
KODAI MATH. SEM. REP.
19 (1967), 317-360

FIBRED SPACES WITH INVARIANT RIEMANNIAN METRIC

BY KENTARO YANO AND SHIGERU ISHIHARA

Introduction. In a previous paper [11], we developed the differential geometry
of fibred spaces mainly from the point of view of affine geometry, that is, we
studied the fibred spaces with invariant affine connection. We also studied the
fibred spaces which can represent the manifolds with projective connection.

In the present paper, we would like to study the fibred spaces with invariant
Riemannian metric. Since the Riemannian connection determined by the invariant
Riemannian metric is also invariant, fibred spaces with invariant Riemannian metric
are fibred spaces with invariant affine connection in the sense of our previous
paper [11].

In §1, we define fibred spaces with invariant Riemannian metric and recall
some of fundamental concepts in fibred spaces with invariant affine connection. We
study also induced metric, induced connection, second fundamental tensor, co-Gauss
equations, co-Weingarten equations, and Nijenhuis tensor of the second fundamental
tensor.

We develop in §2 the tensor calculus in terms of local coordinates in a fibred
space with invariant Riemannian metric and we study in §3 some important
formulas useful for discussions which follow. §4 is devoted to the study of geo-
desies in the total space and in the base space.

We study in § 5 structure equations and curvatures. Starting from co-Gauss,
co-Codazzi and co-Ricci equations, we derive relations between the curvature of
the total space and that of the base space and prove propositions in which a Kahler
or an almost Kahler structure appears. In § 6 we study some of interesting special
cases.

In the last §7, we study the case in which a fibred space with invariant
Riemannian metric is a fibred space with /^-contact structure.
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§ 1. Fibred spaces with invariant Riemannian metric.

Let M and M be two differentiable manifolds1', of n+l dimensions and of n
dimensions respectively, and assume that there exists a differentiable mapping
π : M-^M, which is onto and of the maximum rank n. Then, for each point P of
M, the inverse image π~\P) of P is a 1-dimensional submanifold of M. We denote
π-\P) by Fp and call Fp the fibre over the point P of M We suppose every fibre
Fp to be connected. We assume moreover that there are given in M a vector field
C which is non-zero and tangent to the fibre everywhere, and a Riemannian metric
g which is positive definite and satisfies the conditions

(1.1) Xff=0, g(C,C)=l,

X denoting the operator of Lie derivation with respect to the vector field C. The
rv r*j

set (M, M, π C, g) is called a fibred space with invariant Riemannian metric. The
manifolds M and M are called the total space and the base space respectively.
The vector field C and the Riemannian metric g are called the structure field and
the invariant Riemannian metric, or simply, the invariant metric, respectively.

If, in the total space M, we introduce a 1-form η by the equation

(1.2)

X being an arbitrary vector field in M, then we easily obtain

(1.3)

as direct consequences of (1. 1) and (1. 2). Thus we have a fibred space (M, M, π', C, ΎJ)
in the sense of [11]. The distribution defined by the equation ^=0 is called the
field of horizontal planes in M and the value of this distribution at a point of M
is called the horizontal plane at that point.

The Riemannian connection V determined by the invariant Riemannian metric
g is also invariant with respect to the infinitesimal transformation determined by
the structure field C. Thus we have a fibred space (M, M, π; C, ή) with invariant
affine connection f in the sense of [11]. Therefore, to any fibred space with in-
variant Riemannian metric g, there corresponds naturally a fibred space with
invariant affine connection V . For a fibred space with invariant Riemannian metric,
we use the same notations and terminologies as those introduced in [11] for fibred
space with invariant affine connection.

We recall some of notations and terminologies introduced in [11] for fibred
spaces (M, M, π; C, η).

1) The manifolds, the objects and the mappings we discuss are supposed to be of
differentiability class C°°, The manifolds are assumed to be connected.
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1. T(M) is the tangent bundle of M.

2. £Π(M) is the space of all tensor fields of type (r, s), i.e., of contravariant
degree r and of covariant degree 5, in M.

3.

The notations T(M), £Π(M) and £Γ(M) denote respective the spaces with respect to
M corresponding to T(M), ζίr

s(M) and £Γ(M) respectively.
A linear endomorphism f-*TH of £Γ(M) is defined by the following properties:

(H.1) fH=f for /€£ΓS(M).

(H. 2) „ ___ for X€£rί(M).
=*-?(*, C)C

<H. 3) ώ*=<3-ώ()9 for ώ€

(H.4) (S®f)H=(SH)(S)(TH) for S, fe£Γ(M).

The tensor field T^ is called the horizontal part of T for any element T of £Γ(M).
If a tensor field T in M satisfies the condition f=TH, then we call T a horizontal
tensor field in M. On putting

(1. 4) fv==f_fπf

we call T Γ the non-horizontal part of T for any element f of £Γ(M). Especially,
we have

for

for ώ

We call ^?F and ώF the vertical parts of X and ω respectively for any element X
of 2"o(M) and any element ώ of £Γί(M).

We now introduce the following notations:

4. ζΓH(M) is the space of all horizontal tensor fields in M. £ΓH(M)c£Γ(M).

A tensor field T in M is said to be invariant if it satisfies the condition
J7T=0, JC denoting the operation of Lie derivation with respect to the structure
field C. We also introduce the following notations:

5. J(M) is the space of all invariant tensor fields in M.

^(M)c £Γ(Af),

6.

7. J(M)#JH(M) denotes the formal tensor product, i.e. the tensor product of
the two spaces J(M) and JH(M) regarded as two abstract tensor spaces over M.
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We shall now recall the operations of taking lifts and projections, which were
introduced in [11]. The operation of taking lifts is a linear homomorphism T-+TL

of £Γ(M) into £Γ(M) characterized by the following properties:

(L.I) fL=foπ for /€£ΓS(M),

(L. 2) for any element X of £Γi(M), there exists a unique element XL of ζr
such that

πXL=X,

(L. 3) ωL=*πω for ωe£Π(M),

(L.4) (S®Γ)i=(S£)(g)(Γε) for S, Γ€£Γ(M),

where the differential mapping of the projection π : M — M is denoted also by π and
the dual mapping of the differential mapping π is denoted by *ττ. The element TL

of J*(M) is called the lift of Γ for any element T of £Γ(M).
The operation of taking projection is a linear homomorphism p: J(M)— >£Γ(M),

which is onto and is characterized by the following properties:

(P.I) 0>/XP)=/(P) for /€JS(M),

where P is an arbitrary point such that π(P)=P, P being an arbitrary point of M

(P. 2) (pX)f=P(X(fL» for

/ being an arbitrary element of £ΓJ(M).

(P. 3) (p&)(X)=p(ω(XL)) for

X being an arbitrary element of £Γί(M).

(P. 4) P(S®T)=(pS)®(pf) for S,feJ(M)

We call the element #P of £Γ(M) the projection of f for any element f of
Taking account of (L. 1)— (L. 4) and (P. 1)— (P. 4), we easily find

p(TL)=T for Γ€£Γ(M)

and

(pf)L=TH for TeJ(M).

Thus the two spaces JH(M) and £Γ(M) are isomorphic to each other and/>: JH(M)
-*EΓ(M) is the isomorphism between them. Then the operation of taking lifts is the
inverse of the projection p restricted to JH(M).

We have now

PROPOSITION 1, 1. For any elements Xy Ϋ of Ji(M), we have
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(i. 5) [x, γγ=[xH, H]H, [x, Y=\_XH, Hγ

= -2Ω(X,Ϋ)C

and

(1.6) AX,Ϋ]=[PX,PΫ],

where Ω is an invariant 2-form defined by the equation

Ω=dη.

For any two elements X, Y of £Π(M), we have

(1. 7) [XL, YLf=iX9 Y]L, [XL, YLT=-2Ω(XL, YL)C

(cf. Yano and Ishihara [10]).

If we define in the base space M a 2-form Ω by the equation

(1. 8) Ω=pΩ=p(dφ,

then, as was proved in [11], Ω is closed (cf . (3. 6)) and the cohomology class [Ω] of
order 2 determined by Ω is called the characteristic class of the fibred space
(M, M, τr; C) without horizontal planes, i.e., the class [Ω~\ is determined independently
of the choice of the structure 1-form η (in our metric case, independently of the
choice of the invariant Riemannian metric g).

Since JH(M) is a subspace of J(M), we denote by j : JH(M)^J(M) the injection.
We shall now introduce a linear homomorphism i: J(M)# JH(M)— >J(M) by the
property

(I.I) i(f %S)=f®j(S) for f eJ(M), SeJ*(M).

The induced metric and the induced connection. Denoting by f the Riemannian
connection determined by the invariant Riemannian metric g in M, we see that V
is necessarily an invariant affine connection, i.e.,

0 for J

Therefore we can define in the base space M an affine connection P by the equation

(1.9) PγX=p(PγLXi ) for X,

(cf. Yano and Ishihara [11]). The connection V thus defined is called the induced
connection in M. It is easily verified that the induced connection V is torsionless,
because so is also the Riemannian connection f in M (cf. Yano and Ishihara [11]).

The projection g=pg is a Riemannian metric in the base space M, which is
called the induced metric in M, i.e.,
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(1.10) g(X, Y)=p(g(XL, YL)) for X,

Taking account of (P. 1)— (P. 4) and (1. 9), we easily find

Y being an arbitrary element of £ΓJ(M), as a consequence of g=QL+η®η Thus
we find Pg=Q because of Pg=0 and the equation above. Therefore we have

PROPOSITION 1. 2. In a fibred space with invariant Riemannian metric g, the
induced connection V is the Riemannian connection determined by the metric g=pg
induced in the base space M.

We have now the following formulas:

(1.11) FγT=p(PYLTL) for Fe£ΓJ(M), T€£Γ(M)

and

(1.12) p(PΫf)=PYT for ΫejHί

0(M),fejH(M),

Y and T being defined respectively by Y=pΫ and T=pf.

Van der Waerden-Bortolotti covariant derivative. Given an element Y of

cίΓJ(M), we define a derivation F? in the formal tensor product J(M)%JH(M) by
the following properties:

(W.I) PΫf = PΫf for

(W.2) PyS=(Pf*§)H for

(W. 3) FΫ(T#S)=*PrT )#S+f #(M) for f

For any element W of J(M)# J^(M), the correspondence Ϋ-*PγW defines an

element PW of J(M)$JH(M), which is called the van der Waerden-Bortolotti

covariant derivative of W.
The second fundamental tensors. We shall define an element h of £Π(M) by

the equation

X and Y being arbitrary elements of £ΓJ(M), and an element H of ζΓ\(M) by the
equation

(1.14) HX=-p(PdX
L),

X being an arbitrary element of £ΓJ(M). The equation (1.14) is equivalent to the
equation
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(1.15) HX=-P(ΫXLC)

because of f£XL=[C, XL]—Q. We call h and H the second fundamental tensors in
the base space M On putting

(1. 16) ϊί=hL, H=HL

t

we call h and H the second fundamental tensors in the total space M.
Taking account of (1. 10) and (1. 14), we find

(1.17) g(Y,HX)=-g(X,HY),

X and Y being arbitrary elements of £Γί(M), because we have

-ρ{3(YL,

as a consequence of Pc{3(XL> YL)}=0. On the other hand, if we take account of
(1. 13) and (1. 15), we obtain

(1.18) g(Y,HX)=h(X, Y),

because we have

-P(3(YL, Pz*.fy{=

as a consequence of g(C, YL)=η(YL)=Q. Thus from (1. 17) and (1. 18) we have

PROPOSITION 1. 3. The second fundamental tensors h and H in M have the
following properties:

(1.19) h(X, Γ)+h(Y,X)=0,

(1. 20) h(X, Y)=g(HX, Y),

X and Y being arbitrary elements of £ΠM).

Taking account of Proposition 1. 3 and of the definitions (1. 13), (1. 14), (1. 15),
we have

PROPOSITION 1. 4. The second fundamental tensors h and H in the total space
M have the following properties:

(1. 21) K(X, Ϋ)+h(Ϋ , £)=0,

(1.22) K(X,Ϋ)=9(ffX,Ϋ),

X and Ϋ being arbitrary elements of £Γi(M), and h and H belong respectively to JH

2

and JH{(M). The following formulas hold:
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(1. 23)

(1. 24)

where X and Ϋ are arbitrary elements of JH1

Q(M).

As a consequence of (1. 9), (1. 23) and (1. 24), we find the following formulas:

(1. 25)

for any two elements X and Ϋ of JH1

0(M), where X=pX and Y=pΫ . The last
equation of (1. 25) is a direct consequence of the conditions 0Γaf^=0 and g(C, C)=l.
The first and the second equations of (1. 25) are called respectively the co-Gauss
equation and co-Weingarten equation of the given fibred space with invariant
Riemannian metric.

Taking account of the definition of the exterior derivative, we have, for any
two elements X and Ϋ of JHl(M\

-y([X, Ϋ])

because of Xη(Ϋ)=Ϋη(X)=Q. Thus, as a consequence of (1. 23), we obtain in M

(1.26) h = -drj=-Ω

and, consequently, in M

(1. 27) h=-Ω= -pΩ = -p(dη).

When one of the second fundamental tensors h, H, h and H vanishes, all of the
other second fundamental tensors vanish too. Thus, if h=0 holds, we find from
(1. 25)

(1. 28)

for any elements X and Ϋ of JH5(M), where X and Y are defined respectively by
X=pX and Y=pΫ. As is well known, when the conditions (1. 28) are satisfied,
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the Riemannian manifold M is locally the Pythagorean product of a Riemannian
space and a straight line. In such a case, we say that the given fibred space M with
invariant Riemannian metric is locally trivial. Thus, taking account of (1. 26) or
(1. 27), we have

PROPOSITION 1. 5. For a fibred space M with invariant Riemaunian metric,
the following three conditions (a), (b) and (c) are equivalent to each other:

(a) One of the second fundamental tensors h, H, h and H vanishes identically.
(b) The field of horizontal planes, which is defined by the equation η=ΰ, is

integrable.
(c) The given fibred space M is locally trivial.
When one of these conditions (a), (b) and (c) is satisfied the characteristic class

of the corresponding fibred space without horizontal planes is zero.

As a direct consequence of the last equation of (1. 28), we have

PROPOSITION 1. 6. In a fibred space with invariant Riemannian metric, each
fibre is a geodesic.

When the base space M is 1-dimensional, the second fundamental tensor h
vanishes identically because h is skew symmetric. Thus, as a consequence of Pro-
position 1. 5 we see that any fibred space M with invariant Riemannian metric is
locally trivial and consequently the total space M is locally flat, if M is 2-dimensional.

The Nijenhuis tensor of the second fundamental tensor. The Nijenhuis tensor
N of the second fundamental tensor H in M is by definition

(1. 29) N(X, Ϋ)=[HX, HΫ]-ίϊ[HX, Ϋ}-H[X, ίϊΫ~\+H2[X, Ϋ],

X and Ϋ being arbitrary elements of £Γί(M), and Nijenhuis tensor N of the second
fundamental tensor H in M is by definition

(1. 30) N(X, Y)=[HX, HY]-H[HX, Y]-H[X, HY]+H2[X, Y],

X and Y being arbitrary elements of £Γί(M). If we take X and Y arbitrarily from
£Π(ΛO, substituting X=XL and Ϋ= YL in both sides of (1. 29) and taking horizontal
parts, we obtain the equations

(1.31) NH=NL, pN=pNH=N.

If we take the vertical parts of both sides of (1. 29), we find

{N(X, Ϋ)}V=[HX, HΫγ

(1. 32) =2h(HX, HΫ)C
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for X,Ϋe £Γi(M), as a consequence of (1. 22), (1. 26) and Proposition 1. 1, because H
belongs to JH(M). If we take arbitrarily X and Y from £ΓJ(M) and substitute
X=XL and Ϋ =YL in both sides of (1. 32), we obtain

(1. 33) P{y{N(XL, YL)} } =2h(HX, HY)=2g(H*X, HY)

for X, F€ £Γi(M).

If we define an element S of JH1

2(M) by the equation

(1. 34) 3=N",

then we find S=N—NV and hence

S(X, Ϋ)=NH(X, Ϋ)

(1. 35) =N(X, Ϋ)-[HX, HΫγ

=N(X, Ϋ)-2h(ffX, HΫ)C

for any elements X and Ϋ of £Γi(M). On the other hand, taking account of (1. 31),
we obtain the relations

(1. 36) PS=N, S=NL.

We now say that a fibred space M with invariant Riemannian metric is normal,
if the tensor field S defined by (1. 34) vanishes identically in M. Thus, taking
account of (1. 32), (1. 34) and (1. 36), we have

PROPOSITION 1. 7. In a fibred space M with invariant Riemannian metric, the
/S/ f^J /N/

Nijenhuis tensor N of the second fundamental tensor H in M vanishes identically
if and only if one of the following conditions (a) and (b) is satisfied:

(a) 5=0 and [HX, HΫ] € 3Hl(M) for X, Ϋ e £ΓJ(M).

(b) S=0 and H*=Q (i.e., ff8=0).

PROPOSITION 1. 8. The Nijenhuis tensor N of the second fundamental tensor
H in the base space M vanishes identically if and only if the given fibred space
M is normal, i.e., if and only if 5=0 in M.

The second fundamental tensors H and H are of the same rank, which is not
greater than n, the base space M being of dimension n. If we take account of the
condition (b) mentioned in Proposition 1. 7, we see that the second fundamental
tensor H (or H) is necessarily of rank less than ^(=dimM) if the Nijenhuis tensor
N of H vanishes identically in the total space M.
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§2. The tensor calculus in a fibred space with invariant Riemannian metric.

Let (M, M, τr; C, g) be a fibred space with invariant Riemannian metric g.
Since the projection π: M-+M is differentiate and of the maximum rank every-
where, there exists, for any point P of M, a coordinate neighborhood U containing
P in M such that U=π(U) is a coordinate neighborhood of the point P=π(P) in M
and the intersection FqΠU is expressed in U by equations

a1, a2, '"ta
n being constant, with respect to certain local coordinates (y1, y2, •••, yn, yn+ί)

defined in 0, where Q is an arbitrary point in U. We call such a neighborhood
U a cylindrical neighborhood of M. Since we restrict ourselves only to cylindrical
neighborhoods in M, we call them simply neighborhoods of M. Given a neigh-
borhood U in M, the set (£/, C7, ττ; C, gf) is a fibred space with invariant Riemannian
metric g, where U=π(U), π is the restriction of the projection π: M— *M to U, and
C and g are respectively the restrictions of the structure field C and the invariant
Riemannian metric g to 0. In the sequel, we shall identify the operations of taking
horizontal parts, lifts, projections, etc. in the fibred space (U, U, π; C, g) with the
corresponding operations in the given fibred space (M, M, ττ; C, g) respectively.

Let (xh)=(x\ x2, •••, xn+l) be coordinates defined in 0 and (ία)=(f1, f2, •••, fn)
coordinates defined in U=π(U), where £7 is a neighborhood in M. υ We denote by/v ^
E71 and gryί the components of the structure field C and the invariant Riemannian
metric g with respect to coordinates (xh) defined in U. 2) Then the structure 1-
form η defined by (1. 2) has components of the form

(2.1) E%=gihE\ i.e., η=Eidx\

Taking a point P with coordinates (ξa) arbitrarily in U, we may assume that
FpΓiU is expressed by n equations

(2. 2) ξa=ξa(xh)

in U, where n functions ξa(xh) are differentiate in 0 and their Jacobian matrix
(dξa/dxh) is of rank n. Putting

(2. 3) £"=3^

1) The indices h, i, j, k, /, m, s, ί run over the range <1, 2, ••-,«+!} and the indices
a, b, c, d, e,f run over the range {1, 2, •••, n}. The so-called Einstein's summation conven-
tion is used with respect to these two systems of indices.

2) The components of a tensor field T in M with respect to coordinates (xh) defined
in U, or, the components of T in U mean the components of T with respect to the
natural frame
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where 3$ denotes the operator

3

we know that n local covector fields ζα with components Eτ

a are linearly indepen-
dent in 0. Since the structure field C is tangent to fibres, we find

(2.4) EiEl=gJ ίE^Eί=l) EίEί

a=Qf

the first equation being a direct consequence of (1.1) and (2.1). Then the n+l
local covector fields ζα and η are linearly independant in 0.

Taking account of (2. 4), we see that the inverse of the matrix (£Ία, Ei) has
the form

(2.5)
"* ' * \ Eh I

where E\t for each fixed index b, are components of a local vector field Bb in 0.
Then the n+l local vector fields J3δ and C are linearly independent in 0. The
equation (2. 5) is equivalent to the conditions

(2.6)

that is,

(2. 6)'
ζα(C)=0,

or, to the condition

(2.7) El

aEh

a,+EiE
h=d\.

The first and the second equations of (2. 6) or of (2. 6)' show that n local vector
fields Bb span the horizontal plane, which is defined by the equation η=Eidx*=Q,
at each point of 0.

Applying the Lie derivative X with respect to the structure field C, we find

(2.8)

(cf. (2. 8) in Yano and Ishihara [11]).
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Horizontal parts. Let there be given a tensor field T, say, of type (1. 1) in the
total space M. Then f has components of the form

(2. 9) fih=Tb

aEi*Eh

a+ Tb»Ei

bEh+ T,aEiEh

a+ T0°EiEh

in each neighborhood 0 of M, where Tb

a, TV, Γ0

α and T0° are all functions in U.
Then, taking account of (H. 1)~(H. 4), we easily see that the horizontal part TH of
T has in 0 components

Invariant functions. Let / be an invariant function in the total space M. We
have by definition _£*/=(), which implies that / is expressed as

(2. 10) 7=/(W))

in each neighborhood U of M, where ζa(xh) are the functions appearing in the
equation (2. 2) defining fibres. Taking account of (2. 10), we find the formula

(2. 11) dt?=ESdaf

(cf. (2. 11) in Yano and Ishihara [11]), where da means the operator defined by

The function / is invariant and consequently its projection f=pf is a function in
the base space M and, conversely, the lift fL of / coincides with /. Thus, in the
sequel, we shall identify any invariant function f with its projection f=pf and
denote the invariant function f by the same symbol f as its projection.

Invariant tensor fields, projections and lifts. Let there be given a tensor field
T, say, of type (1. 1) in the total space M. Then T is invariant if and only if it
has in each neighborhood U components of the form (2. 9) with invariant functions
TV, TV, T0

α and T0° in U. JΓhus, taking account of (P. 1)— (P. 4), we easily see that
for an invariant tensor field T, say, of type (1. 1), its projection T=pf has components
Tύa with respect to coordinates (ξa) defined in U=π(U). υ

Let there be given a tensor field Γ, say, of type (1, 1) in the base space M
and let TV* be the components of T in U. Then, taking account of (L. 1)~(L. 4),
we easily see that the lift TL of T has components of the form

(2.12) fih=Tb

aE*Eha

1) The components of a tensor field T in M with respect to coordinates (£α) defined
in U, or, the components of T in U mean the components of T with respect to the natural
frame {d/dξb} at each point of U.
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with respect to coordinates (xh) defined in U, 0 being a neighborhood of M such
that U=π(0).

Invariant Riemannian metric. Let g^ be the components of the invariant
Riemannian metric g in each neighborhood 0 of M. Then the Riemannian metric
g=pg induced in the base space M has components

(2. 13) gc^E'cE'Mji

in £7=π(#). Thus, taking account of (2. 6) and (2. 7), we have the formula

(2. 14) gji^gctEf

by virtue of gjtE^Ei=EiE%=l.
If we define gίh by the equation

(2.15) (gίh)=(Qjir\ i

then 0ίΛ are components of an element G of Jl(M) in £7. The projection G=pG

has components gδα in U such that

(2.16) to6α)=(flfc6)-1, i.e., getΰ*a=dS.

Thus we obtain the following formulas:

(2. 17)

flf*Λ = flf6^i6£

Moreover, taking account of (2. 6), we easily find the following formulas:

El

a=gihg
ύaE\ Ei=gihE

h,

(2. 18)
ph—ahia .pa ph — tfup
•C' 6 — y v/αδ^- 't ? •C' — y -c'i

7%^ Riemannian connection. The Riemannian connection F determined by the
given invariant Riemannian metric g is also invariant and has the ChristoffeΓs
symbols {J

h

l} constructed from gjt as its coefficients in each neighborthood 0 of
the total space M. For any vector field X in M, its covariant derivative VX has
components of the form

in ί7, Xh being the components of X in ί7.

If we take account of (1. 25), we obtain
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VjE
h

b=Γc

a

bEJ

cEh

a+hcbEJ

cEh-hb

aEjE
ha,

(2. 19)
^jEh=~hc

aEjCEh

a

in each neighborhood 0 of M, where hcb and hb

a are invariant functions in 0 and
Γc

b

a are also invariant functions in 0 such that

Γ1 a _ p a
L c b — * δ ct

because the local vector fields Bb with components Eh

b are horizontal and invariant
in 0 (cf. (2. 15) in Yano and Ishihara [11]). Comparing (1. 25) and (2. 19), we know
that the second fundamental tensors h and H have in 0 components of the form

ϊiji^hctEjΈi* and hih=hb

aEibEha

respectively and hence the second fundamental tensors h and H have in U=π(0)
components of the form

hcb and hb

a

respectively. Therefore, Proposition 1. 3 is equivalent to the fact that the conditions

(2. 20) hji+hij=^ hct>+ht>c=Q,

(2. 21) hjί=hjhgίh,, hcb=hc

agba

hold. The first and the second equations of (2. 19) are called the co-Gauss equations
and co-Weingarten equations respectively.

Let X be an element of Jl(M). Then X has components of the form

Xh=XaEh

a+X*Eh

in each neighborhood 0 of M, where Xa and XQ are invariant functions in U.
Taking account of (2. 19), we find that the covariant derivative ΨX has components
of the form

(2.22) ΓJX
h={ί7cX

a-Xϋhc

a}EJ

cE

where we have put

When X belongs to J^J(M), the formula (2. 22) reduces to

(2.23) VJX
h=(VcX

a)EfE

because of J£°=0.
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Let X be an element of £TJ(M) and put X=XL. Then X has the components
X=XaEh

a, Xa being the components ^pf X in U=π(0). Thus, taking account of
(2. 23), we see that the projection p(ΫX) of ΫX has components

Therefore J he connection V induced in the base space M has coefficients Γc% in U,
since p(VX) is nothing but ΨX by means of the definition (1. 9). Consequently,
Γc

a

b should coincide with the ChistoffeΓs symbols {c

ab} constructed from 0cδ, because
the induced connection V coincides with the Riemannian connection determined by
the induced metric g. Thus the co-Gauss equations and the co~ Weingrten equations
(2. 19) reduce respectively to

(2. 24)

Van der Waerden-Bortolotti covariant derivatives. Let there be given an ele-
ment of the formal tensor product J(M)# JH(M), say, T belonging to <3\(M)#JH\(M).

is expressed as follows:

in each cylindrical neighborhood 0 of M, Tkjba being invariant functions in U,
where {ej} = {d/dxj} is the natural frame of coordinates (xh) defined in U, {ek} the
dual base to {£/}, Ba local vector fields having components Eh

a and ζ& local co vector
/v * *

fields having components E p, all in U. We call T^&α the components of T with
respect to coordinates (xh) and coordinates (ξa) defined in 0 and in U=π(U), or

simply the components of f in (#, Z7). Let i: J(M)# J^(M)— J(M) be the linear

homomorphism defined by (1. 1)~(I. 3) in §1. Then the image f=i(T) has in 0
components of the form

(2.25) fW^fyfEtE**.

Conversely, we have

(2. 26) fkJb

a=TkJi

hEί

bEh

a.

Let T be the element of J(M)# JH(M) considered above. Then the van der
* * *

Waerden-Bortolotti covariant derivative VT of T has components of the form

(2. 27) ftf Λβ=3χf Λβ+ {ιym}f Λβ- {Λ}fmV+£Λ{Λ}ί1*V- {Λ}TΛα)

by virtue of (W. 1)— (W. 4) given in § 1 (cf . (2, 34) in Yano and Ishihara [11]). We

put conventionally in 0
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δ)Γ respectively. If we take account

are the components of T=i(T), then

β(te

(2. 28)

(2. 29)
= W+{c

α

δ}

which are the components of (ΫBaY and

of the formula giving Pz^VΛ where ί
we have the formula

(2. 30)

because of (2. 27), (2. 28) and (2. 29).
The co-Gauss equations and the co-Weingarten equations (2. 24) reduce res-

pectively to the equations

(2.31)

which are equivalent to the equations

(2.32)

§3. Formulas.

7?ίVί:f formulas. As is well known, we have the Ricci formula

(3. 1) ΫkΫjX
h-Ϋ/kX

h=K1cji

hXi

for any element X of £Π(M), ^YΛ being the components of X, where Kkji
h denote

the components of the curvature tensor K of the invariant Riemannian metric §
given in M and are defined by

Kkji
h=dk{j\} -dj{k\] + {A} ίΛJ - (Λ) {Λ} .

For any element f of Jl(M)%JHl(M), we have the formula
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/Q o\ uΊπ Th*. — P-P,Th*.— K'1--hTi^—F,dFcK'^JlTh

\o. 6) V icV j ± & y j V j c J . b — lYjcjz J- b J^k &j Λ-dcb ± a

by virtue of (2. 27), Th

b being the components of T, where KdCb
a denote the com-

ponents of the curvature tensor K of the Riemannian metric g induced in the base
space M and are defined by

TS~ a ί5 f α< 1 ί 3 f f t l ι f f t 1 f β \ r α i r e i
J^dcb = 0d\c b}—Vc\d b}-T\d e ] \c b] ~ \c e] \<i b]

(cf . (2. 37) in Yano and Ishihara [11]). The formula (3. 2) is the Ricci formula for
the van der Waerden-Bortolotti covariant differentiation.

Some formulas. If we take account of (2. 28), (2. 29) and (2. 30), we easily find

^
(3.3)

Py£iΛ = (PcA6α)£/£ί^

the second equation of which implies

(3.4) Pfhth+Pihu+Phhji^Pcfaa+Pbhac+P^^^

because of hc

ehbe=hb

ehce.
The structure 1-form η has the local expression η=Eίdx'i in each neighborhood

U of M. Taking account of (2. 29), we obtain

(3.5) Q=dη=- hjidx3 Λ dxl

which is equivalent to (1. 26). Since ddη=ΰ, if we take account of (3. 3), we easily
obtain the following identities:

(3.6)

which show that the 2- form Ω=p(dη) defined by (1. 8) or by (1. 26) is closed.
We have now the following formulas:

(3. 7) [£c, Bb-]=2hCbC, [C, BJ=0

in each neighborhood 0 of M as consequences of (2. 24).

Nijenhuis tensors. Denote by TV the Nijenhuis tensor of the second fundamental
tensor H in M. Then, as is well known, TV has components of the form
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(3. 8) Nji

h=h^ιhi

h-hi^thj

h-(^jhi

t-Γihjt)hf

in each neighborhood 0 of M, fuh being the components of H. Substituting the
first equation of (3. 3) in (3. 8), we easily obtain the formula

(3. 9) ftjî NefEfEtE^WhffaWfEt̂

hb

a and hcb being the components of the second fundamental tensors H and h in
M respectively, where NCb

a denote the components of the Nijenhuis tensor N of H
and are given by the equation

(3. 10) Ncb

a=hcΨehb

a-hbΨehc

a-(Pchb

e-Pbhc

e)hea.

The equation (3. 9) is equivalent to the equations

(3.11) pN=N, p{η(N(XL,YL}}}=2h(HX,HY\

X and Y being arbitrary elements of £Π(M). The equation (3. 11) are direct
consequences of (1. 31) and (1. 33).

The tensor field S=NH defined by (1. 34) has components of the form

(3. 12) =Nji

h-2(hc

ehb

dhed)EJ

cEί

bEh

=Nji

h-2hJ

thishtsEh

becouse of (3. 9).

REMARK. If we suppose that H satisfies the condition

H2=-I+η®C, i.e.,

then we easily find

by virtue of (2. 32). Thus, in this case, we have the following expression of

This expression of Sjih was introduced by Sasaki and Hatakeyama, when (//, C, η)
defines an almost contact structure (cf. Sasaki [4], Sasaki and Hatakeyama [5], [6]).

Coming back to our case, if we assume that the Nijenhuis tensor N of H
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vanishes identically in the base space M, then we have

(3.13) hcΨeh,a-hJFehca-(Vchb

e-Vτ>hc

e}hea,=Q,

which is equivalent to Ncba=^, where Nd>a=Ncι>
egea On the other hand, we have

from (3. 6)

(3. 14) ΓdAcδ+ΓcA6d+F6AdC=0.

Transvecting gdehea to (3. 14), we find

(3. 15) (ΓcAδβ-Γ6Aβ

e)Aβα=AαβΓeAC6.

If we substitute (3. 15) in (3. 13), we obtain

(3. 16) AβTβA6α+Aδ%Aαc-AαTβAc&=0

and, changing cyclically the indices a, b and c in (3. 16),

(3. 17) hύΨehae+haeί7ehcύ-hcΨehba = 0.

Thus, if we add these two equations (3. 16) and (3. 17), then we get

(3.18) A6

βFΛ*=0, i.e., hbψehc

a=0.

Conversely, if we assume that the equation (3. 18) holds in M, then, taking ac-
count of (3. 14) or (3. 15), we see that the equation (3. 13) holds, i.e., that the
Nijenhuis tensor N of H vanishes identically in M. Therefore, taking account of
(3. 3), (3. 14) and Proposition 1. 8, we have

PROPOSITION 3. 1. In a fibred space M with invariant Riemannian metric, the
following five conditions (a), (b), (c), (d) and (e) are equivalent to each other:

(a) The Nijenhuis tensor N of H vanishes identically in the base space M.
(b) The given fibred space is normal, i.e., S=0 in M.
(c) The Nijenhuis tensor N of H has components of the form

in the total space M.

(d) Ac

βFβA6

α=0, i.e.,

for any element X of £Π(M).

(e) hSPtfa= hShthJ Έi+hf ht

shlsE
h
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in the total space M.

If we assume in Proposition 3. 1 that the second fundamental tensor H is non-
singular everywhere in the base space M, then, taking account of (3. 3), we have

PROPOSITION 3. 2. A fibred space M with invariant Riemannian metric such
that the second fundamental tensor H is non-singular is normal, i.e., S=0, if and
only if one of the following equivalent conditions (a) and (b) is satisfied:

(a) Fff=0, i.e., Pchb

a=Q

in the base space M.

(b) Pjh* = hjshs

hEi + hjshlsE
h

in the total space M.

Taking account of Propositions 1. 7 and 3. 1, we have

PROPOSITION 3. 3. In a fibred space M with invariant Riemannian metric, the
following three conditions (a), (b) and (c) are equivalent to each other:

(a) #=0

in the total space M.

(b) hcΨeht>a=0, H*=0

in the base space M.

(c) Λ/P,Λ,Λ=0, #3=0

in the total space M.

§ 4. Geodesies.

Let there be given, in a fibred space M with invariant Riemannian metric g,
a curve C expressed by equations xh=xh(f) in a neighborhood 0 of M, t being a
parameter. Denoting by C the image π(C) of ζ by the projection π: M— >Λf, we
may assume that C is expressed by equations ζa=ζa(t) in U=π(U), where the
functions ξa(t) in the right-hand side are defined by ξa(t)=ξa(xh(t))> the functions
ζa(xh) being those appearing in (2. 2). Then we find along C

dx^_~ l

dt ~ l dt
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and hence, differentiating covariantly both sides, we obtain

a Λ\(4 υ

where we have put

α , dξC

Substituting (2. 32) in (4.1), we find along C

dt '

A curve £ in M is said to be horizontal if its tangent vector is horizontal at
each point of C. Thus we have from (4. 2)

PROPOSITION 4.1. In a fibred space M with invariant Riemannian metric g,
the projection C of a geodesic ζ given in M is also a geodesic in the base space
M with respect to the induced metric g, if and only if one of the following two
conditions (a) and (b) holds:

(a) ζ is a horizontal geodesic in M.
(b) The tangent vector v of ζ satisfies

Hv—άv or Hv=av

along 5', v being the projection pv of v and tangent to C', where a and a are func-
tions along C and C respectively (cf. Proposition 4. 4).

Taking account of Proposition 1. 5 and 4.1, we have

PROPOSITION 4. 2. In a fibred space M with invariant Riemannian metric g,
the projection of a geodesic given arbitrarily in M is also a geodesic in the base
space M with respect to the induced metric g, if and only if, h, H, h and H vanish
identically, or, equivalently, if and only if the given fibred space M is locally
trivial.

When a curve C is horizontal in M and a curve C is the projection π(C) of C
in the base space M, the curve C is called a horizontal lift of £*. Let C be a
curve in M and be expressed by equations ξa=ξa(t) in a neighborhood U of M If
its horizontal lift C is expressed by equations xh=xh(t) in a neighborhood U of M
such that U=π(U), then the functions xh(f) should satisfy the differential equations

_
dt α dt
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along C in 0. Differentiating covariantly both sides, we find along the lift 5

- -
dί* " a dP b 3 a dt dt

which reduces to

δ2rh δ2£a

(4 3) — Eh
( ' } dt2 ~ a dt2

because of (2. 31), since hcb+hbc=0 holds. Thus we have

PROPOSITION 4. 3. In a fibred space M with invariant Riemannian metric g,
any horizontal lift Q of a geodesic C given arbitrarily in the base space M is also
a geodesic in M, and the projection π: M—>M preserves the affine parameters on C
and on C.

PROPOSITION 4. 4. If, for a fibred space M with invariant Riemannian metric
g, there are given an arbitrary point P in M and an arbitrary horizental vector V
at P, then there exists always a unique horizontal geodesic passing through the
point P and being tangent to V at P.

PROPOSITION 4. 5. If a fibred space M with invariant Riemannian metric is
complete with respect to the given invariant metric g, then the base space M is also
complete with respect to the induced metric g.

We assume that, along any horizontal geodesic in a fibred space M with in-
variant Riemannian metric, any affine parameter takes an arbitrarily given real
value. If this is the case, the fibred space M is said to be horizontally complete.
We now have

PROPOSITION 4. 6. In a fibred space M with invariant Riemannian metric, the
base space M is complete with respect to the induced metric if the given fibred/χ/

space M is horizontally complete.

§5. Structure equations and curvatures.

Let there be given a fibred space with invariant Riemannian metric g. Then,
as were obtained in § 4 of [11], the following structure equations can be established:

(5.1) Kdcb

a=Kdcb

a-(hd

ahcb-hc

ahdύ)-i-2hdchl)

a

ί

(5.2) Kdct>°=rdhct>-Pchdb,

(5.3) Kdooa=-hd

ehe

a
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by virtue of the Ricci formulas (3. 1) and (3. 2), where we have put

(5. 4)

Kkjih being the components of the curvature tensor K of the invariant Riemannian
metric g. The equation (5. 1), (5. 2), and (5. 3) are called the co-Gauss equation, the
co-Codazzi equation and the co-Ricci equation, respectively.

The curvature tensor K of the invariant Riemannian metric g is obviously
invariant. The condition pK=K is equivalent to the condition

(hd

ahcb - hc

ahdb) - 2hdchb

a = 0

by virtue of (5. 1), (5. 2) and (5. 3), where K is the curvature tensor of the induced
metric g in M. Transvecting gcb to both sides of the equation above and contrac-
ting with respect to the indices a and d, we get the equation

(5. 5) gabgcbhachdb=Q

by virtue of hcb=—hbc. The equation (5.5) implies hcb=Q. Thus, taking account
of Proposition 1. 5, we have

PROPOSITION 5. 1. For a fibred space with invariant Riemannian metric g,
the projection pK of the curvature tensor K of the invariant Riemannian metric g
coincides with the curvature tensor K of the Riemannian metric g induced in the
base space M, if and only if the given fibred space is locally trivial.

Denote by f(X, Ϋ) the sectional curvature with respect to the section determined
by two vectors X and Ϋ in M and by γ(X, Y) the sectional curvature with respect
to the section determined by two vectors X and Y in the base space M. Then
we have

and the corresponding formula for γ(X, F), where Xh and Ϋh are the components
of X and Ϋ respectively and

Thus, taking account of (5. 1), we find

(5. 6) γ(X, Y)-p{f(XL, YL)} =
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for any two vector fields X and Y in M, where we have put

(5. 7) \Xf\ Y^

Xh and Yh being the componnets of X and Y respectively. Therefore, taking
account of Proposition 1. 5 and (5. 6), we have

PROPOSITION 5. 2. In any fibred space M with invariant Riemannian metric,
the sectional curvatures satisfy the inequality

r(X, Y)^Pίf(XL, YL)}

for any elements X and Y of £Γi(M), M being the base space. The equality

r(Xι Y)=p{f(XL, YL)} holds 'for any elements X and Y of £ΓJ(Λf) if and only if the
given fibred space is locally trivial

As a consequence of (5. 3), we obtain

(5.8)
= 3(ffX,

for any element X of £Π(M), where \X/\Ϋ\2 is defined in M for two vector fields
X and Y by an equation similar to (5. 7). Thus, taking account of Proposition 1. 5
and (5. 8), we have

PROPOSITION 5. 3. For any fibred space M with invariant Riemannian metric,
the sectional curvature with respect to any section containing the vector C is non-
negative at each point of M. The sectional curvature with respect to any section/χ/ /x/

containing the vector C vanishes at each point of M, if and only if the given fibred
space is locally trivial. The sectional curvature with respect to any section contain-
ing the vector C is non-zero at each point of M, if and only if the second funda-
mental tensor H is of the maximum rank n in the base space M, where M is
n-dimensional. (If this is the case, ^=dim M is necessarily even.)

If we assume now that the sectional curvature γ(X, C) is a non-zero constant
A for any element X of %H\(M), then by virtue of (5. 8) we get

hb

ehe

a=-c2dΐf i.e., H2=-c2I,

which implies

(5.9) Λ'Λβ=-β?, i.e., /2=-/,

fb

a being defined by
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(5.10) Λα=— hf, i.e., /= — H.
c c

On putting

we have

(5. 11)

as consequences of (3.6) and hcb+hbc=Q. A set (g,/) of a Riemannian metric {/
and a tensor field / of type (1, 1) is called an almost Kάhlerian structure, if (g, /)
satisfies the conditions (5. 9) and (5. 11). Thus we have

PROPOSITION 5. 4. If, in a fibred space M with invariant Riemannian metric
g, the sectional curvature with respect to any section coutaining the vector C is a
non-zero constant A at each point P of M, A being independent of P, then the
constant A should be positive and the set (g,/) defines an almost Kάhleήan
structure in the base space M, g being the induced metric in M and f being
defined by f=(l/c)H, where H is the second fundamental tensor in M and A=c2

(rtO). If this is the case, the base space M is necessarily even-dimensional.
Conversely if the set (g,/),/ being defined by f=(l/c)H with a constant c, is

an almost Kάhlerian structure in^ M, then the sectional curvature with respect to
any section containing the vector C is constant and equal to c2 at each point of M.

Let Kji be the components of the Ricci tensor R of the invariant Riemannian
metric g in the total space M. Then we have by definition

Kji being symmetric in j and /. If we put

KCb
(5. 12)

R^Kji&c

and, if we take account of (5. 1), (5. 2) and (5. 3), then we have

Kcb

(5.13) Kco
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where KCb denote the components of the Ricci tensor R of the induced metric g in
the base space M and is given by

Thus, taking account of Proposition 1. 5 and the last equation of (5. 13), we have

PROPOSITION 5. 5. For any fibred space M with invariant Riemannian metric
g, the inequality

R(C, C)^0

holds everywhere in M, where R denotes the Ricci tensor of g. The equality
R(C, C)=0 holds everywhere in M, if and only if the given fibred space is locally
trivial.

As a consequence of the first equation of (5. 13), we have

(5. 14) R(X, X)=p{R(XL

f XL)} =2g(HX,

for any element X of £Π(M). Thus, taking account of Proposition 1. 5 and (5. 14),
we have

PROPOSITION 5. 6. In any fibred space with invariant Riemannian metric g,
the inequality

R(X, X)^p{R(XL, XL)}

holds for any element X of S'J(M), M being the base space, where R and R denote
the Ricci tensors of the invariant metric g and the metric g induced in M respec-
tively. The equality R(X, X)=p{R(XL, XL)} holds for any elements X of £ΓJ(M), if
and only if the given fibred space is locally trivial

Taking account of the second equation of (5. 13), we obtain

(5.15) 8(£,X)=Q for Xs3*(M)

if and only if

(5. 16) Pehb

e=Q

holds. The condition (5. 15) is equivalent to the fact that the vector C is a proper
vector of the Ricci tensor R. On the other hand, if we take account of (3. 6), we
see that the condition (5. 16) is equivalent to the condition that the second funda-
mental tensor h is harmonic in the base space M. Thus we have

PROPOSITION 5. 7. In a fibred space M with invariant Riemannian metric g,
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the second fundamental tensor h is harmonic in the base space M if and only if
the structure field C is a proper vector of the Ricci tensor R of the invariant
metric g everywhere in M.

Denote by k and k the curvature scalars of the invariant Riemannian metric
g and the induced metric g respectively. Then we get by definition

(5. 17) k=Kjigi\ k=Kcbg
cb.

Thus, as a consequence of (5. 13), we obtain

(5. 18) k-pk=

at each point of the base space M Therefore, taking account of inequality Pro-
porition 1. 5 and (5. 18), we have

PROPOSITION 5. 8. For any fibred space with invariant Riemannian metric g,
the inequality

holds everywhere in the base space M, where k and k are the curvature scalars of
the invariant Riemannian metric g and the induced metric g respectively. The
equality k—pk holds everywhere in M, if and only if the given fibred space is locally
trivial.

Consider two vector fields X and Ϋ in the total space M. We denote by K(X, Ϋ)
a tensor field of type (1, 1) defined by the equation

for any element Z of £l(M). ^The tensor field K(X,Ϋ) is called the curvature
transformation with respect to X and Ϋ, when it is regarded as an endomorphism
of the tangent bundle T(M). We easily see that K(X, Ϋ) has components of the
form

Xh and Ϋh being the components of X and Ϋ respectively. For any element Z of
£Γi(M), the vector field K(X, Ϋ)Z has components of the form

Zh being the components of Z.
If we take account of (3. 6) and (5. 2), we easily see that the condition
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is equivalent to the condition that the vector field K(X, Ϋ)Z is horizontal for any
three horizontal vector fields X, Ϋ and Z, or equivalently to the condition that the
curvature^transformation K(X, Ϋ) preserves the horizontal plane invariant at each
point of M, X and Ϋ being arbitrary horizontal vector fields. Thus, taking account
of (3. 3), we have

PROPOSITION 5. 9. For a fibred space M with invariant Riemannian metric,
the following two conditions (a) and (b) are equivalent to each other:

(a) The second fundamental tensor H is covariantly constant in the base space
M, that is,

FAα=0, i.e., VH=b in M,

or equivalently

Vjhi

h=hjshs

hEi+hjshsίE
h in M.

(b) The curvature transformation with respect to any two horizontal vector
fields preserves the horizontal plane invariant at each point of M.

Taking account of Propositions 3. 2 and 5. 9, we have

PROPOSITION 5.10. A fibred space M with invariant Riemannian metric is
normal, i.e., S=NH defined by (1. 34) vanishes identically in M, the second fun-
damental tensor H in the base space M being assumed to be non-singular everywhere,
if and only if one of the conditions (a) and (b) mentioned in Proposition 5. 9 is
satisfied.

As a corollary to Propositions 5. 4 and 5. 9, we have

PROPOSITION 5.11. In a fibred space M with invariant Riemannian metric g,
the set (g, (l/c)H) is a Kάhlerian structure in the base space M, where c is a non-
zero constant, g and H being the induced metric and the second fundamental
tensor in M respectively, if and only if the following two couditions (a) and (b) are
satisfied:

(a) The sectional curvature with tespect to any section containing the vector
C is a non-zero constant A at each point P of M, A being independent of P.

(b) The curvature transformation K(X, Ϋ) with respect to any two horizontal
vector fields X and Y preserves the horizontal plane at each point of M.

In a normal fibred space with invariant Riemannian metric g, the set (g, (l/c)H)
is a Kάhlerian structure in M, if and only if the condition (a) is satisfied.

In Proposition 5.11, the Kahlerian structure (g, (l/c)H) is said to be induced in
the base space M.
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§6. Special cases.

Locally flat fibred spaces. We now suppose that, in a fibred space (M, M, π;
C, g) with^ invariant Riemannian jnetric g, the invariant metric g is locally flat,
i.e., that Kkji

h=0 everywhere in M. Then the equation (5. 3) reduces to

which implies (5. 5). Thus we have Ac&^O.
Substituting Kdcύ

a==Kkji

hEk

dEJcE
i

bEh

a=() and hcb=Q in (5. 1), we find Kdcb

a=Q.
Therefore, taking account of Proposition 5. 1, we have

PROPOSITION 6. 1. For a fibred space with invariant Riemannian metric g,
the invariant metric g is locally flat, if and only if the given fibred space is locally
trivial and the metric g induced in the base space M is locally flat.

Einstein fibred spaces. We assume that, in a fibred space M with invariant
Riemannian metric g, the metric g is an Einstein metric, i.e.,

(6.1) K
"J* n+l *"

where Kji and k are the Ricci tensor and the curvature scalar of g respectively,
M being O+l)-dimensional. Then, combining (5.13) and (6.1)* we find

(6. 2) VM=0, k=(n+l)gkjgίhhicihjh ^ 0.

The equation FβAδ

e=0 together with (3. 6) shows that the second fundamental tensor
h in M is harmonic. Thus, taking account of Proposition 1. 5, (3. 3), (3. 6) and (6. 2),
we have

PROPOSITION 6. 2. //, in a fibred space M with invariant Riemannian metric
g, the metric g is an Einstein metric, then the following two conditions (a) and (b)
hold:

(a) The scalar curvature k of g is non-negative in M.
(b) The second fundamental tensor h in the base space M is a harmonic

tensor, or equivalently, the equation

holds in M (cf. Proposition 5. 7).
When the invariant Riemannian metric g is an Einstetn metric, the curvature

scalar k vanishes identically in M if and only if the given fibred space is locally
trivial and the induced metric g is an Einstein metric with vanishing curvature
scalar in the base space M.
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We assume now that, in a fibred space M with invariant Riemannian metric
g, the invariant metric g and the metric g induced in the base space M are both
Einstein metrics, i.e.,

(6.3) Kji

k and k being the curvature scalars of g and g respectively, where άimM=n+l
and άimM=n. Then, combining (5.13) and (6. 3), we get the following equations:

(6.4)

72-fl

On the other hand, taking account of Proposition 5. 8 we have k^pk, which implies

τ(τ-^
if £^0. We assume that k and k are constant (as is well known, k and k are
constant if n^3). If we put

(6.6) / ^ - A Λ

then, as consequences of (6. 4) and /zc&-f/z&c=0, we find

fb

efeα= -δi,

(6.7)
%= -

where c is a constant and /c& is defined by

(6. 8) fcΐ>=fcegeb

Moreover, as a direct consequence of the identity (3. 6), we get

(6. 9) Fc/δα+Fδ/αc+Fα/cδ=:0.

Summing up (6. 7), (6. 8) and (6. 9), we know that the set (g, /) defines an almost
Kahlerian structure in the base space M, where / is the tensor field of type (1, 1)
with components fb

α and /c& is a harmonic tensor field. Thus we have

PROPOSITION 6. 3. Suppose that, in a fibred space M with invariant Riemannian
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metric g, the metric g and the metric g induced in the base space M are both
Einstein metrics with constant scalar carvature. Then M and M are necessarily
odd- and even- dimensional respectively, and, the set (g,f) is an almost Kάhlerian
structure in M such that /cδ =fc

egeb is a harmonic tensor field, fb

a being the com-
ponents of the tensor field f of type (1, 1) defined by f——(\lc)H, where H is the
second fundamental tensor in M and c is a positive constant defined by

k and k being the curvature scalars of g and g respectively.

Conformally flat fibred spaces. We now assume that, in a fibred space M with
invariant Riemannian metric g, the metric g is conformally flat. Then we have
by definition

(6. 10) Kkji

h= ̂
n JL n\n — \.

if dimM=^+l>3, where Kji and k are respectively the Ricci tensor and the
curvature scalar of g. Thus, taking account of (5. 2) and (6. 10), we find

(6. 11) -- —r-(gdbKco—gcbKdo)=Pdhcb—l7chdb,

and, transvecting gdb, we get

Comparing this equation with the second equation of (5. 13), we obtain KCO=Q,
which implies together with (6. 11)

Thus, taking account of (3. 6), we have

FdAcδ=0, i.e., FA=0.

Consequently, if we take account of Proposition 3. 1, we have

PROPOSITION 6. 4. If, in a fibred space M with invariant Riemannian metric
g, the metric g is conformally flat, then the second fundamental tensor H in the
base space is covariant constant, i.e., PH=Q, and hence the given fibred space is
normal, i.e., S=0.

Fibred spaces of constant curvature. Suppose that, in a fibred space with
invariant Riemannian metric g, the metric g is of constant curvature. Then we
have by definition
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(6. 12) Kkj*

where K is the curvature scalar of g and a non-zero constant. Substituting (6. 12)
in (5. 1), (5. 2) and (5. 3), we obtain respectively the equations

(6. 13) Kdcb

a= k

n(n-\-L)

(6. 14)

kκf(\ ΛZΛ(6.15)

If we contract with respect to indices a and d in (6. 15), we find

K=-(n+ϊ)hd

ehed>0

by virtue of ^^0 and hcb=—hbc. If we put

(6 16) C2=^ (c>0)

and

(6. 17) fb

a= —ht,a, i.e., /= —ff,
c c

then we find

(6. 18) ΛβΛβ= -^α, i.e., /2= -/

as a consequence of (6. 15). On the other hand, taking account of Proposition 6. 4,
we obtain

(6.19) PcΛα=0, i.e. F/=0.

If we substitute (6. 17) in the right-hand side of (6. 13), we get

(6. 20) Kdcb

a= k {(δϊgΛ-dίgM)+(fd

afeb-fe

afM-2fdefύ

a)},
n(n-\-L)

where we have put

(6. 21) k=n(n+2)c2

and
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fba=fbeQea,

which satisfies the equation

(6. 22) /e6+Λe = 0

because of hCb+hi)c=Q We note here that n— dimM is necessarily even because
of (6. 18). Thus, summing up (6. 16), (6. 18), (6. 19), (6. 20), (6. 21) and (6. 22), we have

PROPOSITION 6. 5. Suppose that, in a fibred space M with invariant Riemannian
metric g, the metric g is of non-zero constant curvature k. Then the total space
M and the base space M are necessarily odd- and even- dimensional respectively, the
curvature scalar k is necessarily positive, and, the set (g,f) in the base space M
is a Kάhlerian structure of positive constant holomorphic sectional curvature k, g
being the metric induced in the base space M and f being the tensor field of type
(1, 1) defined by f=(l/c)H, where H is the second fundamental tensor in M and c
is a positive constant defined by

k=n(n-\-l)c2, k=n(n+2)c2 («=dimM)

(cf. Kurita [2], Tashiro and Tachibana [9]).

As a corollary to Proposition 6. 5, we have

PROPOSITION 6. 6. Suppose that, in a fibred space M with invariant Riemannian
metric g, the metric g in M is of non-zero constant curvature k and the metric g

/v

induced in the base space M is also of constant curvature k. Then M and M are
necessarily 3- and 2-dimensional respectively and the two cmvatures k and k should
be positive.

In connection with Proposition 6. 5, we shall discuss the fibring of the odd-
dimensional unit sphere Sw+1 defined by an equation

with respect to rectangular coordinates (yι,yz, ~ ,yn+2) defined in an even-dimen-
sional Euclidean space En+2, where n is even and sometimes denoted by n=2m.

/v

Let us assume that there exists a fibred space (Sn+1, M, π; C, g) with invariant
Riemannian metric g, where g is the natural Riemannian metric induced in Sn+1

and obviously of constant curvature 1. Since the structure field C is a Killing
vector field in Sn+1, there exists a vector field F in En+<i such that V has com-
ponents of the form

(6. 23) VA=*ΣaABys (A=l, 2, .», n+2)
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and the restriction of V to Sn+l coincides with C, where the matrix (GAB) is con-
stant and skew-symmetric. On the other hand, the structure field C is Killing
vector field of unit length. Then, as is well known, we get

(6. 24) g(ΫγC, £)=0

for any vector field Ϋ in Sn+ί.
If we take rectangular coordinates (1/1,2/2, ~ ,yn+2) suitably in En+\ as a con-

sequence of (6.24), we may assume that the components VA (A=l,2, •• ,n + 2)
given by (6. 23) have the following form:

Thus, if we introduce in En+2 complex coordinates (Zlt Z2, •••, Zm+ί) by

then the components given by (6. 25) reduces to

with respect to (Zi, Z2, « « « , Zm+1). Therefore, the vector field V generates a 1-
parameter group Φ of rotations r(0) having the representation

(6. 26)

0 \

\ o o

with respect to (Zi, Z2, ••-, Zm+ί) in .E17142. Then each fibre in Sn+1 is an orbit of the
group Φ. Consequently, the projection π: Sw + 1— >M coincides with the natural
mapping

π: Sn+1-»CP(m) (n=2m),

where CP(m) denotes the complex projective space of complex dimension m. Thus
we have

PROPOSITION 6. 7. Let Sn+1 be an odd-dimensional sphere (i.e., n=2m) with the
natural Riemannian metric g of positive curvature 1. // there exists a fibred space
(Sn+1, M, π; C, g) with invariant Riemannian metric g, then its projection coincides
with the natural projection π: Sn 1~1— >CP(w), the base space M coinciding with the
complex projective space CP(m), and the metric g induced in M defines the natural
Kάhlerian structure of positive constant holomorphic sectional curvature together
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with the second fundamental tensor H of the given fibred space.

If we assume now that, for a normal fibred space M with invariant Rieman-
nian metric g, the second fundamental tensor H is of the maximum rank n in the
base space M, where n=ά\mM is necessarily even, then we obtain PH=Q, i.e.,
PΛα=0 in M as a consequence of Proposition 3. 2. Thus, taking account of (5. 13),
we find the following equations:

(6. 27)

Pt£yiKP*tfc6)£^

Pcb being defined by

Pcb~hc Keb — 2ιhc hi) hed — -^-OO^cδ?

where K00 reduces to a positive constant. Therefore, taking account of the second
equation of (6. 27), we see that the condition VkKji=§ is equivalent to the conditions

FdKcb=0 and Pcδ=0,

or equivalently to the condition

(6.28) KCb=Koogct>+2hc

eheb in M,

which is equivalent again to the condition

R^Rwgji+WifheύE'Ei* in M.

Thus, taking account of (6. 27) and (6. 28), we have

PROPOSITION 6. 8. Let M be a normal fibred space with invariant Rieman-
nian metrie g and suppose that the second fundamental tensor H is of the maximum
rank n in the base space M, where n= dimM is necessarily even. Then the equality

holds, R and R being the Ricci tensors of the invariant metric g and the metric g
induced in M respectively. The Ricci tensor R is covariantly constant, i.e., PR=Q
in M, if and only if the Ricci tensor R has components of the form

in M, where K0o=gdcgbahdbhca is a positive constant.

We assume that the second fundamental tensor H is of the maximum rank n
in the base space M, for a normal fibred space M with invariant Riemannian
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metric g, where n=άimMis necessarily even. Then, taking account of (5. 1), (5. 2)
and (5. 3), we easily see that the curvature tensor K of the invariant Riemannian
metric g has components of the form

Kkjih = QdcbaEk

dEjCEibEha

(6. 29) +(hc

ehea)EkEJ

cEiEh

a-(hc

ekeb)EkEJ

cE*Eh

because of PPf=Q, where we have put

Qdcba = Kdcba, ~ (kdakcb ~ hcahdb ~ Zhdchba),

(6. 30)

Kkjih — RkjiQth, Kdcba = Kdcl?Qea

If we differentiate covariantly both sides of (6. 29), and, if we take account of (2. 32)
and the identity Kdcbehea=Kdceahb

e

1 which is a direct consequence of FcΛδα=0, then
we obtain the equation

(6.31)

Qcb being defined by

(β. 32) Qcb=hc

eheb.

By virtue of (6. 31) and (6. 32), the condition ΫιKicjih=Q is equivalent to the conditions

(6. 33)
Qdcba — QcaQdb + QcbQda = 0.

On the other hand, we find

(6. 34) Qcb=hc

eheb= -c*gCb

because of FtfQcδ=:0 and QCb=Qbc, since M is an irreducible Riemannian manifold
(cf . Proposition 6. 10).
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If we substitute (6. 34) in the second equation of (6. 33), we have

(6. 35) Kdcba = C2(gdaQcb — QcaQdb+fdafcϋ— fcafdb~ 2fdcfca)>

fb

a and /Cδ being defined respectively by

f a •*• i, a f _ f e „
/δ = - rib , Jcb—fc Qeb

C

Substituting (6. 33) and (6. 35) in (6. 29), we find

Kkjih = c2(gkhQji —

which means that the invariant Riemannian metric g is of positive constant cur-/χ/

vature in M. Summing up, we have

PROPOSITION 6. 9. Let M be a normal fibred space with invariant Riemannian
metric g and assume that the second fundamental tensor H is of the maximum
rank n in the base space M, where n=άimM is necessarily even. Then thq equality

holds, K and K being the curvature tensors of the invariant metric g and the
induced mettic g respectively. The invariant Riemannian metric g is locally sym-
metric, i.e., PK=Q in M, if and only if the invariant metric g is of positive constant
curvatnre.

Take a horizontal vector X at a point P of a normal fibred space M with
invariant Riemannian metric, whose second fundamental tensor H is of the maximum
rank n in the base space M, n= dim M being necessarily even. Then the curvature
transformation K(X, C) has components of the form

(6. 36)

by virtue of (6. 29), where Xh are the components of HZX and Xl=gisX
s. Taking

another horizontal vector Ϋ at the point P, we know that the bracket product
[ft(X, C), Ϋ(Ϋ , C)] has components of the form

(6. 37)

as a consequence of (6. 36), where Ϋh are the components of H2Ϋ and Ϋl=gisΫ
s.

Therefore, linear combinations of matrices (A(X)ih) and (B(X, F)Λ, X and Ϋ being
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arbitrary horizontal vectors at the point P, span the Lie algebra of the group
SO(n+l) of all rotations, because the tensor field H is of the maximum rank n.
Since in our case the manifold M is orientable, we thus have

PROPOSITION 6.10. //", for a normal fibred space M with invariant Riemannian
metric g, the second fundamental tensor H is of the maximum rank n in the base
space M, where n=dimM is necessarily even, then the homogeneous holonomy
group of the Riemannian manifold M coincides with the group SO(n-\-V) of all
rotations.

§7. Contact structure.

In a differentiate manifold M of odd dimensions, a contact metric structures
is a set (g, η, φ) of a Riemannian metric g, a 1-form η and a tensor field φ of tpye
(1, 1) such that

for any vector field X in M, I denoting the identity tensor field of type (1, 1) in
M, where the tensor field φ of type (1, 1) and the vector field ζ are defined in M
respectively by the equations

0(ξ, *)=

X and Ϋ being arbitrary vector fields in M (cf. Sasaki [4]). When the vector field
I is a Killing vector field with respect to g, i.e., when

the contact structure (g, η, φ) is called a K-contact structure (cf . Hatakeyama, Ogawa
and Tanno [1]).

Coming back to fibred spaces with invariant Riemannian metric, if we take
account of Proposition 5. 4, we have

PROPOSITION 7. 1. In a fibred space M with invariant Riemannian metric g,
the set (g, η, (l/c)H) is a K-contact structure, H denoting the second fundamental
tensor in M and c being a non-zero constant, if and only if the sectional curvature
with respect to any section containing the vector C is a constant A everywhere in
My where A is necessarily equal to c2 (cf. Hatakeyama, Ogawa and Tanno [1]).

When a fibred space with invariant Riemannian metric satisfies the conditions
mentioned in Proposition 7. 1, the fibred space is called a fibred space with K-
contact structure. Then Proposition 5. 4 is equivalent to the fact that a fibred
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space with invariant Riemannian metric is a fibred space with K-contact structure
if and only if the set (g, /) is an almost Kάhlerian structure in the base space M,
where g is the induced metric and f is defined by f=(l/c)fίf H being the second
fundamental tensor in M and c being a non-zero constant.

Taking account of (2. 32), Propositions 3. 2 and 5. 9, we have

PROPOSITION 7. 2. For a fibred space M with K-contact structure, the following
six conditions (a)~(f) are equivalent to each other'.

(a) M is normal, i.e., S= 0 in M.
(b) The set (g, /) is a Kάhlerian structure in the base space M, where g is the

induced metric and f is defined by f=(l/c')ff, H being the second fundamental
tensor in M and c being a non-zero constant.

(c) N=Q in M.
(d) FcAaa=0, i.e., Ph=Q in M.
(e) Pkhji^c^guEj—gicjEi) in M.
(f) VJjEi^-guEj+gvEi) in M.

In a normal fibred space M with ^-contact structure, the equation (5. 13) reduces to

K cb = KCb — 2c2gC6,

Koo= nc2,
(7. 1)

or equivalently to

(7. 2) R

c being a certain non-zero constant, where n=άimM. Thus, taking account of
(7. 1) or (7. 2), we have

PROPOSITION 7. 3. In a normal fibred space M with K-contact structure, the
metric g induced in the base space M is an Einstein metric, if and only if the
condition

(7. 3) KJi=AgJi+BEjEt9 A+B=nc2

holds with a non-zero constant c, where A and B are certain invariant functions
in M.

Differentiating covariantly both sides of (7. 3), we find

because of (2. 32). Transvecting gki, we get

(7. 4) g»PtK,,=(n+ϊ)djA

because of djcB=EίcdddB. On the other hand, transvecting gji to both sides of (7. 3)
and differentiating covariantly, we obtain
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(7. 5) PwKώ

If we substitute (7. 4) and (7. 5) in the identity

which is a direct consequence of the Ricci identity, then we have

(7. 6) (n+ΐ)djA-djB=0.

On the other hand, we have from the second equation of (7. 3)

(7. 7) dJA+dίB=Q.

Combining (7. 5) and (7. 7), we find djA=djB=0, i.e., the fact that A and 5 are
constant. Thus we have

PROPOSITION 7. 4. //, in a normal fibred space with K-contact structure, the
Ricci tensor R has the form

then A and B are necessarily constant (cf. Okumura [3]).

Let M be a normal fibred space with X"-contact structure. Then a Kahlerian
structure (g,f) is induced in the base space M as a consequence of Proposition 7. 2.
Thus, taking account of (5. 1), (5. 2) and (5. 3), we have

(7.8)
-c\E

with a non-zero constant c, where

ϊ
and

are the components of the lifts KL and fL respectively and fji=fjhgm, ft and K
being the curvature tensors of the invariant Riemannian metric g and the induced
metric g respectively.

We now define in the base space M a tensor field Z of type (1, 3) with the
following components:

(7.9) ZrfCδ

α=&cδ

α-c2(<52g^^

Then the equation (7. 8) reduces to
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(7. 10) Rwh=

where we have put

which are the components of the lift ZL.
When the induced Kahlerian structure (g,/) is of constant holomorphic sectional

curvature in the base space M, we have Zdcύa=^y which implies together with
(7. 10)

Therefore we have

PROPOSITION 7. 5. A normal fibred space M with K-contact structure is of
positive constant curvature if and only if the induced Kahlerian structure is of
constant holomorphic sectional curvature in the base space M.

Differentiating covariantly both sides of (7. 2), we have

f^=(F^cδ^^

which reduces to

(7.11) Pt£,i=(F«A»)£^^

by virtue of (2. 32), (7. 2) and hb

a=cfb

a, hcb=cfct» where we have put

(7. 12) Z^#cδ-(^4-2)£2(/cδ)£/£Λ

Thus, taking account of (7. 11) and (7. 12), we have

PROPOSITION 7. 6. Let M be a normal fibred space with K-contact structure.
Then the equation

holds, R and R being the Ricci tensors of the invariant Riemannian metric g and
the induced metric g respectively.

The Ricci tensor R is covariantly constant in M, i.e., ftR=Q, if and only if the
invariant metric g is an Einstein metric in M. If this is the case, the induced
metric g is also an Einstein metric in the base space M (cf. Okumura [3], Tanno
[7]).

If we differentiate covariantly both sides of (7. 10) and put Kkjih=Kkji
sgsh, then

we have
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which reduces to

Vjtw

(7.13)

by virtue of (2. 32) and the identity

==

where we have put ZdCba=ZdcbeQea. Taking account of (7. 9) and (7. 13), we find
PιKkjih,=Q if and only if ZdCba=Q holds. Therefore, if we take account of (7. 10), we
have

PROPOSITION 7. 7. Let M be a normal fibred space with K-contact structure.
Then the equation

holds, K and K being the curvature tensors of the invariant metric g and the
induced metric g respectively.

The invariant Riemannian metric g is locally symmetric in M, i.e., ftK=Q, if
and only if the invariant metric g is of constant cnrvature (cf. Okumura [3]).

We have Propositions 7. 6 and 7. 7 as corollaries to Propositions β. 8 and 6. 9
respectively. We have the following Proposition 7. 8 as a direct corollary to Pro-
position 6. 10.

PROPOSITION 7. 8. The homogeneous holonomy group of a normal fibred space
M with K-contact structure coincides with the group S0(w+l) of all rotations, where

dimM. (Tashiro [8]).
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