $s=0$ is a proper value of A with multiplicity 1 , and that every proper value except $s=0$ has negative real part.

Let $\zeta(\theta)$ denote the proper value of $H(\theta)$ such that $\lim _{\theta \rightarrow 0} \zeta(\theta)=0$. Then by the assumption on A, we can choose positive θ_{0} and ε_{0} so small that for $|\theta|<\theta_{0}$ $H(\theta)$ has no proper values except $\zeta(\theta)$ in the half plane $\Re(s)>-\varepsilon_{0}$. Moreover $\Re(\zeta(\theta)) \leqq 0$ holds for every θ. In fact, let \boldsymbol{z} be a proper vector corresponding the proper value $\zeta(\theta): H(\theta) \boldsymbol{z}=\zeta(\theta) \boldsymbol{z}$. We can assume that every component z_{j} of \boldsymbol{z} does not exceed 1 in absolute value and some $z_{\jmath_{0}}$ is equal to 1 . Then

$$
\Re(\zeta(\theta))=\sum_{j \neq j_{0}} a_{J_{0} j} \Re\left(\eta_{J_{0} j}(\theta) z_{j}\right)+\Re\left(a_{\rho_{0} J_{0}}+\xi_{j_{0}}(\theta)\right) z_{J_{0}} \leqq \sum_{j \neq j_{0}} a_{J_{0} j}+a_{J_{0} J_{0}}=0 .
$$

Now employing the same method as in [2], we can prove from (6) that

$$
\begin{equation*}
\Phi(\theta, s)=\frac{\sigma(\theta)}{s-\zeta(\theta)}+\Psi(\theta, s) \tag{7}
\end{equation*}
$$

where $\Phi(\theta, s)$ is the Laplace transform of $\varphi_{t}(\theta), \sigma(0)=1, \Psi(\theta, s)$ is uniformly bounded for $s>0$ in a neighborhood of $\theta=0$, and finite $\lim _{s \rightarrow+0} \Psi(\theta, s)$ exists. Moreover we can prove that there exist positive constants K and ε such that

$$
\begin{equation*}
\left|\varphi_{t}(\theta)-\sigma(\theta) e^{\xi(0) t}\right|<K e^{-s t} \tag{8}
\end{equation*}
$$

for $|\theta|<\theta_{0}$ and for $t>0$.
If we assume that every $\eta_{j k}(\theta)$ has continuous second derivatives in a neighborhood of $\theta=0$, then it is easy to show that $\zeta(\theta)$ and $\sigma(\theta)$ have the same property. Applying the method of [2], we see that $m=-i \zeta^{\prime}(0)$ is real and $\zeta^{\prime \prime}(0)<0$. From $\sigma(-\theta)=\overline{\sigma(\theta)}$ it follows that $\sigma^{\prime}(0)$ is pure imaginary.

Remark 1. The inequality (8) with the assumption above enables us to prove a central limit theorem for the process $X(t)$. The method of the proof is similar to that of [2].

Lastly we add the following assumption: for every $\theta \neq 0$, either at least one $\xi_{j}(\theta) \neq 0$ or there exist $j, k \in\{1,2, \cdots, N\} \quad(j \neq k)$ such that $a_{j k}>0$ and $\left|\eta_{j k}(\theta)\right|<1$. This assumption implies that for every $\theta \neq 0$ the matrix $H(\theta)$ is regular. In fact, if $\operatorname{det} H(\theta)=0, \quad \theta \neq 0$, then there exists a column vector $\boldsymbol{z} \neq \mathbf{0}$ such that $H(\theta) \boldsymbol{z}=\mathbf{0}$. We may assume that every component z_{\jmath} of \boldsymbol{z} does not exceed 1 in absolute value and some $z_{\rho_{0}}$ is equal to 1 . Then

$$
\begin{equation*}
-a_{\rho_{0} \jmath_{0}}-\xi_{\jmath_{0}}(\theta)=\sum_{j \neq j_{0}} z_{j} a_{\rho_{0} j} \eta_{J_{0} j}(\theta) . \tag{9}
\end{equation*}
$$

From $\mathfrak{R}\left(\xi_{\jmath_{0}}(\theta)\right) \leqq 0,\left|\eta_{\rho_{0} j}(\theta)\right| \leqq 1$ and $\left|z_{j}\right| \leqq 1$, (9) holds only if $\xi_{\jmath_{0}}(\theta)=0$ and $z_{j} \eta_{\jmath_{0} j}(\theta)=1$ for every j such that $a_{\jmath_{0},}>0$. Therefore $\left|z_{j}\right|=1$ if $a_{J_{0},}>0$. Since the equality (9) replaced j_{0} by \jmath_{1} must hold if $\left|z_{\jmath_{1}}\right|=1$, and since Λ is indecomposable, it follows that $\xi_{j}(\theta)=0$ for every j and $\left|\eta_{j k}(\theta)\right|=1$ for every j, k such that $a_{j k}>0$. This proves our assertion.
3. We shall now prove the following

Theorem. Under the assumptions in the preceding section

$$
\lim _{x \rightarrow \infty} \int_{0}^{\infty} P\{x \leqq X(t) \leqq x+h\} d t=\left\{\begin{array}{cl}
\frac{h}{m} & \text { if } m>0 \tag{10}\\
0 & \text { if } m<0
\end{array}\right.
$$

Proof. The theorem follows from the following:

$$
\lim _{x \rightarrow \infty} \int_{0}^{\infty} E\{F(X(t)-x)\} d t= \begin{cases}\frac{1}{m} \int_{-\infty}^{\infty} F(x) d x & \text { if } \quad m>0 \tag{11}\\ 0 & \text { if } m<0\end{cases}
$$

where $F(x) \in L^{1}\left(R^{1}\right)$ is an arbitrary non-negative continuous even function such that its Fourier transform

$$
f(\theta)=\int_{-\infty}^{\infty} F(x) e^{-i \theta x} d x
$$

belongs to $L^{1}\left(R^{1}\right)$ and vanishes outside a finite interval $(-c, c)$. In order to prove that (11) implies (10), we may apply the same method as that employed by Maruyama [3], and therefore we do not reproduce it. The remaining part of the proof, i. e., the proof of (11) is also quite similar to [1] and [3].

The integral on the left in (11) is written as

$$
\begin{align*}
& \lim _{\alpha \rightarrow+0} \int_{0}^{\infty} e^{-\alpha t} E\{F(X(t)-x)\} d t \\
= & \lim _{\alpha \rightarrow+0} \frac{1}{2 \pi} \int_{0}^{\infty} e^{-\alpha t} d t \int_{-c}^{c} e^{-i \theta x} f(\theta) \varphi_{t}(\theta) d \theta \tag{12}\\
= & \lim _{\alpha \rightarrow+0} \frac{1}{2 \pi} \int_{-c}^{c} e^{-i \theta x} f(\theta) \Phi(\theta, \alpha) d \theta .
\end{align*}
$$

For any $\delta>0$, it follows from the regularity of matrix $H(\theta), \theta \neq 0$, that $\lim _{\alpha \rightarrow+0} \Phi(\theta, \alpha)=\Phi(\theta, 0)$ is bounded on every compact interval excluding the origin, and therefore by Riemann-Lebesgue lemma

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \lim _{\alpha \rightarrow+0} \frac{1}{2 \pi} \int_{c>|\theta|>\delta} e^{-i o x} f(\theta) \Phi(\theta, \alpha) d \theta=0 . \tag{13}
\end{equation*}
$$

If δ is sufficiently small, then by (7) and again by Riemann-Lebesgue lemma

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \lim _{\alpha \rightarrow+0} \frac{1}{2 \pi} \int_{-\delta}^{\delta} e^{-i o x} f(\theta)\left\{\Phi(\theta, \alpha)-\frac{\sigma(\theta)}{\alpha-\zeta(\theta)}\right\} d \theta=0 \tag{14}
\end{equation*}
$$

Now we shall evaluate

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \lim _{\alpha \rightarrow+0} \frac{1}{2 \pi} \int_{-\delta}^{\delta} e^{-i \theta x} \frac{f(\theta) \sigma(\theta)}{\alpha-\zeta(\theta)} d \theta=\lim _{x \rightarrow \infty} \lim _{\alpha \rightarrow+0} \frac{1}{2 \pi} \int_{-\bar{\delta}}^{\delta} f(\theta) \Re\left\{\frac{e^{-i \theta x} \sigma(\theta)}{\alpha-\zeta(\theta)}\right\} d \theta . \tag{15}
\end{equation*}
$$

Denote by $R(\theta), I(\theta)$ and $R_{1}(\theta), I_{1}(\theta)$ the real part and imaginary part of $-\zeta(\theta)$ and $\sigma(\theta)$ respectively. Then $R(\theta)=O\left(\theta^{2}\right)$ is non-negative for small $\theta, I(\theta)=-m \theta+\left(\theta\left(\theta^{2}\right)\right.$, $R_{1}(\theta)=1+O\left(\theta^{2}\right)$ and $I_{1}(\theta)=-i \sigma^{\prime}(0) \theta+O\left(\theta^{2}\right)$. Divide the integrand on the right in (15) as follows:

$$
\begin{align*}
\frac{\alpha f \cdot R_{1}(\cos \theta x-1)}{(\alpha+R)^{2}+I^{2}} & +\frac{f \cdot\left(R R_{1}+I I_{1}\right)}{(\alpha+R)^{2}+I^{2}} \cos \theta x \tag{16}\\
& +\frac{\alpha f \cdot R_{1}}{(\alpha+R)^{2}+I^{2}}+\frac{f \cdot\left\{(\alpha+R) I_{1}-I R_{1}\right\}}{(\alpha+R)^{2}+I^{2}} \sin \theta x
\end{align*}
$$

We have easily

$$
\begin{equation*}
\lim _{\alpha \rightarrow+0} \frac{1}{2 \pi} \int_{-\grave{o}}^{\grave{o}} \frac{\alpha f \cdot R_{1}(\cos \theta x-1)}{(\alpha+R)^{2}+I^{2}} d \theta-0 \tag{17}
\end{equation*}
$$

and by Riemann-Lebesgue lemma
(18) $\quad \lim _{x \rightarrow \infty} \lim _{\alpha \rightarrow+0} \frac{1}{2 \pi} \int_{-\bar{\delta}}^{\bar{o}} \frac{f \cdot\left(R R_{1}+I I_{1}\right)}{(\alpha+R)^{2}+I^{2}} \cos \theta x d \theta=\lim _{x \rightarrow \infty} \frac{1}{2 \pi} \int_{-\bar{o}}^{\grave{o}} \frac{f \cdot\left(R R_{1}+I I_{1}\right)}{R^{2}+I^{2}} \cos \theta x d \theta=0$.

The boundedness of $(d / d \theta)(\zeta(\theta) / \theta)$ implies that $\left(f \cdot\left(R I_{1}-I R_{1}\right) \theta\right) /\left(R^{2}+I^{2}\right)$ is of bounded variation at the origin, and therefore

$$
\begin{align*}
& \lim _{x \rightarrow \infty} \lim _{\alpha \rightarrow+0} \frac{1}{2 \pi} \int_{-\delta}^{\delta} \frac{f \cdot\left\{(\alpha+R) I_{1}-I R_{1}\right\} \theta}{(\alpha+R)^{2}+I^{2}} \cdot \frac{\sin \theta x}{\theta} d \theta \\
= & \lim _{x \rightarrow \infty} \frac{1}{2 \pi} \int_{-\delta}^{\delta} \frac{f \cdot\left(R I_{1}-I R_{1}\right) \theta}{R^{2}+I^{2}} \cdot \frac{\sin \theta x}{\theta} d \theta \\
= & \lim _{\theta \rightarrow 0} \frac{f \cdot\left(R I_{1}-I R_{1}\right) \theta}{2\left(R^{2}+I^{2}\right)} \tag{19}\\
= & \frac{f(0)}{2 m} .
\end{align*}
$$

To evaluate the integral corresponding the third term of (16), we note that

$$
\begin{equation*}
\lim _{\delta \rightarrow+0} \lim _{\alpha \rightarrow+0} \frac{1}{2 \pi} \int_{-\delta}^{\delta} \frac{\alpha f \cdot R_{1}}{\alpha^{2}+m^{2} \theta^{2}} d \theta=\frac{f(0)}{2|m|} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\delta \rightarrow+0} \lim _{\alpha \rightarrow+0} \frac{1}{2 \pi} \int_{-\bar{o}}^{\bar{o}} f \cdot R_{1}\left\{\frac{\alpha}{\alpha^{2}+m^{2} \theta^{2}}-\frac{\alpha}{(\alpha+R)^{2}+I^{2}}\right\} d \theta=0 \tag{21}
\end{equation*}
$$

To prove (21) let us write the integral in (21) as follows:

$$
\int_{-\hat{o}}^{\grave{o}} f \cdot R_{1} \frac{\alpha\left(R^{2}+I^{2}-m^{2} \theta^{2}\right)}{\left(\alpha^{2}+m^{2} \theta^{2}\right)\left((\alpha+R)^{2}+I^{2}\right)} d \theta+\int_{-\grave{o}}^{\grave{o}} f \cdot R_{1} \frac{2 \alpha^{2} R}{\left(\alpha^{2}+m^{2} \theta^{2}\right)\left((\alpha+R)^{2}+I^{2}\right)} d \theta
$$

The first integral does not exceed

$$
\int_{-\delta}^{\grave{o}} f \cdot R_{1} \frac{\alpha}{\alpha^{2}+m^{2} \theta^{2}} \cdot \frac{\left|R^{2}+I^{2}-m^{2} \theta^{2}\right|}{R^{2}+I^{2}} d \theta
$$

in absolute value, which converges as $\alpha \rightarrow+0$ to

$$
\lim _{\theta \rightarrow 0} f \cdot R_{1} \frac{\left|R^{2}+I^{2}-m^{2} \theta^{2}\right|}{R^{2}+I^{2}}=0
$$

The integrand of the second integral is uniformly bounded and converges to 0 as $\alpha \rightarrow+0$, hence the integral converges to 0 . From (20) and (21) it follows that

$$
\begin{equation*}
\lim _{\delta \rightarrow+0} \lim _{\alpha \rightarrow+0} \frac{1}{2 \pi} \int_{-\delta}^{\delta} \frac{\alpha f \cdot R_{1}}{(\alpha+R)^{2}+I^{2}} d \theta=\frac{f(0)}{2|m|} \tag{22}
\end{equation*}
$$

(17), (18), (19) and (22) together prove
(23) $\quad \lim _{\delta \rightarrow+0} \lim _{x \rightarrow \infty} \lim _{\alpha \rightarrow+0} \frac{1}{2 \pi} \int_{-\delta}^{\delta} e^{-i \varnothing x} \frac{f(\theta) \sigma(\theta)}{\alpha-\zeta(\theta)} d \theta=\frac{f(0)}{2}\left(\frac{1}{m}+\frac{1}{|m|}\right)$,
and the theorem follows from (13), (14) and (23).
Remark 2. This proof is also applicable to show that under the assumptions of the theorem

$$
\lim _{x \rightarrow \infty} \int_{0}^{\infty} P\{J(t)=k, x \leqq X(t) \leqq x+h\} d t=\left\{\begin{array}{ccc}
\frac{\pi_{k} h}{m} & \text { if } & m>0 \\
0 & \text { if } & m<0
\end{array}\right.
$$

holds, where $\pi_{k}=\lim _{t \rightarrow \infty} P\{J(t)=k\}$.

References

[1] Chung, K. L., and H. Pollard, An extension of renewal theory. Proc. Amer. Math. Soc. 3 (1952), 303-309.
[2] Hatori, H., and T. Mori, On continuous-tıme Markov processes with rewards, II. Kōdai Math. Sem. Rep. 18 (1966), 353-356.
[3] Maruyama, G., Fourier analytic treatment of some problems on the sums of random varıables. Natural Sci. Rep., Ochanomızu Univ. 6 (1955), 7-24.
[4] Pyke, R., Markov renewal processes: definitions and preliminary properties. Ann. Math. Statist. 32 (1961), 1231-1242.

Science University of Tokyo, and
Chūbu Institute of Technology.

