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FIBRED SPACES WITH INVARIANT RIEMANNIAN METRIC

By KENTARO YANO AND SHIGERU ISHIHARA

Introduction. In a previous paper [11], we developed the differential geometry
of fibred spaces mainly from the point of view of affine geometry, that is, we
studied the fibred spaces with invariant affine connection. We also studied the
fibred spaces which can represent the manifolds with projective connection.

In the present paper, we would like to study the fibred spaces with invariant
Riemannian metric. Since the Riemannian connection determined by the invariant
Riemannian metric is also invariant, fibred spaces with invariant Riemannian metric
are fibred spaces with invariant affine connection in the sense of our previous
paper [11].

In §1, we define fibred spaces with invariant Riemannian metric and recall
some of fundamental concepts in fibred spaces with invariant affine connection. We
study also induced metric, induced connection, second fundamental tensor, co-Gauss
equations, co-Weingarten equations, and Nijenhuis tensor of the second fundamental
tensor.

We develop in §2 the tensor calculus in terms of local coordinates in a fibred
space with invariant Riemannian metric and we study in §3 some important
formulas useful for discussions which follow. §4 is devoted to the study of geo-
desics in the total space and in the base space.

We study in §5 structure equations and curvatures. Starting from co-Gauss,
co-Codazzi and co-Ricci equations, we derive relations between the curvature of
the total space and that of the base space and prove propositions in which a Kéhler
or an almost Kihler structure appears. In §6 we study some of interesting special
cases.

In the last §7, we study the case in which a fibred space with invariant
Riemannian metric is a fibred space with K-contact structure.
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§6. Special cases.
§7. The contact structures.

§1. Fibred spaces with invariant Riemannian metric.

Let M and M be two differentiable manifolds®, of »#+1 dimensions and of »
dimenrsions respectively, and assume that there exists a differentiable mapping
T A7I—>M, which is onto and of the maximum rank ». Then, for each point P of
M, the inverse image =~(P) of P is a 1-dimensional submanifold of M. We denote
7~} (P) by Fr and call Fr the fibre over the point P of M. We suppose every fibre
Fy to be connected. We assume moreover that there are given in M a vector field
C which is non-zero and tangent to the fibre everywhere, and a Riemannian metric
§ which is positive definite and satisfies the conditions

1.1 L£§=0, §(C, )=1,

L der~10ting the operator of Lie derivation with respect to the vector field C. The
set (M, M, r; 5, g) is called a fibred space with invariant Riemannian metric. The
manifolds M and M are called the fofal space and the base space respectively.
The vector field C and the Riemannian metric § are called the structure field and
the invariant Riemannian 7Nnem'c, or simply, the invariant metric, respectively.

If, in the total space M, we introduce a 1-form 7 by the equation

(1.2 71X=dX, ),
X being an arbitrary vector field in M, then we easily obtain
1.3) 70)=1, L7=0

as direct consequences of (1. 1) and (1. 2). Thus we have a fibred space (M, M, r; C, 7)
in the sense of [11]. The distribution defined by the equation 7=0 is called the
field of horizontal planes in M and the value of this distribution at a point of M
is called the horizontal plane at that point.

The Riemannian connection / determined by the invariant Riemannian metric
§ is also invariant with respect to the infinitesimal transformation determined by
the structure field C. Thus we have a fibred space (M, M, z; C, 7) with invariant
affine connection ¥ in the sense of [11]. Therefore, to any fibred space with in-
variant Riemannian metric §, there corresponds naturally a fibred space with
invariant affine connection /. For a fibred space with invariant Riemannian metric,
we use the same notations and terminologies as those introduced in [11] for fibred
space with invariant affine connection.

We recall some of notations and terminologies introduced in [11] for fibred
spaces (1\71, M, =; 5, 7).

1) The manifolds, the objects and the mappings we discuss are supposed to be of
differentiability class C*, The manifolds are assumed to be connected.
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1. T(M) is the tangent bundle of M.

2. I :(M) is the space of all tensor fields of type (7, s), i.e., of contravariant
degree 7 and of covariant degree s, in M.

3. FWh= T, THM).
The notations T(M), '(M ) and g(M) denote respective the spaces with respect to

M corresponding to T(M ), ’(M) and g (M ) respectively.
A linear endomorphism T—T# of g (M) is defined by the following properties:

(H.1) fa=7 for feqy(i).
Xo=X—5X%C N .
(H. 2) o o o~ for XegyM).
=X-§X, C)C
(H. 3) o7 =6—a(C)p for @eg (M.
(H. 4) SRTY2=EnR(TH) for S, Teq ).

The tensor field 7 is~called the horizontal pan‘Nof T for any element 7' of I (M).
If a tensor field j‘ in M satisfies the condition 7'=T"%, then we call T a horizontal
tensor field in M. On putting

1.4 Tr=T-T#,

we call TV the non-horizontal part of T for any element T° of F(M). Especially,
we have

Xv=4(C, %C for Xeq (i),
& =a(C)y for @egAM).
We call XV and @ the vertical parts of X and & respectively for any element X

of I .i(M) and any element @ of I t;’(1\71).
We now introduce the following notations:

4. g H(M) is the space of all horizontal tensor fields in M g H(M)cs_]’ (M).

A tensor field T in M is said to be invariant if it satisfies the condition
LT=0, £ denoting the operation of Lie derivation with respect to the structure
field C. We also introduce the following notations:

5 4 (1\71) is the space of all invariant tensor fields in M.
ST,  IWW)=9WHNTIWD).
6. JEUN=IWNTHND),  SEW=I7W) N TID).

7. 9 (M)#J H(M) denotes the Jormal tensor product, i.e. the tensor product of
the two spaces 4 (M) and JH (M) regarded as two abstract tensor spaces over M.
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We shall now recall the operations of taking lifts and projections, which were
introduced in [11].~ The operation of taking lifts is a linear homomorphism 7 T~
of g (M) into g(M) characterized by the following properties:

(L. 1) fi=for for fegyM),

(L.2) for any element X of J{(M), there exists a unique element XZ of EIH},([VI)
such that

X=X,
(L. 3) ol=*rw for weg (M),
(L. 4) (SRT)E=(SHR(TH) for S, Teq (M),

where the differential mapping of the projection =: M—M is denoted also by = and
the dual mapping of the differential mapping = is denoted by *z. The element T*
of JH(M) is called the [lift of T for any element T of g (M).

The operation of taking projection is a linear homomorphism p: 4 (]V[)—»g (M),
which is onto and is characterized by the following properties:

(P.1) (67 )P)=F(P) for fe g3,

where P is an arbitrary point such that #(P)=P, P being an arbitrary point of M.
(P.2) GXr=p &)  for Xe i),

f being an arbitrary element of IY(M).

(P.3) (PO X)=p@(X")  for @egi),

X being an arbitrary element of §M).

(P. 4) pST)=SRT) for 8, TegUi).

We call the element pT of I'(M) the projection of T for any element T of 9 (117[).
Taking account of (L. 1)~(L. 4) and (P. 1)~(P. 4), we easily find

NTE)=T for Teg (M)
and
(pTHr=Tx for Teg(M).

Thus the two spaces 4 H(]\7I) and (M) are isomorphic to each other and p: 9 H(A7[ )
—J (M) is the isomorphism between them. Then the operation of taking lifts is the
inverse of the projection p restricted to JZ(M).

We have now

ProrosiTiON 1,1, For any elements )Z', Vof g ;(1\71), we have



FIBRED SPACES WITH INVARIANT RIEMANNIAN METRIC 321

X, Yle g101), (¢, X1=0,
(1. 5) X, Yyr=[X#, Yo, (X, V7 =[X" Vay
=—20(X, ¢
and
(1.6) HE, V1=[pX, p7),

where @ is an invariant 2-form defined by the equation
Q=dj.
For any two elements X, Y of TYM), we have
1.7 [XZ, YEE=[X, YIE,  [XE, ViV =—20(X*, Yi)C
(cf. Yano and Ishihara [10]).
If we define in the base space M a 2-form £ by the equation
(1. 8) Q=pQ=pd7),

then, as was proved in [11], £ is closed (cf. (3. 6)) and the cohomology class [2] of
order 2 determined by 2 is called the characteristic class of the fibred space
(M, M, ; C) without horizontal planes, i.e., the class [£] is determined independently
of the choice of the structure 1-form # (in our metric case, independently of the
choice of the invariant Riemannian metric §).

Since 9 H(AZ[) is a subspace of 9 (1\7[), we denote by j: 4 H(A7I —9 (~1\7I) the injection.
We shall now introduce a linear homomorphism i: J(IVI)# J”(M)—»J(IVI) by the
property

(@ 1) i $H=7RiS) for Te g, Se L5000

The induced metric and the induced connection. Denoting by F the Riemannian
connection determined by the invariant Riemannian metric § in M, we see that /
is necessarily an invariant affine connection, i.e.,

LT3X)=0 for X, Ve giaD.
Therefore we can define in the base space M an affine connection F by the equation
1.9 Ve X=pPyrXL) for X, YegyM)

(cf. Yano and Ishihara [11]). The connection F thus defined is called the induced
connection in M. It is easily verified that the induced connection V is torsionless,
because so is also the Riemannian connection ¥ in M (cf. Yano and Ishihara [11]).

The projection g=p§ is a Riemannian metric in the base space M, which is
called the induced metric in M, i.e.,
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(1.10) 9(X, Y)=p(g(X*, ¥*)) for X, YeTyM).

Taking account of (P.1)~(P. 4) and (1. 9), we easily find
Vrg=p(Fyzd),

Y being an arbitrary element of M), as a consequence of F=¢*+7® 5. Thus
we find Vg=0 because of /§=0 and the equation above. Therefore we have

ProposiTION 1. 2. In a fibred space with invariant Riemannian metric §, the
induced connection V is the Riemannian comnection determined by the metric 9= p§
iuduced in the base space M.

We have now the following formulas:

(1.11) VyT=pWyr TE) for YegyM), Teg (M)
and
(1.12) pPsT)=ryT for Yeg2M), Te g5(M),

Y and T being defined respectively by Y=p¥ and T=pT.

Van der Waerden-Bortolotti covariant derivative. Given an element ¥ of

JYM), we define a derivation Py in the formal tensor product 4 (1\71)# g H(]VI) by
the following properties:

(W. 1) 2% % for Te ().
(W. 2) VoS=yud)a for Se.gHUD.

* * * £ % % ~ ~ * ~
(W. 3) Vol 4=y Th4S+T4WS)  for Te (M), Se 92(M).

For any element Vﬁ[‘f of J(M)% Y H(]VI), the correspondence 17—4’7'}13‘17 defines an
element 7} f/kV of J(M)# 9HM), which is called the van der Waerden-Bortolotti

£ 3
covariant derivative of W.
The second fundamental tensors. We shall define an element 4 of TYM) by
the equation

(1.13) WY, X)=p{7(FrrX")},

X and Y being arbitrary elements of M), and an element H of g¥M) by the
equation

1.14) HX=—pl s X7),

X being an arbitrary element of JiM). The equation (1.14) is equivalent to the
equation
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(1. 15) HX=—p( .0)

because of L XE=[C, XL]=0. We call 2 and H the second fundamental tensors in
the base space M. On putting

(1. 16) h=nt, A=m,

we call & and H the second fundamental tensors in the total space M.
Taking account of (1.10) and (1. 14), we find

(1.17) 9(Y, HX)=—¢(X, HY),
X and Y being arbitrary elements of (M), because we have
—plG(YE, VoXP)}=p{§(F e Y, XP)}

as a consequence of Fg{d(X%, Y£)}=0. On the other hand, if we take account of
(1. 13) and (1. 15), we obtain

(1.18) oY, HX)=h(X, Y),
because we have
—PYE, Pl {=pl§P 22 Y7, )
=p{7(V x£Y)}
as a consequence of 6(5, Y5)=7(¥Y*)=0. Thus from (1.17) and (1.18) we have

ProprosITION 1.3. The second fundamental tensors h and H in M have the
Jollowing properties:

1.19 WX, Y)+nY, X)=0,
(1. 20) WX, Y)=g(HX, Y),
X and Y being arbitrary elements of TiM).

Taking account of Proposition 1.3 and of the definitions (1.13), (1. 14), (1. 15),
we have

N PrOPOSITION 1.4. The second fundamental tensors h and H in the total space
M have the following properties:

(1. 21) MEX, H+AT, X)=0,
. 22) WX, V=§lX, 1),

X ana ¥ bging arbitrary elements of I 3(1\7! ), and hand H belong respectively to 9 Hg(IVI )
and JEM). The following formulas hold:
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.23 e Xy =h¥, XC,
(1. 24) VeX=0eC=—HX e 9mD),
G, X%)=0, HC=o,
where X and ¥ are arbitrary elements of J H;(AZI).

As a consequence of (1.9), (1. 23) and (1. 24), we find the following formulas:

PeX =X +u(¥, X)C,
(1. 25)

~

1776:75 =—HY, 755=0

for any two elements X and ¥ of 4 H},(M), where X=p)? and Y=p)7. :I‘hNe last
equation of (1. 25) is a direct consequence of the conditions _L£#d=0 and §(C, C)=1.
The first and the second equations of (1.25) are called respectively the co-Gauss
equation and co-Weingarten equation of the given fibred space with invariant
Riemannian metric.

Taking account of the definition of the exterior derivative, we have, for any
two elements X and ¥ of JHYM),

2a7( X, V)=Xp VX -7 X, 7))

(1. 26) h=—di=—0
and, consequently, in M
(1. 27) h=—0R=—pQ=—p(dp).

When one of the second fundamental tensors %, H, i and A vanishes, all of the
other second fundamental tensors vanish too. Thus, if 2=0 holds, we find from
1. 25)

PeX=yX)E, PsC=0,
(1. 28) B .
PaX=0, PoC=0

for any elements Xand ¥ of 9 Hé(M), where X and Y are defined respectively by
X=pX and Y=pY. As is well known, when the conditions (1. 28) are satisfied,
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the Riemannian manifold M is locally the Pythagorean product of a Riemannian
space and a straight line. In such a case, we say that the given fibred space M with
invariant Riemannian metric is locally triviel. Thus, taking account of (1.26) or
(1. 27), we have

ProposiTiON 1.5. For a fibred space M with invaviant Riemaunian metric,
the following three conditions (a), (b) and (c) are equivalent to each other:

(@) Omne of the second fundamental tensors h, H, i and H vanishes identically.

(b) The field of horizontal planes, which is defined by the equation =0, is

integrable.

(c) The given fibred space M is locally trivial.

When one of these conditions (a), (b) and (c) is satisfied the characteristic class
of the corvesponding fibred space wilhout horizontal planes is zero.

As a direct consequence of the last equation of (1. 28), we have

ProrosiTION 1.6. In a fibred space with invariant Riemannian metric, each
fibre is a geodesic.

When the base space M is 1-dimensional, the second fundamental tensor 7%
vanishes identically because % is skew symmetric. Thus, as a consequence of Pro-
position 1.5 we see that any fibred space A7[~ with invariant Riemannian metric is
locally trivial and consequently the total space M is locally flat, if M is 2-dimensional.

The Nijenhuis tensor of the second fundamental tensor. The Nijenhuis tensor
N of the second fundamental tensor A in M is by definition

(1. 29) N&, Y=[AX, AY1-HAX, V1-H(X, Y1+ A4 X, V],

X and ¥ being arbitrary elements of (M), and Nijenhuis tensor N of the second
fundamental tensor H in M is by definition

(1. 30) NX, Y)=[HX, HY1-H[HX, Y]-H[X, HY]4-H{X, Y],

X and Y being arbitzary elements of gYM). If we take X and Y arbitrarily from
TYM), substituting X=X~ and Y= Y% in both sides of (1.29) and taking horizontal
parts, we obtain the equations

(1. 31) N#=N~, pN=pN#=

If we take the vertical parts of both sides of (1.29), we find
(N, Py =A%, A7)

X, 89¢

!

)

(1. 32) =2h(
2§(H2X, ATHC

Il

QQ
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for )?, Yeg 5(1\7I~), as a consequence of (1. 22), (1. 26) and Proposition 1.1, because a
belongs to . #(M). If we take arbitrarily X and Y from g¥M) and substitute
X=XZ and Y=Y~ in both sides of (1.32), we obtain

(1. 33) PIIN(XE, YO ) =20(HX, HY)=29(H*X, HY)
for X, Ye gyM).

If we define an element S of H;(IVI) by the equation
1.34) S=Nu,
then we find S=N—A" and hence
SX, V=Nu(X, 1)
(1. 35) =N&X, V)-[AX, 377
=N&X, V—2m @ X, BY)C

for any elements Xand¥of g 5(1\71). On the other hand, taking account of (1. 31),
we obtain the relations

(1. 36) pS=N, S=Nr.

We now say that a iibred space M with invariant Riemannian metric is normal,
if the tensor field S defined by (1.34) vanishes identically in M. Thus, taking
account of (1.32), (1. 34) and (1. 36), we have

ProposiTiON 1.7. In a fibred space M with invariant Riemannian metric, the
Nijenhuis tensor N of the second fundamental temsor H in M vanishes identically
if and only if one of the following conditions (a) and (b) is satisfied:

~

@) S=0and [HX, AV1e gm0  for X, Ve TYM).
() S=0 and H*=0 (e, H*=0).

ProprosITION 1. 8. The Nijenhuis temsor N of the second fundamental tensor
H in the base space M vcmisheg identicglly if and only if the given fibred space
M is normal, i.e., if and only if S=0 in M.

The second fundamental tensors H and H are of the same rank, which is not
greater than z, the base space M being of dimension z. If we take account of the
condltlon (b) mentioned in Proposition 1.7, we see that the second fundamental
tensor A (or H) is necessarily of rvank less thcm n(=dim M) if the Nijenhuis tensor
N of H vanishes identically in the total space M.
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§2. The tensor calculus in a fibred space with invariant Riemannian metric.

Let (M, M, =; C, §) Pe a fibred space with invariant Riemannian metric §.
Since the projection n: M—M is differentiable and of the maximum rank every-
where, there exists, for any point P of M, a coordinate neighborhood {f containing
P in M such that U=x() is a coordinate neighborhood of the point P=x=(P) in M
and the intersection Fon{f is expressed in I by equations

y'=a, y'=a’, -, y"=a",

al, a?, ---, a™ being constant, with respect to certain local coordinates (¥, %2, ---, ¥", y™*)
defined in U7, where Q is an arbitrary point in U. We call such a neighborhood
U a cylindrical neighborhood of M. Since we restrict ourselves only to cylindrical
neighborhoods in M, we call them simply wneighborhoods of M. Given a neigh-
borhood I in M, the set (U, U, =; C, §) is a fibred space with invariant Riemannian
metrlc §, where U=x(0)), = is the restriction of the projection m M—M to U, and
¢ and g are respectively the restrictions of the structure field C and the invariant
Riemannian metric § to /. In the sequel, we shall identify the operations of taking
horizontal parts, lifts, projections, etc. in the ﬁbredNSpace (l7~, U, z; C, §) with the
corresponding operations in the given fibred space (M, M, =; C, §) respectively.

Let (#®)=(z%, %, -+, 2"**) be coordinates defined in U and (§9)=(¢, &% -+, &™)
coordinates defined in U==({J), where U is a neighborhood in M.» We denote by
E* and g;; the components of the structure field C and the invariant Riemannian
metric § with respect to coordinates (z") defined in U.®» Then the structure 1-
form 7 defined by (1. 2) has components of the form

2.1 E,=guE", le., ﬁ=E1;dJ)".

Taking a point P with coordinates (£*) arbitrarily in U, we may assume that
FenU is expressed by # equations

2.2) §2=£%z")

in U, where » functions &%x") are differentiable in U and their Jacobian matrix
(0&%/9x™) is of rank z. Putting

2.3) Ef=0£"

1) The indices %,4, j, k,{,m,s, ¢t run over the range {1,2, .-, #+1} and the indices
a,b,c,d, e f run over the range {1, 2, ---, }. The so-called Einstein’s summation conven-
tion 1s used with respect to these two systems of indices.

2) The components of a tensor field * in M with respect to coordinates (z") defined
in T, or, the components of T i & mean the components of 7° with respect to the

natural frame {d/dx?}.
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where 0; denotes the operator

b}
=G
we know that » local covector fields Cf with components E,* are linearly indepen-
dent in U. Since the structure field C is tangent to fibres, we find

2. 4) EE=g;EE=1, E‘ES"=0,

the first equation being a direct consequence of (1.1) and (2.1). Then the n+1
local covector fields * and # are linearly independant in U.

Taking account of (2.4), we see that the inverse of the matrix (£,% E;) has
the form

E™r,
(2.5) (£S5 Ei)—l':( ),

En

where E", for each fixed index b, are components of a local vector field ﬁb in U.
Then the n+41 local vector fields B, and C are linearly independent in U. The
equation (2. 5) is equivalent to the conditions

E4WE,*=0g, E%WE,=0,

2. 6)

EiE*=0, EiE;=1,
that is,

g By=0z, 7(By)=0,
2. 6)

£(C)=0, H(C)=1,
or, to the condition
2.7 ESEr+EEM=0".

The ﬁgst and the second equations of (2. 6) or of (2.6)’ show that z local vector
fields By span the horizontal plane, which is defined by the equation 7=FE;dx*=0,
at each point of U.

Applying the Lie derivative _£ with respect to the structure field C, we find

LE =0, LE"=0,
2.8
IEZa:Oy aEEZ:O

(cf. (2.8) in Yano and Ishihara [11]).
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Horizontal parts. Let there be given a tensor field T, say, of type (1. 1) in the
total space M. Then T has components of the form

2.9 T =T EPE o+ T ESEY+ TP EiEny+TOEE™

in each neighborhood U of M, where T3% Ty, To* and T.° are all functions in 0.
Then, taklng account of (H. 1)~(H. 4), we easily see that the horizontal part 7 of
T hasin U components

a0 =T EIEN,.

Invariant functions. Let f be an invariant function in the total space M. We
have by definition _£f =0, which implies that f is expressed as

. 10) F=r(&")

in each neighborhood U of M, where &z") are the functions appearing in the
equation (2. 2) defining fibres. Taking account of (2. 10), we find the formula

. 11) aif =E,"0uf

(cf. (2.11) in Yano and Ishihara [11]), where 0, meane the operator defined by

The function f is invariant and consequently its projection f=pf is a function in
the base space M and, conversely, the lift fZ of f coincides with 7. Thus, in the
sequel, we shall identify any invarviant function [ with its projection f=pf and
denote the invariant function f by the same symbol f as its projection.

Invariant tensor fields, projections and lifts. Let there be given a tensor field
T, say, of type (1.1) in the total space M. Then T is invariant if and only if it
has in each meighborhood U components of the form (2.9) with invariant functions
T, Ty, To* and T, in U. Thus, taking account of (P. 1)~(P. 4), we easily see that
for an invariant tensor field 7, say, of type (1. 1), its projection T=pT has components
Tv® wilh respect to coovdinates (£%) defined in U==0).»

Let there be given a tensor field 7, say, of type (1,1) in the base space M
and let T3* be the components of T in U. Then, taking account of (L. 1)~(L. 4),
we easily see that the lift T% of T has components of the form

2.12) Tr=TeEPE",

1) The components of a tensor field 7" in M with respect to coordinates (£2) defined
i U, or, the components of 7 in U mean the components of 7" with respect to the natural
frame {d/0é%} at each point of U.
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with respect to coordinates (x*) defined in L7, U being a neighborhood of M such
that U==(U).

Invariant Riemannian metric. Let ¢; be the components of the invariant
Riemannian metric § in each neighborhood U of M. Then the Riemannian metric
g=p§ induced in the base space M has components

2.13) gao=E.Eisq;
in U=x({). Thus, taking account of (2.6) and (2.7), we have the formula
(2.14) 9i=0eE S E+EGE,

by virtue of gEEi=FEE,=1.
If we define ¢** by the equation
(2.15) (g"M)=(g;7", ie. ¢g*"=0a},

then ¢* are components of an element G of M) in U. The projection G=p5
has components ¢** in U such that

(2. 16) (0*)=9c0)"", i€., geg®*=0¢.
Thus we obtain the following formulas:

gv =EL Ey g,
(2.17)
git=gte Ei,Fh + BiE",

Moreover, taking account of (2. 6), we easily find the following formulas:

E=ging®E™, Ei=guE™,
(2.18)
EMy=g"g.,E,°, Et=g"E,

The Riemannian connection. The Riemannian connection ¥ determined by the
given invariant Riemannian metric § is also invariant and has the Christoffel’s
symbols {,*} constructed from ¢;; as 1ts coefﬁc1ents in each nelghborthood U of
the total space M. For any vector field X in M, its covariant derivative X has
components of the form

7, Xr=0,Xr+{ )} Xt

in U, X» being the components of X in 0.
If we take account of (1.25), we obtain
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ViEry=TE Bty hoE S EY—hy EE",,
2.19)
V,Er=—h"E E",

in each neighborhood U of ]\71, where e, and 7, are invariant functions in U and
', are also invariant functions in U such that

Fcab = Pbac,

because the local vector fields B, with components E", are horizontal and invariant
in U (cf. (2.15) in Yano and Ishihara [11]). Comparlng (1. 25) and (2. 19), we know
that the second fundamental tensors b and H have in U components of the form

iiji = /ZchJcEib and g,;h = }lbaEibEha,

vespectively and hence the second fundamental tensors h and H have in Uzn([j)
components of the form

he — and  h*
respectively. Therefore, Proposition 1. 3 is equivalent to the fact that the conditions
(2. 20) Rji+hiy =0, Frev+hoe =0,
@2.21) hyi=hgin, hev=he"goa

hold. The first and the second equations of (2.19) are called the co-Gauss equations
and co- Wemgan‘en equations respectlvely
Let X be an element of 4 o(M) Then X has components of the form

Xr=XE",+XE"

in each neighborhood U of A7I, where X° and X° are invariang functions in U.
Taking account of (2.19), we find that the covariant derivative ¥ X has components
of the form

(2.22) P, Xr={F X=X hVE S E A {hea X4+, X ) EE"— {1 X0} E;E™,,
where we have put
Ve X®=0.X*+T' X0,
When X belongs to 9 H‘(IV[), the formula (2. 22) reduces to
(2.23) 7, X0 = . XYE,E"+(hea XDE, Bt — (7" X°)E;E",
because of X°=0.
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_ Let X be an element of J¥M) and put X=Xz, NThen X has the components
X=X"E",, X* being the components of X ig U=zU). Thus, taking account of
(2. 23), we see that the projection p(f X) of X has components

Ve X=0.X+TI%X".

Therefore ~the connection V' induced in the base space M has coefficients I'.% in U,
since p(X) is nothing but X by means of the definition (1. 9). Consequently,
I' #, should coincide with the Chistoffel’s symbols {%} constructed from g, because
the induced connection V' coincides with the Riemannian connection determined by
the induced metric g. Thus the co-Gauss equations and the co- Weingrten equations
(2.19) reduce respectively to

Vth'b: {cab}E]tha'l‘hch]th“hbanEha,
(2. 24)
VEv=—h E S E",
Van der Waerden-Bortolotti covariant dgrivatives. Let there be given an ele-
ment of the formal tensor product 9 (M) # JH(M), say, T belonging to ' M)# JHZ(M).
Then 7*‘ is expressed as follows:

£ % S
T=Tys"e%&;$C°% B,

in each cylindrical neighborhood Uf of M, ’f‘k%“ being invariant functions in U,
where {é,}:{&/&:cfl is the natural frame of coordinates (x”) defined in U, {&*} the
dual base to {é;}, B, local vector fields having components E*, and & local covector

fields having components E;?, all in 0. We call T*'kfba the components of ’.;'k‘ with
respect to coordinates (#*) and coordinates (£*) defined in U and in U==(U), or

simply the components of 7 in 0, U). Leti 9 (Mt g H(AA/f)—>J (M) be the linear

~ * ~
homomorphism defined by (I.1)~(1.3) in §1. Then the image T=i(T) has in U
components of the form

(2. 25) T =T PEPE,,
Conversely, we have
(. 26) Tt =T EnEnS.

Let ’}k‘ be the element of ¢ (1\71)# 9 H(M) considered above. Then the van der
Waerden-Bortolotti covaviant derivative l>7k’.7‘ of 7*‘ has components of the form

% %
2.270) ﬁz%kfba = az’-;k‘kjba-l- {Vm} f‘kmb“— {™%} ]*‘mjba—I—ELd( {a%} Tr'o"—{%} Tw?e™)

by virtue of (W.1)~(W. 4) given in §1 (cf. (2. 34) in Yano and Ishihara [11]). We

put conventionally in U
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* )
ViEMy=0;E"~A{ "} El—{"} ;"B
(2. 28)
=0 ;E"—{} E,"E",,

;jE@a:ajEza_ (MY B4 { M EFEY
(2. 29)
=V;E 4 {%} ESER,

which are the components of (PB,)” and (PZ%" respectively. If we take account
~ ~ ~ %

of the formula giving /,T.*, where T:;* are the components of T =i(T), then

we have the formula

4 1Tt = v 1(7*‘151 W ELER,)

(2. 30)
* * % % %
=T EPE ATy " VIED) E o+ Ty BV iE™ )

because of (2. 27), (2. 28) and (2. 29).
The co-Gauss equations and the co-Weingarten equations (2.24) reduce res-
pectively to the equations

Vi Ery=hoE Bt — By BN,
(2. 31) ViEt=—h"E, E",
=—h,
which are equivalent to the equations
VES=hAE Eit hEED,
(2. 32) ViE=—hoES ED
=—hj.

§3. Formulas.
Ricci formulas. As is well known, we have the Ricci formula
(3. 1) Vij)?h—ﬁij)?h=kkjih)?i

for any element Xof g %.(1\71), X being the components of X, where K rjit denote
the components of the curvature tensor K of the invariant Riemannian metric ¢
given in M and are defined by

I?kjih=ak{jhz} —0{&m} e {4 — L)

For any element 7" of iM% 9%, we have the formula
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* %

(3 2) V]cV] Thb—ﬁjﬁk Th’b =}?chih Tib—EkdE]chcba Tha

by virtue of (2.27), T*, being the components of 7*‘, where Ky® denote the com-
ponents of the curvature tensor K of the Riemannian metric ¢ induced in the base
space M and are defined by

Kaer"=0a{c"s} —0c{a"} +{a"} s} — {c"} {0}

(cf. (2. 37) in Yano and Ishihara [11]). The formula (3. 2) is the Ricci formula for
the van der Waerden-Bortoloiti covariant differentiation.

Some formulas. If we take account of (2. 28), (2.29) and (2. 30), we easily find

Vb= s E EPE oA (he B E EiE oA (he o) ES ELEY,
3.3
ﬁjﬁih = (Vchba)EJcEibEha - (hcehae)El_acEz‘Eha + (}lcehhe)chEzbE/u

the second equation of which implies
(3 4) ?jﬁih‘FViﬁhj"f“Vhiiji=(Vchba+Vbhac+Vahcb)E]cEibEh,a

because of A’he=hshce.
The structure 1-form 7 has the local expression 7=ZE:dz* in each neighborhood
U of M. Taking account of (2. 29), we obtain

(3.5) Q=dj=—hydx’ Nda*

which is equivalent to (1.26). Since dd7=0, if we take account of (3.3), we easily
obtain the following identities:

7jﬁin+ﬁiﬁhj+7hﬁji=0y
3.6)
Vchba+7bhac+7ahcb=0;

which show that the 2-form 2=p(d5) defined by (1.8) or by (1.26) is closed.
We have now the following formulas:

3.7 [B., Bil=2kaC,  [C, By]=0
in each neighborhood I of M as consequences of (2. 24).

Nijenhuis tensors. Denote by N the Nijenhuis tensor of the second fundamental
tensor H in M. Then, as is well known, N has components of the form



FIBRED SPACES WITH INVARIANT RIEMANNIAN METRIC 335
(3.8 N =00 i —htV bt — i —V i,k

in each neighborhood U of M, & being the components of H. Substituting the
first equation of (3. 3) in (3. 8), we easily obtain the formula

3.9 N it =N E EPE"a+2heho®hea) E EXE",

i and A being the components of the second fundamental tensors H and % in
M respectively, where Ng* denote the components of the Nijenhuis tensor N of H
and are given by the equation

(3.10) Neo*=hV o™ — hoV b —V hs®—V oh )"
The equation (3.9) is equivalent to the equations
(3.11) pN=N, p{HN(XE, YE)}=2h(HX, HY),

X and Y being arbitrary elements of J¥M). The equation (3.11) are direct

consequences of (1. 312 ang (1. 33).
The tensor field S=N# defined by (1. 34) has components of the form

St =N E,,EPE™,
(3.12) =N ,;# =2t hoa) ESSEPE™
=N;»—2k, 'k b E
becouse of (3. 9).
ReEmMARk. If we suppose that H satisfies the condition
H=—I1+3®C, ie,
Rthir=—+EE™,
then we easily find
2k, RS hs=2h
=—(V,E,—~V.E))
by virtue of (2.32). Thus, in this case, we have the following expression of S
S,n=N;t+;E—V.E)E™.

This expression of S s was introduced by Sasaki and Hatakeyama, when A, 7, 7)
defines an almost contact structure (cf. Sasaki [4], Sasaki and Hatakeyama [5], [6]).
Coming back to our case, if we assume that the Nijenhuis tensor N of H
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vanishes identically in the base space M, then we have
(3- 13) hceVehba_hbeVehca_(Vckbe—‘Vbhce)hea:O;

which is equivalent to Nge=0, where Nepo=Nepgee. On the other hand, we have
from (3. 6)

3.14) V aher+V chva+V vhac=0.

Transvecting ¢%%he, to (3.14), we find

(3.15) V che® =V sV hea= oV ohicy.

If we substitute (3.15) in (3. 13), we obtain

(3.16) RV ohva~+hoV ehae— oV ey =0

and, changing cyclically the indices @, b and ¢ in (3. 16),

(3.17) RV chacthaV cher— heV ehoa=0.

Thus, if we add these two equations (3. 16) and (3. 17), then we get
(3.18) 1oV ohae=0, ie., 'V oh’=0.

Conversely, if we assume that the equation (3. 18) holds in M, then, taking ac-
count of (3.14) or (3.15), we see that the equation (3.13) holds, i.e., that the
Nijenhuis tensor N of H vanishes identically in M. Therefore, taking account of
(3. 3), (3.14) and Proposition 1. 8, we have

ProrosiTiON 3.1. In a fibred space M with invariant Riemannian metric, the
following five conditions (a), (b), (c), (d) and (e) are equivalent to each other:

(@) The Nijenhuis tensor N of H vanishes zdentzcally in the base space M.

(b) The given fibred space is normal ie, S=0in M.

(¢) The Nijenhuis tensor N of H has components of the form

N v =25 thhEn

=2(hhohea) ESSELPE™
in the total space M.
) RV =0, i.e., VaxH=0
for any element X of T¥M).
(e) B0 A =Rt h Rt B Ryt R B

=(hheha")E EiE" o+ (hehe hod) E, ELE™
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in the total space M.

If we assume in Proposition 3.1 that the second fundamental tensor H is non-
singular everywhere in the base space M, then, taking account of (3. 3), we have

ProrosiTiON 3. 2. A fibred space M with invariant Riemannian metric such
that the second fundamental tensor H is non-singular is novmal, ie., S=0, if and
only if one of the following equivalent conditions (@) and (b) is satisfied:

(@) VH=0, i.e., Vchy*=0
in the base space M.
(b) V ikt =h, Bt hoE?
=(hh)E) B E o+ (hlhoe) E,CELPE™
in the total space M.
Taking account of Propositions 1.7 and 3.1, we have

ProrosiTiON 3. 3. In a fibred space M with invariant Riemannian metric, the
Sfollowing three conditions (a), (b) and (c) are equivalent to each other:

~

(a) N=0
in the total space M.

(b) hV =0,  H*=0
in the base space M.

© hpPshi=0,  H*=0

in the total space M.

§4. Geodesics.

Let there be given, in a fibred space M with invariant Riemannian metric g,
a curve € expressed by equations #*=x"f) in a neighborhood U/ of M, ¢t being a
parameter. Denoting by ¢ the image =(C) of & by the projection = M—M, we
may assume that C is expressed by equations £°=&%#) in U=xl), where the
functions &%) in the right-hand side are defined by &%(#)=&%(x"(¢)), the functions
&*z™) being those appearing in (2. 2). Then we find along C

e, da
a B
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and hence, differentiating covariantly both sides, we obtain

T

_ € o, B g ATt
(4. 1) dar —“Ez ar + dt E]b(V]E‘L) dt
where we have put
ozt dixh g Gx7 dzt 80 AP dgt dev
& e TV a T e Y ar
Substituting (2. 32) in (4. 1), we find along C
0%, % dx > . a8
4.2 @ e +<E‘ a )

A curve ¢ in M is said to be horizontal if its tangent vector is horizontal at
each point of . Thus we have from (4. 2)

ProrosiTioN 4.1. In a ﬁbred space M with invariant Riemannian metric §,
the projection C of a geodesic € given in M is also a geodesic in the base space
M with respect to the induced metric g, if and only if one of the following two
conditions () and (b) holds:

(@) € is a horizontal geodesic in M.

(b) The tangent vector B of C satisfies

Hb=ap or Hv=av

along C, v being the projection pv of D and tangent to &, where @ and a are func-
tions along C and C respectively (cf. Proposition 4. 4).

Taking account of Proposition 1.5 and 4.1, we have

ProPOSITION 4. 2. In a fibred space M with invariant Riemannian metric g,
the projection of a geodesic given arbitrarily in M is also a geodesic in the base
space M with respect to the induced metric g, if and only if, h, H, h aq’d H vanish
identically, or, equivalently, if and only if the given fibved space M is locally
trivial.

When a curve & is horizontal in M and a curve ¢ is the projection n(C) of &

in the base space M, the curve € is called a horizontal lift of C. Let C be a
curve in M and be expressed by equations &*=£%¢) in a neighborhood U of M. If
its horizontal lift & is expressed by equations z*=z"#) in a neighborhood I of M
such that Uzn(ﬁ), then the functions x*(#) should satisfy the differential equations
da® . d&°

a ~Egr
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along ¢ in 0. Differentiating covariantly both sides, we find along the lift &

ot g% dgv ds®
ar ~Ee g + Elf G dt dt
which reduces to
P, P
.3 7T

because of (2. 31), since Zp+h5.=0 holds. Thus we have

ProrosITION 4. 3. In a fibved space M with invariant Riemannian metric §,
any horizontal lzft & of a geodesic C gwen arbitrarily in the base space M is also
a geodesic in M and the projection w: M—M preserves the affine parameters on C
and on C.

ProrosiTioN 4. 4. If, for a fibred space_ M with invariant Riemannian metric
G, there are given an arbitrary point P in M and an arbitrary horizental vector V
at P, then theve exists always a umique hovizontal geodesic passing through the
point B and being tangent to V at P.

PRrOPOSITION 4. 5. If a fibred space M with invariant Riemannian metric is
complete with respect to the given invariant metric §, then the base space M is also
complete with respect to the induced metric g.

We assume that, along any horizontal geodesic in a fibred space M with in-
variant Riemannian metric, any affine parameter takes an arbitrarily given real
value. If this is the case, the fibred space M is said to be horizontally complete.
We now have

ProrosiTiON 4.6. In a fibred space M with invariant Riemannian metric, the
base space M is complete with respect to the induced wmetric if the given fibred
space M is horizontally complete.

§5. Structure equations and curvatures.

Let there be given a fibred space with invariant Riemannian metric §. Then,
as were obtained in §4 of [11], the following structure equations can be established:

(5.1) R ior™= Kue®— (Ba®hev—he’ hav)+2hach”,
(5. 2) K aes®=V aheo—V ohra,

(5 3) kdooaz —hdehca
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by virtue of the Ricci formulas (3.1) and (3. 2), where we have put
K i =K ;i E¥E1 EWE,®,

(5.4) B 40°= R 1ji" E* 43 E'Ey,
K soo* =K i B4 EIEEy",

K %" being the components of the curvature tensor & of the invariant Riemannian
metric §. The equation (5. 1), (5.2), and (5. 3) are called the co-Gauss equation, the
co-Codazzi equation and the co-Ricci equation, respectively.

The curvature tensor K of the invariant Riemannian metric § is obviously
invariant. The condition pK =K is equivalent to the condition

(hdahcb - hcahdb) - 2hdchba' = 0

by virtue of (5.1), (5.2) and (5. 3), where K is the curvature tensor of the induced
metric ¢ in M. Transvecting ¢® to both sides of the equation above and contrac-
ting with respect to the indices @ and d, we get the equation

(5.5) 9°%9%gchay =0

by virtue of Ap=—hy. The equation (5.5) implies A;=0. Thus, taking account
of Proposition 1.5, we have

ProposiTiON 5.1. For a fibred space with invariant Riemannian metric §,
the projection p[? of the curvature tensor K of the invariant Riemannian metvic §
coincides with the curvature tensor K of the Riemanwnian metrvic g9 induced in the
base space M, if and only if the given fibved space is locally trivial.

Denote by r(X g) the sectlonal curvature with respect to the section determined
by two vectors X and ¥ in M and by (X, Y) the sectional curvature with respect
to the section determined by two vectors X and Y in the base space M. Then
we have

& o Kiim Knyi Kipn
(99— 9191) XFY 2 XY "

and the corresponding formula for y(X, Y), where X and ¥* are the components
of X and Y respectively and

Kkjih = kkjitgth-
Thus, taking account of (5.1), we find

(5.6) 7(X, Y)—p{H(X", Y9} =3{A(X, V)| XAY|*=0
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for any two vector fields X and Y in M, where we have put
(6.7 | XA Y 2=(9rigin—0;:960) X*YI XY™,

X" and Y" being the componnets of X and Y respectively. Therefore, taking
account of Proposition 1.5 and (5. 6), we have

PRrRoOPOSITION 5. 2. In any fibved space M with invariant Riemannian metric,
the sectional curvatures satisfy the inequality

71X, Y)=p{H(X", YE)}

for any elements X and Y of T¥M), M being the base space. The equality
(X, Y)=p{F( X%, YE)} holds for any elements X and Y of T{M) if and only if the
given fibred space is locally trivial

As a consequence of (5. 3), we obtain
#X, O)=—a(X, I*XIXNCP
(5. 8) e
=§(HX, HX)|XNC|*=0
for any element Xof g 5(M), where I)? /\)7|2 is defined in M for two vector fields

X and ¥ by an equation similar to (5.7). Thus, taking account of Proposition 1.5
and (5. 8), we have

PROPOSITION 5.3. For any fibved space M with invariant Riemannian metric,
the sectional curvature with respect to any section containing the vector C is non-
negative at each pomt of M. The sectional curvature with respect to any section
containing the vector C vanishes at each point of M if and only if the given fibred
space is locally trivial. The sectional curvature wn‘h vespect to any section contain-
ing the vector C is non-zero at each point of M, if and only if the second funda-
mental tensor H is of the maximum vank n in the base space M, wherve M is
n-dimensional. (If this is the case, n=dim M is necessarily even.)

If we assume now that the sectional curvature 7()? , 5) is a non-zero constant
A for any element X of gZYM), then by virtue of (5. 8) we get

A=c?>0,
thlt=—c%g, ie, HP=-—c,
which implies
(5.9) ffet=—0f, e, [fi=-—1I,
f»* being defined by
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(5 10) fba'= tha’ i.e., f= i H.
c c
On putting
Jeo=Sc"Yevs
we have
fcb+fbc=0y
(5.11)

chba+7bfac+‘7ufcb=0

as consequences of (3.6) and /ep+/Ae=0. A set (g9,f) of a Riemannian metric ¢
and a tensor field f of type (1, 1) is called an almost Kdihlerian structure, if (g, f)
satisfies the conditions (5.9) and (5.11). Thus we have

ProprosiTION 5. 4. If, in a fibved space M with invariant Riemannian metric
d, the sectional curvature with respect to any section coutaining the vector Cisa
non-zero constant A at each point P of ]VI, A being independent of P, then the
constant A should be positive and the set (g,f) defines an almost Kihlerian
structure in the base space M, g being the induced metvic in M and f being
defined by f=Q1/c)H, where H is the second fundamental tensor in M and A=c?
(cx0). If this is the case, the base space M is necessarily even-dimensional.

Conversely if the set (g, f), f being defined by f=1/c)H with a constant c, is
an almost Kdhlerian structure in M, then the sectional curvature with respect to
any Section containing the vector C is constant and equal to ¢* at each point of M.

Let K;; be the components of the Ricci tensor B of the invariant Riemannian
metric § in the total space M. Then we have by definition

K=K,

R 4 being symmetric in 7 and 4. If we put

kcb':}%jichEib,
(5.12) N N

Kco=KjichEi: K00=KjiEjEi,

and, if we take account of (5.1), (5.2) and (5. 3), then we have

]? b= ch+2hceheby
(5.13) Keo=—V.he,

1? 00=0%q"haphea =0,
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where K, denote the components of the Ricci tensor R of the induced metric ¢ in
the base space M and is given by

ch=Kecbe-
Thus, taking account of Proposition 1.5 and the last equation of (5.13), we have

ProPoSITION 5.5. For any fibred space M with invariant Riemannian metric
g, the inequality

B¢, E)=0

holgls ~eve1'ywhere in M, where Nﬁ denotes the Ricci tensor of §. The equality
f\‘(C, C)=0 holds everywhere in M, if and only if the given fibred space is locally
trivial.

As a consequence of the first equation of (5.13), we have
(5.14) R(X, X)=p{R(X?, X¥)} =2¢(HX, HX)=0

for any element X of g¥M). Thus, taking account of Proposition 1.5 and (5. 14),
we have

PROPOSITION 5.6. In any fibved space with invariant Riemannian metvic §,
the inequality

R(X, X)z=p{B(X*, X))

holds for any element X of TYM), M being the base space, where B and R denote
the Ricci tensors of the invariant metric § and the metric g induced in M respec-
tively. The equality R(X, X)=p{ﬁ(XL, X1} holds for any elements X of TYM), if
and only if the given fibred space is locally trivial

Taking account of the second equation of (5.13), we obtain
(5. 15) RC, X%=0 for Xeq=Ql)
if and only if
(5. 16) Vohs®=0

holds. The condition (5. 15) is equivalent to the fact that the vector Cisa proper
vector of the Ricci tensor B. On the other hand, if we take account of (3.6), we
see that the condition (5. 16) is equivalent to the condition that the second funda-
mental tensor 4 is harmonic in the base space M. Thus we have

PROPOSITION 5.7. In a fibred space M with invariant Riemannian metric d,
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the second fundamental tensor h is harmonic in the base space M if and only if
the structuve field C is a proper vector of the Ricci tensor R of the invariant

metric § everywhere in M.

Denote by % and k the curvature scalars of the invariant Riemannian metric
d and the induced metric ¢ respectively. Then we get by definition

(5.17) F=K 0", k=Kug®
Thus, as a consequence of (5.13), we obtain
(5. 18) k—pk =g%g*hphea =0

at each point of the base space M. Therefore, taking account of inequality Pro-
porition 1.5 and (5. 18), we have

ProposITION 5.8. For any fibred space with invarviant Riemannian wmetric §,
the inequality

kzpk
holds everywhere in the base space M, where E and k ave the curvature scalars of
the invariant Riemannian metvic § and the induced wmetric g respectively. The

equality k=pk holds everywhere in M, if and only if the given fibred space is locally
trivial.

Consider two vector fields X and ¥ in the total space M. We denote by R(X, 1)
a tensor field of type (1, 1) defined by the equation

R Z=0syZ VoV s2)—V 3502

for any element Z of g 3(1\71). NThe t~ensor field IA{'()?, 17') is called the curvature
transformation with respegt to X and Y, when it isNregarged as an endomorphism
of the tangent bundle T(M). We easily see that K(X,Y) has components of the
form

S et
T=X*Y1Ky;",

Xn and Y" being the components of X and ¥ respectively. For any element Z of
TYM), the vector field K(X, Y)Z has components of the form

VhZXNhf;jZikkﬂh,

Z"* being the components of Z.
If we take account of (3.6) and (5. 2), we easily see that the condition

V ehpa=0, ie. Vh=0
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is equivalent to the condition that the vector field K ()? , )7 is horizontal for any
three horizontal vector ﬁelst )g ,V and Z, or equivalently to the condition that the
curvature transformation K(X, ¥) preserves the horizontal plane invariant at each
point of M, X and ¥ being arbitrary horizontal vector fields. Thus, taking account
of (3.3), we have

ProrosITION 5.9. For a fibred space M with invariant Riemannian metvric,
the following two conditions (a) and (b) are equivalent to each other:

@) The second fundamental tensor H is covariantly constant in the base space
M, that is,

Vehy*=0, ie., VH=0 in M,
or equivalently
Vjﬁihzﬁjsﬁs"‘Ei-’—ﬁfﬁsiEh n M.

(b) The curvature transformation with vespect to any two horizontal vector
fields presevves the hovizontal plane inveriant at each point of M.

Taking account of Propositions 3.2 and 5.9, we have

ProrosiTioN 5.10. A fibred space M with invariant Riemannian metric is
normal, i.e., S=N# defined by (1.34) vanishes identically in A7I, the second fun-
damental tensor H in the base space M being assumed to be non-singular evevywhere,
if and only if one of the conditions (a) and (b) mentioned in Proposition 5.9 is
satisfied.

As a corollary to Propositions 5.4 and 5.9, we have

ProrosiTION 5.11. In a fibved space M with invariant Riemannian metric J,
the set (9, 1/c)H) is a Kdhlerian structure in the base space M, where ¢ is a non-
zero constant, g and H being the induced metvic and the second fundamental
tensor in M respectively, if and only if the following two couditions (a) and (b) are
satisfied:

(@) The sectional curvature with respect to any Section containing the vector
C is a non-zero constant A at each pomt 13 of M A being independent of P.

(b) The curvature transformation K(X Y) with respect to any two horizontal
vector fields X and ¥ preserves the horizontal plane at each point of M.

In a normal fibved space with invaviant Riemannian metric §, the set (9, (1/c)H)
is a Kdhlerian structure in M, if and only if the condition (a) is satisfied.

In Proposition 5. 11, the Kihlerian structure (g, (1/c)H) is said to be induced in
the base space M.
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§6. Special cases.

. Locally flat fibred spaces. We now suppose that, in a fibred space M, M, =;
C,9) Witf'lv invariant Riemannian Nmetric ¢, the invariant metric § is locally flat,
i.e., that Ky;;"=0 everywhere in M. Then the equation (5. 3) reduces to

hahe" =0,

which implies (5. §). Thgs we have /,;,=0.
Substituting chbﬂ:KkjihEchchEibE‘ha:O and /=0 in (5. 1), we find Ky,*=0.
Therefore, taking account of Proposition 5.1, we have

ProposiTiON 6.1. For a fibved space with invariant Riemannian metric §,
the invariant metric § is locally flat, if and only if the given fibved space is locally
trivial and the metric g induced in the base space M is locally flat.

Einstein fibred spaces. We assume that, in a fibred space M with invariant
Riemannian metric §, the metric § is an Einstein metric, i.e.,

~

~ k
(6.1) K= —m 9ji

where K;; and F are the Ricci tensor and the curvature scalar of § respectively,
M being (n+1)-dimensional. Then, combining (5. 13) and (6. 1); we find

(6.2) Vohot=0,  E=(n+1)gkig*hyih;n=0.

The equaticn F.4,°=0 together with (3. 6) shows that the second fundamental tensor
% in M is harmonic. Thus, taking account of Proposition 1. 5, (3. 3), (3. 6) and (6. 2),

we have

ProposITION 6. 2. If, in a fibred space M with invariant Riemannian metric
d, the metric § is an Einstein metric, then the following two conditions (a) and (b)
hold.: o
(@) The scalar curvature £ of § is non-negative in M.
(b) The second fundamental tensor h in the base space M is a harmonic

tensor, or equivalently, the equation
Vot =(hihi)E,

holds in M (cf. Proposition 5. 7).
When the invariant Riemannian metric § is an Einstetn metric, the curvature

scalar E vanishes identically in M if and only if the given fibved space is locally
trivial and the induced metric g is an Einstein metric with vanishing curvature

scalar in the base space M.
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We assume now that, in a fibred space M with invariant Riemannian metric

g, the invariant metric § and the metric ¢ induced in the base space M are both
Einstein metrics, i.e.,

6. 3) K= P 9jis Ko= n Gebs

% and k being the curvature scalars of § and ¢ respectively, where dim M=n+1
and dim M=#. Then, combining (5. 13) and (6. 3), we get the following equations:

2\ n n+1
6.4)
3
Ve/lbc:o, ;%? g‘”g”“/zdohmé()-

On the other hand, taking account of Proposition 5.8 we have £=pk, which implies

1 _’?___?i)_ .
(6. 5) 5 ( " P | =c2>0,

if £50. We assume that 2 and % are constant (as is well known, # and % are
constant if #=3). If we put

1
(6. 6) = - e,

then, as consequences of (6.4) and /%s+7%,.=0, we find

fbefea: “‘51?, fcb‘l‘fbc—_‘o» Vefce:()!
6.7)
E=—nn+1)c, k=n(n-+2)c?,

where ¢ is a constant and fg is defined by

(6 8) fcb=fcegeb-
Moreover, as a direct consequence of the identity (3. 6), we get

(6 9) chba+beac+Vafcb=0-

Summing up (6. 7), (6. 8) and (6.9), we know that the set (g, f) defines an almost
Kihlerian structure in the base space M, where f is the tensor field of type (1, 1)
with components f»* and f,; is a harmonic tensor field. Thus we have

ProposITION 6. 3. Suppose that, in a fibved space M with invariant Riemannian
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metric §, the metric § and the metric g induced in the base space M arve both
FEinstein metrics with constant scalar carvature. Then M and M are necessarily
odd- and even-dimensional respectively, and, the set (g, f) is an almost Kihlerian
structure in M such that fo=rf"ge is a harmonic tensor field, f,* being the com-
ponents of the temsor field f of type (1, 1) defined by f=—(1/c)H, wheve H is the
second fundamental tensor in M and c is a positive constant defined by

E=n(n+1)c?, k=n(n+2)c?,
E and k being the curvature scalars of § and g respectively.

Conformally flat fibved spaces. We now assume that, in a fibred space M with

invariant Riemannian metric §, the metric § is conformally flat. Then we have
by definition

~

1

—1 (0% 7s— 0%9%.),

6.10)  Kit=

N . . o k
(0K ji— 05K it Kaeg"g5i— K 10" gr.) — n(n—1)

if dim M=n+1>3, where K 5 and £ are respectively the Ricci tensor and the

curvature scalar of §. Thus, taking account of (5.2) and (6. 10), we find

1
n—1

(6.11) - (arK co—9ev K 40)=V aher—V chas,

and, transvecting ¢%% we get
Roo=—Vchs'.
Comparing this equation with the second equation of (5.13), we obtain K.=0,
which implies together with (6. 11)
V aheo—V chap=0.

Thus, taking account of (3. 6), we have
decb=0, i.e., VhZO

Consequently, if we take account of Proposition 3.1, we have

ProPOSITION 6.4. If, in a fibred space M with invariant Riemannian metric
G, the metric § is conformally flat, then the second fundamental tensor H in the
base space is covariant constant, i.e., VH=0, and hence the given fibved space is
normal, i.e., S=o0.

Fibred spaces of comstant curvature. Suppose that, in a fibred space with

invariant Riemannian metric §, the metric § is of constant curvature. Then we
have by definition
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~

(6.12) K k= (kg 7:—0%9x1),

_K
n(n-+1)

where £ is the curvature scalar of § and a non-zero constant. Substituting (6. 12)
in (5. 1), (5. 2) and (5. 3), we obtain respectively the equations

~

k
(6. 13) chba= m (5:9011_ag'gdb)+(}ldahcb_hcahdb_Zhdchba)y
(6. 14) thcb"Vchdb=0»
e a,_______kt_~ a H 2___J_
(6. 15) hith'=— oy s e, H'=——p el

If we contract with respect to indices ¢ and d in (6. 15), we find
E=—m+1)hsht>0

by virtue of 220 and hep=—rh. If we put

~

k
2 __
(6. 16) = prowm . (c>0)
and
6.17) ff= bt e, f=-H,
then we find
(6. 18) f’ft=—o0g, e, fi=-I

as a consequence of (6.15). On the other hand, taking account of Proposition 6. 4,
we obtain

(6.19) Vefi®=0, ie. Ff=0.

If we substitute (6. 17) in the right-hand side of (6.13), we get

(6. 20) Kaio®= {(039e0—029as)+(Sa" feo—IFe* Far—2F ac o™},

_k
n(n+1)
where we have put

(6. 21) k=n(n+2)c*

and
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f ba =f begea:

which satisfies the equation
(6. 22) fcb+fbc=0

because of kep+7%c=0. We note here that m=dim M is necessarily even because
of (6.18). Thus, summing up (6. 16), (6. 18), (6. 19), (6. 20), (6.21) and (6. 22), we have

ProposiTION 6.5. Suppose that, in a fibred space M with invariant Riemannian
nzem'c 3, the metric § is of non-zero constant curvature k. Then the total space
M and the base space M are necessarily odd- and even-dimensional respectively, the
curvature scalar E is necessarily positive, and, the set (g, f) in the base space M
is @ Kdhlevian structure of positive constant holomorphic sectional curvature k, g
being the metric induced in the base space M and f being the tensor field of type
1, 1) defined by f=Q/c)H, where H is the second fundamental tensov in M and c
is a positive constant defined by

F=nn+1)c?,  k=n(n+2)®  (n=dim M)
(cf. Kurita [2], Tashiro and Tachibana [9]).
As a corollary to Proposition 6.5, we have

ProrosiTION 6. 6. Suppose that, in a fibved space M with invariant Riemannian
metric §, the metric § in M is of non-zero constant curvaturve E and the metric g
induced in the base space M is also of constant curvatuve k. Then M and M are
necessarily 3- and 2-dimensional respectively and the two curvatures £ and k should
be positive.

In connection with Proposition 6.5, we shall discuss the fibring of the odd-
dimensional unit sphere S**' defined by an equation

W)+ a2+ (Yns2)?=1

with respect to rectangular coordinates (yi, ¥, =*, ¥ns2) defined in an even-dimen-
sional Euclidean space E£"*?, where # is even and sometimesNdenoted by n=2m.
Let us assume that there exists a fibred space (S**!, M, =; C, §) with invariant
Riemannian metric §, where § is the natural Riemannian metric induced in S™*!
and obviously of constant curvature 1. Since the structure field Cisa Killing
vector field in S™*', there exists a vector field V in E™** such that V has com-
ponents of the form

n+2

(6. 23) Va= Z Q@ ABYB (Azlv 2» ) ﬂ+2)
B=1
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and the restriction of V to S™ coincides with €, where the matrix (a4s) is con-
stant and skew-symmetric. On the other hand, the structure field C is Killing
vector field of unit length. Then, as is well known, we get

6. 24) §7%C, €)=0

for any vector field ¥ in S**+,

If we take rectangular coordinates (vi, ¥s, - -, ¥nse) Suitably in E”*2, as a con-
sequence of (6.24), we may assume that the components V4 (A=1, 2, ---, n+2)
given by (6. 23) have the following form:

(6.25)  Vi=—ys, Ve=v1, Vai=—vys, Vi=ys, -, Vaur=—¥nie, Vase=%n11.
Thus, if we introduce in E™*? complex coordinates (Z1, Zs, +-+, Zms1) by
Zi=y1+8 —=1ys, Zo=1s+8 —10s -y Zms1=Yns1 —1¥nse  (n=2m),
then the components given by (6. 25) reduces to
U=~ =12\, Uy=n=12s, -+, Uns1=N~1Zn

with respect to (Zi, Zs, -+, Zm+1). Therefore, the vector field V generates a 1-
parameter group @ of rotations c(#) having the representation

A T )
~1¢
(6. 26) =] ° ¢ 0
0 0 R v=1s

with respect to (Z1, Zs, -++, Zmy1) in E™*2  Then each fibre in S™* is an orbit of the
group ®. Consequently, the projection =: S®*'— M coincides with the natural

mapping
. S"1—CP(m) (n=2m),

where CP(m) denotes the complex projective space of complex dimension m. Thus
we have

PrOPOSITION 6.7. Let S™* be an odd-dimensional sphere (i.e., n=2m) with the
natural Riemannian metvic § of positive curvature 1. If there exists a fibved space
(S™*Y, M, =; 5, §) with invariant Riemannian metric §, then its projection coincides
with the natural projection = S™'—CP(m), the base space M coinciding with the
complex projective space CP(m), and the metric g induced in M defines the natural
Kihlerian structure of positive constant holomorvphic sectional curvature together
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with the second fundamental tensor H of the given fibved space.

If we assume now that, for a normal fibred space M with invariant Rieman-
nian metric §, the second fundamental tensor H is of the maximum rank # in the
base space M, where n=dim M is necessarily even, then we obtain FH=0, i.e.,
Vehy*=0 in M as a consequence of Proposition 3. 2. Thus, taking account of (5. 13),
we find the following equations:

]?ji = (ch +2hceheb)EJcEib+ kooEjEu
(6. 27)

kaji=(Vchb)EkdEfEib‘FPchkdEJcEi‘l‘PrLbEkdEJ‘ELh‘f"(Pcb+PbC)EkEJCEﬁh’
P,y being defined by
Pooy=h'Key—2h o hog— K 00/en,

where K, reduces to a positive constant. Therefore, taking account of the second
equation of (6. 27), we see that the condition /:K ;;=0 is equivalent to the conditions

VeiKp=0 and P,=0,
or equivalently to the condition
(6. 28) Koy=K ooger+20c e in M,
which is equivalent again to the condition
Rji=Rogji+4heha)ECE?  in M.
Thus, taking account of (6.27) and (6. 28), we have

PROPOSITION 6.8. Let M be a normal fibved space with invarviant Rieman-

nian metrie § and suppose that the second fundamental tensor H is of the maximum
rank n in the base space M, where n=dim M is necessarily even. Then the equality

pPR=rR

holds, B and R being the Ricci tensors of the invaviant metric § and the metric ¢
induced in M respectively. The Ricci tensor R is covariantly constant, i.e., TR=0
in M, if and only if the Ricci tensor R has components of the form

Ko= I% oogcb+2hceheb
in M, where K 00=0% 9" harhca IS a positive constant.

We assume that the second fundamental tensor IEI is of the maximum rank #
in the base space M, for a normal fibred space M with invariant Riemannian
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metric §, where n=dim M is necessarily even. Then, taking account of (5. 1), (5. 2)
and (5. 3), we easily see that the curvature tensor K of the invariant Riemannian
metric § has components of the form

K jin=Qucra Ex?E, ELXEr
(6. 29) (B hea) EvE S BB — (B hen) ExECEPEY,
— (1 hed) ECE T EER + (Rathen) EvCE T ELPE,
because of FH=0, where we have put
Qdcba=chba*(hdahcb—‘hcahdb—‘Zhdchba);

(6. 30) N N

K kjin= K k,fv;‘gzh, Kacra= Kacr’gea-
If we differentiate covariantly both sides of (6. 29), and, if we take account of (2. 32)
and the identity Kue®he*=Kace /sy, Which is a direct consequence of V7 /,*=0, then
we obtain the equation

7R kiin= eKacra) ECERCE FEPEL"

+hef(Q feba ™ Qcagfb +chgf a)ELeEkEJcEibEh,a
(6. 31) + 1 (Qafra—Qasgra+Qaad ro) B ExCEEPER®

+hef(Qdcfa,_Qcagfd‘l‘Qdagfc)EleEkdEJcEiEha

+ 1’ (Qaco s —Qavg re+ Qs ra) ELLExE S EP By,
Qe being defined by
(6. 32) Qev="ches.
By virtue of (6. 31) and (6. 32), the condition K ;in=0 is equivalent to the conditions

14 echba=O;
(6. 33)
Qacva —Qeagar+Qergaa=0.

On the other hand, we find
(6- 34) Qeo="1cher= _ngcb

because of V¢Q:s=0 and Q;=Qs, Since M is an irreducible Riemannian manifold
(cf. Proposition 6. 10).
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If we substitute (6. 34) in the second equation of (6. 33), we have

(6. 35) Kacva=¢*(gaa9es—Geaav+TFaaSeov—Seafav—2Ff acSea),

f»* and f. being defined respectively by
a 1 a e
i) =Thb , S =S Ges

Substituting (6. 33) and (6. 35) in (6. 29), we find
K kjin=C*(Grngji— 9 n0ks),

which means that the invariant Riemannian metric § is of positive constant cur-
vature in M. Summing up, we have

PROPOSITION 6.9. Let M be a normal fibred space with invariant Riemannian
metric § and assume that the second fundamental tensor H is of the maximum
rank n in the base space M, where n=dim M is necessarily even. Then the equality

PPR)=rK

holds, R and K being the curvature temsors of the invarviant metvic § and the
induced metrvic g respectively. The invariant Riemannian metric § is locally sym-
metric, i.e., V K=0in ﬂ, if and only if the invariant metric § is of positive constant
curvatnre.

Take a horizontal vector X at a point P of a normal fibred space M with
invariant Riemannian metric, whose second fundamental tensor H is of the maximum
rank #z in the base space M, n=dim M being necessarily even. Then the curvature
transformation K ()? , 5) has components of the form

AX)r=X*E1K i
(6. 36)
=X;E*—EX"

by virtue of (6. 29), where g?" are the components of H2X and X,=g:,X". Taking
arlotkler~ hori%onNtal vector Y at the point P, we know that the bracket product
[K(X, C), Y, C)] has components of the form

BX, Tir=AsX AT — AP AMK)
(6. 37)
— X7 X"

as a consequence of (6.36), where Y* are thg components~ ofN HZ?Nand )71,;:91'378.
Therefore, linear combinations of matrices (A(X):*) and (B(X, Y)*), X and Y being
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arbitrary horizontal vectors at the point P, span the Lie algebra of the group
SO(n+1) of all rotations, becauseNthe tensor field H is of the maximum rank .
Since in our case the manifold M is orientable, we thus have

ProrosiTiON 6.10. If, for a normal fibred space M with invariant Riemannian
metric §, the second fundamental tensor H is of the maximum rank n in the base
space M, where n=dim M is mnecessarily even, then the homogeneous holonomy
group of the Riemannian manifold M coincides with the group SOmn+1) of all
rotations.

§7. Contact structure.

In a differentiable manifold M of odd dimensions, a contact metric structures
is a set (d, 7, gZ) of a Riemannian metric §, a 1-form # and a tensor field 93“ of tpye
(1, 1) such that

Pr=—I+7RQE, #&)=1,
FE=0, #3X)=0

for any vector field X in M, I denoting the identity tensor field of type (1, 1) in
M, where the tensor field @ of type (1,1) and the vector field & are defined in M
respectively by the equations

i€ X)=p(X),
i@X, H=anX, 1),

X and ¥ being arbitrary vector fields in M (cf. Sasaki [4]). When the vector field
€ is a Killing vector field with respect to §, i.e., when

L37G=0,

the contact structure (g, 7, @) is called a K-contact structure (cf. Hatakeyama, Ogawa
and Tanno [1]).

Coming back to fibred spaces with invariant Riemannian metric, if we take
account of Proposition 5.4, we have

ProposiTION 7 1. In a fibred space M wzth invariant Riemannian metric §,
the set (g, 7, (l/c)H ) is @ K-contact structure, H denoting the second fundamental
tensor in M and ¢ being a non-zero constant, if and only if the sectional curvature
with respect to any section containing the vector C is a constant A everywhere in
M, where A is necessarily equal to c* (cf. Hatakeyama, Ogawa and Tanno [1]).

When a fibred space with invariant Riemannian metric satisfies the conditions
mentioned in Proposition 7.1, the fibred space is called a fibred space with K-
contact structure. Then Proposition 5.4 is equivalent to the fact that @ fibred
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space with invariant Riemannian metric is a fibved space with K-contact structure
if and only if the set (g, f) is an almost Kéahlevian structurve in the base space M,
wheve g is the induced metvic and f is defined by f=Q1/c)H, H being the second
Sundamental tensov in M and c being a non-zero constant.

Taking account of (2. 32), Propositions 3. 2 and 5.9, we have

PropPOSITION 7. 2. For a fibred space M with K-contact Structure, the following
six conditions (a)~(f) are eqmvalent to each other:

@ M is normal, i.e., S=0 in M.

(b) The set (g,f) is a Kahlerian structure in the base space M, where g is the
induced metric and f is defined by f=Q1/c)H, H being the second fundamental
tensor in M and ¢ being a non-zero constant.

© N=0 in M.
(d) Vc}'fba=0, i.e., Vh=0 n A~4
@) Vihji=c¥grEi—griEs) in M.

() Vil jEe=c(—guiEi+gxiE) in M.
In a normal fibred space M with K-contact structure, the equation (5. 13) reduces to

ch=ch—2629cb,

(7.1)
co— 0 00="nC 2 y
or equivalently to
(7.2 K ji=(Kop—2c%9)E EP+nc*ESE,

¢ being a certain non-zero constant, where n=dim M. Thus, taking account of
(7.1) or (7.2), we have

ProposITION 7.3. In a normal fibred space M with K-contact structure, the
metric g induced in the base space M is-an Einstein metric, if and only if the
condition

(7.3) K;=Ag;+BE;E, A+B=nc?

holds with a mnon-zero constant c, where A and B are certain invarviant functions
n M.

Differentiating covariantly both sides of (7. 3), we find
VK ji=(0cA)gji+ @BV E;Ei— Bl ;Est-FiiEj)
because of (2.32). Transvecting ¢*, we get
7. 4) g7 K ;s=(n+1)3;A

because of 0,B=FE;%;B. On the other hand, transvecting ¢’¢ to both sides of (7. 3)
and differentiating covariantly, we obtain
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(7.5) 7 (g K1) =(n+1);4+8,B.
If we substitute (7. 4) and (7.5) in the identity
4 j(g“ﬁ w5)=2(F tﬁ 1900%,
which is a direct consequence of the Ricci identity, then we have
(7. 6) (n+1)2,A—0;B=0.
On the other hand, we have from the second equation of (7. 3)
7.7 0;A+9,;B=0.

Combining (7. 5) and (7. 7), we find 9;A=0;B=0, ie. the fact that A and B are
constant. Thus we have

PROPOSITLON 7.4. If, in a normal fibved space with K-comtact structure, the
Ricci tensor R has the form

R=A4§+B7®7,
then A and B are necessarily constant (cf. Okumura [3]).

Let M be a normal fibred space with K-contact structure. Then a Kihlerian
structure (g, f) is induced in the base space M as a consequence of Proposition 7. 2.
Thus, taking account of (5. 1), (5.2) and (5. 3), we have

Rijit=Kuzt—cX(Fi f ji—F # Fra—2F 0, F i)

(7.8)
—cZ(EkE"gji—E,-Ehgki+(5,’;Ej—5§Ek)Ei)

with a non-zero constant ¢, where

Fir=FLERE™,
and
Kiji"=Kaos"Ex*ELEPE™,

are the components of the lifts KZ and f% respectively and fj;= 7 1 K and K
being the curvature tensors of the invariant Riemannian metric § and the induced

metric g respectively.
We now define in the base space M a tensor field Z of type (1, 3) with the

following components:

7.9 Zger*=Kges*— c*(0%59c6—08 gav+Safeoo—Tf av—2 Fac Fo").

Then the equation (7. 8) reduces to
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(7.10) K ki = C*(0g ji—0%grs) + Zi i,
where we have put

Zji"=Zae" B E S ELPEY,

which are the components of the lift ZZ.

When the induced Kéhlerian structure (g, f) is of constant holomorphic sectional
curvature in the base space M, we have Zu;*=0, which implies together with
(7. 10)

Kkjih = (,‘2(5ﬁgj,; —_ 5_',’91”').
Therefore we have

PropPOSITION 7.5. A normal fibred space M with K-contact structure is of
positive constant curvature if and only if the induced Kdhlervian structure is of
constant holomorphic sectional curvature in the base space M.

Differentiating covariantly both sides of (7. 2), we have
ViR ji= 7 Ko s B B+ (Ko — 2600 (P E O E + E (VD))
+nc*{(VhENEi+E(ViE)},

which reduces to
(7.11) PR =K EPESED+c ] Z Bt cf e ZoEit cE(F P Zout Fi* Zsg)
by virtue of (2. 32), (7. 2) and Z=c /%, how=cfe, Where we have put
(7.12) Z ji=(Roy—(n+2)c*gen)ESE .
Thus, taking account of (7.11) and (7. 12), we have

PROPOSITION 7.6. Let M be a normal fibred space with K-contact structure.
Then the equation

pPRY=rR

holds, R and R being the Ricci tensors of the invariant Riemannian metvic § and
the induced metric g rvespectively. N

The Ricci tensor R is covariantly constant in M, i.e., PR=0, if and only if the
invariant metric § is an Einstein metric in M. I f this is the case, the induced
metric g is also an Einstein metric in the base space M (cf. Okumura [3], Tanno

[7D.

If we differentiate covariantly both sides of (7.10) and put ]?kjm=l? kji’dsn, then
we have
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VK jin=7 Kacra) B EOE EPEr®
+ Kaona VB EER B+ By (P B ESEn®
+ECES T ENES+ESEEN ),
which reduces to
ViR kjin= Kansa) ECEE  EPEr®
(7.13) FeEH(f! Zreva) EvE S ELEL +(ff Zagea) ECEEP En®
+(f Zacs ) ECES EiEn* +(fef Zaos ) EPE ' EPE R}
by virtue of (2. 32) and the identity
ZaeveS o’ +Zacea S5’ =0,

where we have put Zaova=Zaes’dea- Taking account of (7.9) and (7. 13), we find
V1K 1jin=0 if and only if Zup,=0 holds. Therefore, if we take account of (7. 10), we
have

PROPOSITION 7.7. Let M be a normal fibred space with K-contact structure.
Then the equation

PPK)=rK

holds, K and K being the curvature temsors of the invariant metvic § and the
induced metric g respectively.

The invariant Riemannian metvic § is locally symmetric in ﬂ, ie., VK =0, if
and only if the invariant metric § is of constant cnrvature (cf. Okumura [3]).

We have Propositions 7.6 and 7.7 as corollaries to Propositions 6. 8 and 6.9
respectively. We have the following Proposition 7.8 as a direct corollary to Pro-
position 6. 10.

N ProPOSITION 7.8. The homogeneous holonomy group of a normal fibved space
M with K-cgntact structure coincides with the group SOn-+1) of all rotations, where
n+1=dim M. (Tashiro [8]).
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