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ON A FINITE MODIFICATION OF AN ULTRA-
HYPERELLIPTIC SURFACE

By Mitsuru Ozawa

1. Let R and S be two ultrahyperelliptic surfaces defined by two equations
y?=¢g(2) and y?=G(2), where ¢(z) and G(z) are two entire functions having no zero
other than an infinite number of simple zeros respectively. If g(z) and G(z) have
the same zeros for |z|=R, for a suitable R,, then we call S as a finite modification
of R.

In the present paper we shall prove the following

THEOREM 1. If there is a mown-trivial analytic mapping from R into S, which
is a finite modification of R, then it reduces 1o a conformal mapping from R onto
S whose projection has the form az+b.

By this theorem we have the following non-existence criterion of non-trivial
analytic mappings from R into its finite modification S: If the group of conformal
automorphisms A(R) of R is not isomorphic to that A(S) of S, then there is no
non-trivial analytic mapping from R into S.

In the case of R=S, Hiromi and Muté [3] proved the following interesting
result: Every non-trivial analytic mapping from R into itself is an automorphism
whose projection has the form e?**#/%z-+p with a suitable rational number p/q.

We shall extend Hiromi-Mut6’s theorem to a more general case.

THEOREM 2. Let S be a finite modification of R. If G and g have the same
number of zeros in |z| <R, then any non-trivial analytic mapping from R into S
reduces to a conformal automorphism whose projection has the form e**»%z2+b with
a suitable rational number plq.

2. Proof of theorem 1. Assume there is a non-trivial analytic mapping ¢
from R into S. By our previous result [4] we have the existence of two entire
functions 4(z) and f(2) satisfying

(1) Goh(2)=f(2)’g(2).
Here ¢(z) has the following form

21
=1 Z-—bl '

@[] (z—ay)
7=1 7

For simplicity’s sake we shall put this G(z)F'(z). Hence (1) reduces to
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(2) Gon(2)=1(2)*F (2)G(2).
Making the #-th iteration of the above equation, we have

(3) Gohn(2)=(fohun-1(2))*Fohn_1(2) Goln-1(2)

=T son@r Tl Ph@6G@,

where /4,(z) is the vy-th iteration of A(z), that is, A,(2)=hch,_1(2), h(2)=z.

We discuss the problem along the same line in [3]. First of all we shall prove
that A(z) is a polynomial. Assume that A(z) is a transcendental entire function.
Fatou [1] proved that A(z)=z or hAeh(z)=z has an infinite number of roots. Ac-
cording to the cases, we can consider the iteration %, or %,,. Hence we may asume
that the equation 4(z)=z has an infinite number of roots. Let z, be an arbitrary
non-zero root of A(z)=z. Now we select twelve complex numbers wf, ---, wy,* from
the set of zeros of G(z) in such a manner that w;*=z,, |w;*|> R.

If Z(2)=2zy+c(z—2zp)%+-+-, ¢x0, then

n—1zy
I(@=20+c™ " (=20}
Since A(z) is transcendental, for any positive number K
T(r,h)>Klogr
for »>r,. By Poélya’s result [5]
T(r, h)= % T, Ins)
for =7, and £>0, where 7, depends on % and % but does not depend on #. Hence
for all » and for r=7;=max (2, 71, 72)
T(r, hy)>KQ2k) " log 7.
Let Hy(2)=ha(2+20). Then if r=2(rs+]zl)

+
T, Ha@)z 5108 M (5, (@) ) = 5 1og M(5 —120l, 1(2))

1 v
= -§- T(? —|2 ls hn(z)>'
Hence

T(r, Hy(2))> %. K(2k)™ log (% — 2| ) >R K

for 7'22(73"*“20‘).
Again by Pélya’s result

Tt H)= % T, Hy )= KT(r, Hy) = KuN (73 a5, Hoos)
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for any given K and K;=K—e¢ and for all =7, and for any j. Similarly

T("y Hn—l)éKV T(?’, Hn-l—v)?—KlvN(r; a; Hn_l"'")
=22'gN(7; aj, Horo,)

for any K;=K—¢>2¢"" and for all =7, and for any j. Hence

-

n—

q
2 LN a;, H)=2T(r, Hy )< T(r, Hy)
J=1 =0
for any r=7, and for any #.

By applying the second fundamental theorem for H,

12
11T(r, HR)= 3, N(r,w.*, H))—N(r; 0, Hy')
v=1

(4)

1 \1t+k+trnl
) + K, log T(r, H,)+ K: log r+ K

+loy (

0 Som——
E\Tel
outside a set E, of » of linear measure at most 2, where Kj, K3, K; are constants
which depend on z, w,* but do not depend on #. On the other hand by the

equation (3) we have
n—1 n—1
GoHy(z—2))= ]:[0 (foH,(2— 20))* ]:[0 FoH,(2—20)G(2-+20).
Hence

1 12
3 NG w, Hy— N 0, ') < 32 NG w.*, )
y=1 v=1
12 12
= 2 Nu(ry w)*, Ho)+ 23 Ne(r; w.*, Hy)
y=1 v=1

n-1
S5 3 Nosw H)ENG; 0,6tz + & Nt 0, FoHie—2)
y=1 y=0

1 g

=6T(r, H)+N(#; 0, G(z+2z0) + 3

v=0 =

N(r; a;, H.(Z—Zo)),
1

where N,(r; A, T) indicates the N-function of simple A-points of 7. Thus (4)

reduces to
1 >1+k+...+kn-l

5T(r, )< N(r; 0, G+ )+ log (—

Ic] + K log T'(r, Hy)

(5)

1 q

+K; log 7+ Ks+ Z‘:

v=0 7=

N, a;, H(2—20)).
1

The exceptional set E,* has linear measure at most 2+7;. Now firstly we select
an 7* such that

T4, H)>2Y 3 NG, Hiz—2)

v=0 7=1
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for any positive integer # and for r=r* r¢E,*. Next fix ». Then take # suf-
ficiently large in such a manner that

+ /1 \ltktetrnl
NG;0,Get2)—T(r, H)<0,  log (W) —T(r, H) <0,
Kilog T'(r, H,)—T(r, H,)<0, K, log r+Ks—T(r, H,)<O0.

Then we have a contradiction by (5). Thus %(z) must be a polynomial.

Next assume /%(z) is a polynomial of degree at least two. If w satisfies |w|>K,
for sufficiently large K, then 4(z) has d simple w-points in (Jw|/|@])41l—e)< 2]
<(lwl|/|@o])**(1-+e), where A(2)=aoz%+-+-+aq. However

N30, Ge)=N(7; 0, G)+0O(log 7)
and
Nx(7; 0, Go )= No(r¥(1—e)|aol, 0, G)—O(log 7),

which lead to a contradiction. Hence %(z) must be a linear function az-b.
Therefore we have the desired result.

3. Our theorem 1 is best possible. Let R be an ultrahyperelliptic surface
defined by 12=¢(2),

"= b

hal F4
9(2)= ]'[1(1— an_f), |le|>1, b=0.
a—1

Let S be the surface defined by 7*=G(2),

Gz)= ﬁ<1— 2y >= @
n=2 b 1__.-—.-
a—1 b
Then
Glaz+b)=—"—q(2).

Hence there is an analytic mapping from R into S whose projection is @z+b, which
implies the conformal equivalence of R and S.

4. Proof of theorem 2. Assume that the projection has the form az+b, |a|=1.
We may assume that |e]|>1. Start from a branch point w; of S and consider its
counter-image z; in R. By the modification z; corresponds to a branch point w. of
S. Consider its counter-image z. in R. Continue this process. Then we have two
sequences {w;} and {z;}. If in the sequence {w;} there are two indices j and &
such that w,=ws, then 2z, =241, w,_1=wg_y, - and finally w;=wi_,,1 and
21=2r_;.1. We shall call this sequence as a cycle. Make all cycles starting from
every branch point in |2]<R,. Evidently the number of these cycles is finite.
Now we shall start from a branch point w,* of S, which does not belong to the
set of above cycles. Make a similar sequence wy*, w.*,---. If w;* is sufficiently
large, then the set of antecedents of w,* makes an infinite sequence. Hence {w;*}
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does not make a cycle, that is, {w;¥} is an infinite sequence such that w/*w:*
for jxk. By a simple calculation we have that w,* tends to —b/(e—1), which is
a contradiction.

Assume that a=exp (2rif) with an irrational number . Similarly we can find
an infinite sequence such that w;*=w;* for jx% and w,* clusters on the circle

b

This is also a contradiction.
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