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A THEORY OF RULED SURFACES IN E*
By ToMINOSUKE OTSUKI AND KATSUHIRO SHIOHAMA

Introduction. In 4-dimensional Euclidean space E*, a ruled surface is a surface
generated by a moving straight line depending on one parameter. If we fix a point
on such a straight line, we get a curve called the director curve. Using the ex-
pression of position vectors in E*¢, we can write a ruled surface as x=vy(v)+uf®),
where y(v) is a director curve and &(v) is the unit tangent vector with the direction
of generator through y(v). On two adjacent generators corresponding to » and
v+4dv, take P and Q, P=(u1, v), Q= (%2, v+ 4v) such that PQ is common perpendicular
for these generators, and let 46 be the angle between &(») and &(v+4v). When 4o
tends to zero, the limit point of P (if there exist) is called the center of the generator
and its orbit the curve of striction of the ruled surface. If

exist, it is called the distribution parameter.

For a ruled surface in E® whose distribution parameter is not oo, the ruled
surface is, as is well known, completely determined by the Frenet-frame along its
curve of striction, where there exist three functions characterize it, one of which
is of course distribution parameter.

In §1, we find the characteristic functions and the curve of striction of a ruled
surface in £4 In §2, a few examples are shown by giving the special values to
the characteristic functions. In §3, we study relations between the characteristic
functions and the invariants of a surface in E* for example, 2, ¢, Gaussian curvature,
torsion form,---. In §4, we study a condition that a surface in E* becomes a ruled
surface.

§1. Let M? be a surface in E%, and (p,ei,es s, es) be a Frenet-frame in the
sense of Otsuki [1], then we have the following:

dp=wie1+-wses,

1.1 deA=§ ®4B€B, 045+ wps=0,

deB=§ w40/\W¢B, A, B, C=1, 2, 3,4,
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@15 \Was+ 01 N\ W23 =0,
1. 2)

@13 A\ We3 =201\ W2, W14 N\ W= L1 N\ W2,
and
1.3) A+p=G, 1zp,

where G is Gaussian curvature and ws, is the torsion form of M2
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Especially, if M? is a ruled surface, then we can take e; such that e,(p) has
the direction of the generator through p. For the above defined e;, w.=0 implies

de,=7, we;=0, accordingly,

1.4 op=fiw,,  i=2,3,4.

Making use of dw,=w;Awy,~+m;Aws,=0, ¥=3,4, we can put

(1.5) Way= f301+ 305,

1. 6) W24= f101+Aaws,

and from (1. 2), (1. 4), (1. 5), (1. 6), we have

1. f3f=0.

Because A=p and A1=—f% p=—f% (1.7) implies f3=0. Then we get
1.8 =0,

1.9 015=0,  Wi=/l30;.

On the other hand, dw,=w;: Aw,= fow: Aw.=0, hence we have locally
1.10) o1=du,

where # is a local function on M2

In the following we assume that g0, that is M? is not locally flat.

assumption and (1. 9), (1. 4)

(1.11) dwz= f10: \043=0),
it follows that

1.12) Wy4= pW,.

By the structure equations, (1.4), (1. 9) ane (1. 12), it follows that

o,
113 Lo rrir

By our
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a
1. 14) Lo o 2pits

ok
(1. 15) au"' =—fshs—pfi
(1.16) S ——pfithnfu

(1.13), (1.14) and (1.15), (1. 16) may be written as follows:
o(fe+ifs)

1.17) T om =—(fatifs)?,
(1.18) Woit) _(pmisiintio),

where 2=—1. By integrating (1. 17), we get

. 1
(1. 19) fotifi=——,
where
(1. 20) c=p(v)+ig(v),

v will mean a parameter of some director curve of the ruled surface. By (1.18),
(1. 20) we get
C1

(L. 21) hotip= ——.

Putting ¢,=7(v)e?”, we get the following:

__ b -7
(1. 22) e T wre
_ 7{(w—p) cos 4-g sin 4] _ 1(u—p) sin 6—q cos ]
(1 23) hs— (%—p)2+q2 ’ p= (u_p)2+q2

Now the line element of M? is given by ds*=du®+g¢:.dv®. We may consider that
ws=4/g22dv. By the structure equations and (1. 22) we have

1.24) g2 =[(—py+g"W(v)*,  [v)>0.

THEOREM 1. For a ruled surface which is not locally flat, the curve given by
u=pW) is its curve of striction and |q| is the distribution parameter.

Proof. Let v be the arc-length of the curve #=p(v), then by (1. 24)
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1. 25) ds?=du+[(u—p)*+q*)(v)2dv?.

By the hypothesis of » and du=p’dw, it follows that

iii 2_ /2 272
(1. 26) ( dv) =p'* gl =1.

By using the expression of position vectors in E*, we can put the curve
1.27) z=y(v).

By the definition of the curve of striction, it is sufficient to show that

dy o\ g
dv’ dv /7
along x=1y(v), but along it we get by (1.22) and (1. 25)

dy Y de;[__
(1. 28) v =p'e;+qles,, o =le,,

which shows that y(») is the curve of striction. Putting

(1. 29) tan ¢(v)= %’
we get by (1.26) and (1. 28),

de;  sin ¢(v)
—_— =y

(1. 30) o P

’

which shows that |g| is the distribution parameter of M2 q.ed.

Now let w be the arc-length of the curve of the spherical image of e;, then
from (1. 30) we get

dw="222) 40 dv

which implies that

(1. 31) W ot g ertes.

Now for the rest %4, by using (1. 22), (1. 23), (1. 24) and the structure equations
we get the following:

0, . 10
(. 32) (TP )=
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where v is the arc-length of the curve of striction. By (1.22) and (1. 26),

—qq'(u—p)+p'(u—p)* n m(v)
N1=p {(u—pY+g} s T N Dy g

(1. 33) hy=

Thus p(v), q(v), »(v), 6(v) and m(v) are the characteristic functions of the ruled
surface M? in E* which is not locally flat.

THEOREM 2. For a ruled surface in E* which is not locally flat, the Frenet-
frame along its curve of striction is given by

4y

a =e,p'+e.lg,

d61 _

% G4l y

(1. 34) de:_ esrl sin 0+e4<1(’1'— +m1),

—_—= —egrlsin @ —eyrl cos 0,

de /

-ng = — 611—32(%‘ —l—ml) +esvl cos 0,

where 1=nT—1"%|q, conversely (1. 34) determines a ruled surface for any given five
characteristic functions p, q,7, 0, and m.

For a ruled surface which is not locally flat, we can consider two asymptotic
lines with respect to @,=3] Ayjww, as 2, Aujww,=0. Since Py=hsw.0w, and
Au11=0, the second fundamental form @ with respect to any unit normal vector
e=e;Cos ¢pte sing is given by @=2f,sin ¢w,w; + (4 cos ¢+ k. sin P)wsw,, which
shows that a generator is an asymptotic line with respect to the second fundamental
form @ defined by any unit normal vector e. Let us call the asymptotic line with
respect to @, which is not generator, the half-asymptotic line. It is defined by
2fw;+h,w,=0, which is written as

du _ —qq' u—p)+p'(u—p> , m a1 s

by (1.10), (1.22), (1.24) and (1.33). Since the above differential equation is a
Riccati equation, it is clear that the following theorem is true:

THEOREM 3. The compound ratio of four points at which four half-asymptotic
lines intersect a gemerator, is constant.

§2. We give a few examples of ruled surfaces. In this section v is always
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taken the arc-length of the curve of striction #=p(v).

ExampLE 1. We consider the case of locally flat, that is p=0. Because (1. 13)
holds under p=0 and g=—f%=0, we get fo=0 or fo=1/(u—p).

Let us firstly assume that f;=0. Then we have de;=0, which shows that the
ruled surface is a cylinder. In general, a complete surface in E* which has the
curvatures A=p=0 is a cylinder [3].

Let us secondary assume that f,=1/(¥—p). Since 1=p=0, we can take ws;=0.
And similarly we get by the structure equations as following:

@.1) fry= ;(_”; ha= %,
2. 2) wy=(u—p)l(v)dv.
Therefore we get the following:
dp=e;du-+tex(u—p)dv,
de,= exl(v)dv,
2. 3) J de;=—el(v)dvy +esl(v)c(v)dv+esd(v)m(v)dy,
des= —exl(v)c(v)dv,
de,= —el(v)m(v)dv.

If p(v) is constant, then the curve defined by #=p(v) is a constant curve. Conse-
quently this ruled surface is a cone in E* Now suppose that p(v) is not constant,
ie, p’()x0, then it is clear that this ruled surface is a torse whose edge of re-
gression is defined by u=p().

ExampLE 2. Let us consider the case of not locally flat and p=0, g=const.
%0, m=0. We may consider that g=1 by a suitable similar transformation. Then
we have

/dp=edu +exn/ w21 dv,
1
de,= ezﬁﬁdv +eq4 xS dv,
. u 7(2 cos O--sin 6)
@4 %= T e et e
i g .

_ 1 _ 1 _ Musinf—cosd)
de4—'—€1 /\/;{g;l_—ldv ez_%2+_1 du é3 /\/172¥1 dav.
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Therefore we get along the curve of striction x=y(v) defined by uw=p®),

/ dy=eydv,
de,= es7 sin Odv,
2.5) des= —eqr sin Odv —eqr Cos Odv,
des= es¥ cos Odv —edv,
dey= esdv.

Morever let us assume that p=m=0, ¢g=1 and »=0. By virtue of (2.4) it is clear
that this ruled surface is a helicoid in a hyperplane E°® perpendicular to a fixed
unit vector es;, which is written as follows:

2. 6) x(u, v)=vY+u(X cos v+Z sin v)

where X, Y, Z is an orthomormal base of £% And if p=m=0=0, g=1, then it is
a helicoid in E* in the sense that it is generated by a moving straight line
perpendicular to a fixed straight line that the ratio of the velocity of the moving
point of intersection and the angular velocity of its direction is constant. Moreover
if p=m=0, g=1 and 6==/2, then we get a sort of helicoid in E* which is defined
as follows:

2.7 X(u, v)=y()+u(X cos v+ Y sin v),

where y(v) is a plane curve and X, Y are orthogonal unit vectors each of which is
perpendicular to the plane containing the curve z=y(v).

§3. We study some relations between characteristic functions and the invariants
of M? in E* By (1.8) and (1.22), we get at once

THEOREM 4. For a ruled surface in E*, it follows that

3.1) A=0,
3.2 p=G=-—2L___ <,

Hence there does not exist a ruled surface in E* with constant negative
curvature.

The torsion form ws, defines a covariant vector field Z=(Z, Z,), and by (1. 12)
it follows that

3. 3) Z,=0, Z=p.

Therefore we get
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(3.4) 1Z]1=1pl.

THEOREM 5. The divergence and the votation of torsion vector Z arve given as
follows:

. ., 1 dp
3.5) dle—N/%;-a—v-,
3. 6) _ % (rot 2+~ ;Gﬁ.

Proof. For a vector field Z=(Z,, Z,), we have the following:
@.7 div Z=21,1+2s,,
(3.8 rot Z=2,,,—2s.1,

where DZ,=Z,,,0,+Z, 20, (i=1,2) and DZ,=dZ;+wv;Z,. By (3.3) we have

0 1 0
(3- 9) Zl.1=0, Z1,2=—10f2, Z2,1=‘£, ZZJ:@G_Z-’
which imply that
wze L 0 )

divZ= N TR and rot Z=—pf> P
From (1. 22) and (1. 23) we have the following:

_ _ rql(u—p) cosf+gsinb] q
(.10 rot 2= [u—pP+¢F = @rie

But (1. 23) shows that

1,2
2 P
(3. 11) h3+p (u_p)z+q2 4

from which we get (3. 6).

§4. In this section, we study a necessary and sufficient condition that a surface
in E* becomes a ruled surface. Let (p,e, e, @5, ¢.) be a Frenet-frame in the sense
of Otsuki for a surface in E*. Put wsu=Zi0+Z0w,. We shall introduce two vector
fields P and @ by using torsion form s and the second fundamental forms
¢3=ZA3U(0«,;COJ, @4:2 A4ij(1)7;(l.)j, _Where (U,;,-=Z Artjwj, (7’=3, 4, i,j=1, 2) For the
torsion vector Z=_Ze,+Z:ea let Z=Z:e,+Zse, be as follows:

@1 Zi==2, Z:=Z.
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We can write Z=iZ, where i##=-—1. Putting P,=7J; AsniZi and Q=2 A_WGZ,C
whel*e h,k=1,2, we obtain two vector fields P and @ by contracting @;, Z and
?,, Z respectively, i.e.,, we have the following:

4. 2) P="Pie,+Pye,=(Ds, Z)=(Ds, iZ),
4. 3) Q=Qie1+Quey=(Dy, Z)=(Dy, iZ).

Now suppose that M? is a ruled surface, then (1.8) and (1.9) hold. Let us
define two sets:

4. 4) My={peM?*: (p)=0},
4. 5) Mi={peM?: p(p)=0}.

For any point of M; we have (1.12), accordingly Z,=0, Z,=p and As1=As1.=0,
Asze=hs. Therefore. it follows that

4. 6) P=(0s,iZ)=0.

For any point of the interior Mo of M,, we have 1=p=0 by the definition of M,
and THEOREM 4. Then we can chose a torsionless Frenet-frame. Hence we get
the following:

4.7 P=(04,iZ2)=0, Q=(9,,iZ)=0.
In the following we consider a surface ih E* with the properties:
4. 8) =0, P=(®s,iZ)=0.

Let p be a fixed point in M, and e, be the asymptotic direction with respect to @s.
Then we have by the definition of e, As;1=0. Since A=Az Ases—Ag12A32:=0, it
follows that As.;=0, from which we have wi3=0, w;s="/hsw,. Because P=0, it follows
that ‘P1=A31221—A31122=0, Po=Ag3:7,— As2:Z,=0 from which we have

4.9 hsZ,=0.

Suppose that ks(p)x0 for peMi. Then by (4.9) we have Z,=0, ie, wsy=pw;.
From (1.2) we have ouAhw,=0, ie, owu=fiw,, On the other hand, dw;s
=W AWt 0 Nwg=0, from which we get w;2=f,0w,. The above fact shows that
the asymptotic line with respect to @; is a straight line segment in M.

Suppose that there exists an open set U of M, in which %#;=0. Then it follows
that @;=0 in U, consequently the hypothesis (@;,iZ)=0 is trivial in U. Because
10, there are two asmptotic directions with respect to @,. Let e; be one of these
asymptotic direction, it follows that

4. 10) ®11= [ 4wy, W24= f101+R4s, Jax0.
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Since do=0uAos=[fw,N\w;=0, it follows that ws=pw.. But des=0\os
=—pfio: ANw:=0. Consequently p=0 or w3;=0, from which we have de;= 73 ws;e;=0.
Therefore U is contained in a hyperplane E3 of E* which is perpendicular to a
constant unit vector e¢;s. Since w;s=fiw,, the condition that the asymptotic lines
become straight lines or straight line segments, is equivalent to w;.=fw,.

In the following we study the condition wy,=few, in UCM;" Let e, e, be the
principal directions of the second fundamental form ®,. We have

4.11) @y=A4110:101 4 A 4220:05.
Putting
(4. 12) A411=EB%, A422: —532)

where e=+1. We have the following:
(4. 13) @4= E(Bg(t)l(l)l—‘ngzwz).
The asymptotic directions & and & with respect to @, is written as

é,=e1Cos 0-+e,sin b,

4.14)
&,=—e; sin 0+-e; cos 8,
where
o, By ., *B

(4. 15) cos 0= N/B;H-—B%’ sin = N/;Bm.
It follows that

WD12= <dé1, e_2> =d0‘|‘w12’
(4. 16)

@y= —w; SING+w; cos 0.
Then @.:/A\@,=0 is equivalent to
(4. 17) [(Bdel —B1dB:)+ (Bf-l—B%)wlz]/\[wal F Baw:]=0.

But we have
[(BedB1—B1dB:)+(Bi+ B)w] \[Bioy— Bz, ]
=[B:DB,— B:D B:]\[ Biw1— Bywy]
=[Bi(—B:B1,2+B1Bs,2)— Bo(B2B1,1— B1Bs 1) o1 Aw:
=[eAs11Bs.2+eA122B1,1— B1B: rot BloiAw,,
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where B=DBe,+ Bye.. Similarly we get
[(Bde1—B1de)—(Bf“I‘Bg)wlz]/\[Blwl‘l‘Bzwz]
=[eAs1B¥2+ecAwBfi—B¥B¥ rot B¥]w: Aws,

where B¥=B,, B¥=—B; and B*=B¥e,+ B}e..
Consequently U is a piece of ruled surface if the following holds:

(4. 18) [€A41132,2+€A42231, 1"Ble rot B] . [€A411B:2+EA4zzB¥f1—BikB;k rot B*]=O.

On the other hand, it is clear that the interior of M, is a piece of a cylinder
or a torse by Example 1 in §2.

THEOREM 6. If a surface in E* satisfies =0 and (@3,iZ)=0, then it is locally
a ruled surface except U and if (4.18) holds in addition to the above conditions
in U, them U becomes locally a ruled surface where U is the interior point of

{p: w(p)<0, Ds=0}.
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