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DIFFERENTIAL GEOMETRY OF FIBRED SPACES

By KENTARO YANO AND SHIGERU ISHIHARA

Introduction.

To obtain a unified field theory of gravitation and electromagnetism, Kaluza
[4]” and Klein [5] used a five dimensional Riemannian manifold admitting an
infinitesimal translation and identified a point in the space-time with a trajectory
of the translation in this five dimensional Riemannian manifold.

On the other hand, to obtain a representation of an #-dimensional manifold
with projective connection, van Dantzig [2], Haantjes [3], Schouten [7], Thomas [8],
Veblen [9], Whitehead [11], one of the present authors [12], [13], [16] and others
used an (n-+1)-dimensional manifold with affine connection admitting a vector field
which is concurrent and which defines an infinitesimal affine transformation, and
they identified a point in the manifold with projective connection with a trajectory
of the infinitesimal affine transformation in the manifold with affine connection.
To study the manifold representing a manifold with projective connection, geometers
of Dutch School used the so-called homogeneous curvilinear coordinates and those
of Princeton School used the non-homogeneous curvilinear coordinates.

We call now fibred spaces such manifolds appearing in the unified field theory
and in the theory of representation of projective space. The fibred spaces have
been studied by Davies [14], Muté [6] and the present authors [15].

The purpose of the present paper is to develop systematically the theory of
fibred spaces. In §1 we define the fibred space and discuss tensor fields, invariant
affine connection, induced affine connection and van der Waerden-Bortolotti covariant
differentiation in the fibred space. We develop in § 2 the tensor calculus in fibred
spaces in terms of local coordinates. §3 is devoted to the study of some special
cases in which the so-called structure field satisfies certain conditions. We study the
structure equations in §4 and the fibring in the flat space in §5. In the last §6,
we examine manifolds with projective connection from our point of view.
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§5. The fibring in flat spaces.
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§1. Fibred spaces.

Let M and M be two differentiable manifolds® of dimension #+1 and # re-
spectively, and assume that there exists a differentiable mapping =: M—M, which
is onto and of the maximum rank z. Then the inverse image =~(P) of a point P
of M is a 1-dimensional submanifold of M. Denoting z=~*(P) by Fe, we call the
submanifold Fr the fibre over a point P of M. We assume in this paper that ¢%e
fibre Fy is conmected for every point P of M.

We assume that there are given in M a vector field C and a 1-form i, the
vector field C being non-zero and tangent to each fibre everywhere and the 1-form
7 satisfying the conditions

1.1 # =1,  _rij=0,

where the operator _ denotes the Lie derivation with respect to C. ThNe set
(A7I,M, nC, i) satisfying these conditions is called a fibred space. We call M and
M the total space and the base space of the fibred space respectively. The vector
field C and the 1-form 7} are called the structure field and the structure 1-form of
the fibred space respectively. The n-dimensional distribution defined in M by the
equation =0 is called the field of horizontal planes and the value of this distri-
bution at each point is called the korizontal plane at that point. The mapping
7 M—M is called the projection of the fibred space. If there is no fear of con-
fusion, we call, for the sake of simplicity, a fibred space (M, M, ;C, 7) simply a
fibred space M.

Tensor fields in fibred spaces. We shall here introduce some notations as
follows: .

1. T(M) is the tangent bundle of M.

2. (M) is the space of all tensor fields of type (7,s), ie., of contravariant
degree 7 and covariant degree s, in M.

3. T (WD=1, T30D.

The notations T'(M), I5(M) and (M) denote the spaces corresponding to T\,
QQ(M) and g (M), respectively, with respect to M. N

We shall introduce a linear endomorphism T—T# of (M) which is characterized
by the following properties:

(H.1) FE=f  for fegiyab.

2) The differentiability of the manifolds and of the objects we discuss is supposed
always to be of C.
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(H. 2) Xa=X—5X%C  for Xeqidl.
(H. 3) 7 =a—a(C) for @e gM).
(H. 4) STr=8n @7 for S, TegWul.

The tensor field T is called the korizontal part of T for any 'T'EEI(M). If T'=T=#,
T is said to be horizontal. On putting

1.2 Tr=F_Tu for TeqW),

we call TV the non- -horizontal part of T. Especially, for any elements Xeg o(M)
and ded °(M), X7 and @ are called the vertical parts of X and @ respectively. If
X= XV, @=a", they are said to be vertical. We shall now introduce notations as
follows:

4. EIH(ZVI) is the space of all horizontal tensor fields in M. H(M)C T (1\71).

A tensor field 7' in M is said to be invariant if £T=0 holds. We shall here
introduce some notations as follows: N

5 9 (1\71) is the space of all invariant tensor fields in M. 9 (1\7I)C£I (M).

6. IM)= 9 ¥ N T5D).
7. JEED=9MNTZWD), W)= IEE) N T5M).
Thus we have
SED=3 guil),  JEADH=5 g7,
8 g (M)# g H(J]) denotes the formal tensor product, i.e., the tensor product of
g (M) and 9 H(M) regarded as two abstract tensor spaces over M.
We denote by j: 4 H(M)—>J (M) the natural injection. We shall now introduce

a linear homomorphism i 4 (A7I)# g H(A7I)—>J (1\71) which is characterized by the
following properties:

@1) iT)=i(Tye SO  for Te JEWD).
1.2 =T for Te ().
(. 3) S =i®RiT)  for Segh, Tesauh.

We shall introduce a linear homomorphism 7— T% of g (M) onto H(N]), which
is characterized by the following properties:

.1 fi=for  for feT{M),

(L.2) for any element Xe JYM) there exists a unique element XZe¢ g H(A7I) such
that
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s X=X,
L. 3) ol=*rw for wegYM),
(L. %) SRT)E=(SR(TE)  for S, TeT (M),

where the differential mapping of the projection x: M—M is denoted also by = and
the dual mapping of the differential mapping = is denoted by *z. For an element
Teg (M), TE is called its Zift.

We shall here introduce a linear homomorphism p: 4 (A7I)——>£I (M) which is
characterized by the following properties:

®.1) GH®=F®)  for FegiD),

where P is an arbitrary point of Fe, P being an arbitrary point of M.
(P.2) WX f=p&fH  for Kegidh),

f being an arbitrary function in M.

(P.3) (66)X)=p@(X%)  for Ge.guMD),

X being an arbitrary vector field in M.

(P. 4) pSRT)=65HR(pT)  for 5, Teg().

For an element 7 of J(M), pT is called its projection.

Taking account of the definition above, we can easily verify the following
formulas:

(1.3) pT=pTm, pd"=0 for TegUb.
1. 4) HTH=T for Teg (M).
(1.5) pTHr=Tx2 for TegUD).
(1. 6) (/=7 for fe 3.

Because of (1.4) and (1.5) we see that the projection p. 9 (]\71)-—>£.T (M) induces an
isomorphism p. 9 HM)— (M) and thg operation taking lifts is the inverse of the
restriction of the projection p to JE(M).

We have now

PROPOSITION 1.1. For any two elements X,Y € M), we have
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[X, Vlegian, IC, X1=o,
1.7 (X, Vyr=(X=,Vrp, (X, Vp=(X2Vay
=—20(X,7C,
and

(1.9 HX, V1=[0X, 7],
where @ is an invariant 2-form defined by
(1.9 Q=da.
For any two elements X, Ye TY{M), we have
1. 10) [XZ, YIJE=[X, Y}, [XE YEP=—20(Xt, Y5)C
(cf. Yano and Ishihara [15]).
We now introduce in M a 2-form £ such that
1.11) Q= pQ=p(dp).
Thus we have

PROPOSITION 1. 2. For any element &e 9XM), we have

dae gYI),
(1.12) p(d@)=d(p&)+ p@(C)2.
When &e JHM), we have
(1.13) D(A®)=d(&).

(cf. Yano and Ishihara [15]).

Taking account of d@=0, which is a direct consequence of (1.9), we have
d2=0 because of (1.10). Thus the 2-form 2 is closed. We denote by [2] the
element of Hy(M) determined in M by the closed 2-form £, where H,(M) denotes
the second cohomology group of the base space M. .

If we omit the structure 1-form % from the set (M, M, =; C, 7), then we have a
set (1\71, M, x; 6) which is galled a fibved space without horizontal planes. Suppose
that, in a fibred space (M, M, x; 5) without horizontal planes, there areNgiven two
structure 1-forms 7 and 7, i.e., suppose that _L7=_'7=0 and ﬁ(5)=’ﬁ(C)=1 hold.
Then, putting {='§—73, we find because of (1.11)
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Pd'p)=pldi+d(p0),
which is equivalent to the condition
'Q=0+d(p0),

where Q= p(d7j) and '2=p(d’F). This equation shows that the two cohomology
classes [£2] and ['2] coincide with each other. Thus we have

ProposITION 1. 3. Let there be given two structure 1-forms i and 'yj in a fibred
space without horizontal planes. Then the two cohomology classes [2] and ['#]
coincide with each other, where Q and 'RQ are determined in the base space M by
(1. 11) in terms of # and ', respectively. That is to say, to a fibred space without
horizontal planes, therve corresponds a unique cohomology class [2]e Hy(M) in the
base space M.

The unique cohomology class [2]e Hy(M) corresponding to a fibred space
(M, M, m; '9) w1thout horizontal planes is called the characteristic class of the fibred
space (M, M, =; C) without horizontal planes.

Invariant affine connection in fibred space. Let there be given an affine con-
nection ¥ in the total space M such that ¥ is invariant under the infinitesimal
transformation determined by the structure field C, ie.,

(1. 14) LPX) =P LX) +P 50X

for any vector fields X and ¥ in Ag[ Such an affine_connection 7V is called simply
an invariant affine connection in M. When X and Y in (1.14) are invariant, thiNS
f~0rmula reduces to _L(F3X)=0. Therefor P$X is an invariant vector field if X,
V and 7 are invariant. Thus an invariant affine conmection V¥ operates in 9 (M)
as a dervivation. Now, we shall define an affine connection ¥ in the base space M
by the following property:

(1. 15) VyX=pWyrX"),

X and Y being arbitrary vector fields in M. The connection /' thus defined is
called the projection of the invariant affine connection ¥ given in M or the induced
connection in M. N

The torsion tensor 7' of the affine connection ¥ given in M is by definition

T(X, V)=Pz¥ P X—[X, 7],
X and ¥ being arbitrary vector fields in M. Taking account of the definition

(1. 15) and Proposition 1.1, we see that the torsion tensor T is invariant and its
projection T=pT coincides with the torsion tensor of the induced affine connection
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V in M. Thus we have

ProrosiTioN 1.4. Let V be an invariant affine connection in a fibred space
When V is torsionless, so is also the affine connection V induced in M from

e

We now note the fact that the curvature tensor R of an invariant affine con-
nection V is also invariant. We shall study properties of the curvature tensor £
in §4.

We can prove easily the following formulas:

(1. 16) pPeT=ryT  for Yegmn, Teg=20D),
where Y= pf" and T=pT, and

1.17) VyT=pWyrTE)  for YegyM), TeT (M),
where P is an invariant affine connection in M and 7 its projection.

Van der Waerden-Bortolotti covariant derivgtive. Suppose that an invariant

affine connection V is given in the total space M of a fibred space. Given an ele-

~ ~ * A~ A~

ment Y e J3(M), we define a derivation I3 in the formal tensor product J(M)#% JEM)
by the following properties:

*

(W. 1) 7T =0T for Te ().

*

(W. 2) s T=FpuT)m for Te gH(D).
% ~ * * A £ ~ *  * ~ ~ * ~
W.3) FeS#D)=FS)$T+S#WPT) for SeIJM), Te JEWM).

For any *element Vaf/' of 4 (ﬂ)# g H(M), the correspondence 17'——>f; ;ﬁ/ defines an ele-
¥ ~ A~ ~ ~ % %
ment FW of J(M)# 9E(M), Y being an arbitrary element of J¥M). We call YW
*
the van der Waerden-Bortolotti covariant derivative of W.

RemArk. Let G be a Lie group of 1 dlmensmn, which is connected. Let there
be given a principal fibre boundle B= (M, M, G) with G as its structure group, M
and M being the total space and the base space respectively. Denote by C the
vector field in M whose value at each point is the image of C by the principal
mapping, where C is a non-zero element of the Lie algebra of G. Take an infini-
tesimal connection 4 in M and consider the set (M, M, x;C, 7), = being the bundle
projection of B. If we define in this case invariant tensor fields and invariant
affine connections in M as those which are invariant under the right-translation of
the structure group G, then we can develop the same discussions as we had in
this section.



264 KENTARO YANO AND SHIGERU ISHIHARA

§2. The tensor calculus in fibred spaces.

Let (A7I,M,7r; 5, 7) be a fibred space. Since the projection = is differentiable
and of the maximum rank, there exists, for any point P of M , a coordinate neighbor-
hood U of P such that U==(0) is a coordinate neighborhood containing P=x(P) in
M and the intersection NFy is expressed by equations

al, a?, -~ and a" being constants, with respect to certain coordinates (', %2 ---, y"*")
defined in U7, where Q is an arbitrary point of U, We call such a neighborhood
U a cylindrical neighborhood of M. We restrict ourselves only to cylindrical neighbor-
hoods in M. Thus we call a cylindrical neighborhood of M simply a neighborhood
of M in the sequel for the sake of simplicity.

Given a neighborhood U of A7I, the set ([7, U, 5, #) is a fibred space which is
called the restriction of the given fibred space to Uf, where U==()), = is the
restriction of the projection x: M—M, and € and 7j are respectively the restriction
of the structure field and the structure l-form in M. In the sequel, we shall
identify the operations taking horizontal parts, lifts, projections and etc. in the
fibred space ([7 , U, m; C, %) with the corresponding operations in the given fibred space
(JVI , M, m; C, 7) respectively.

Let there be given Iogal coordinates (z*)=(z?, x% -+, ") and (§*)=(¢%, &% ---, &)
in a neighborhood J of M and in U==() respectively.’ We denote respectively
by E* and E, the components of the structure field C and the structure 1-form 7
with respect to coordinates defined in 0. We may assume that, for an arbitrary
point P with coordinates (%) in U, FenU is represented by #» equations

21 §4=E%=")

in U, where » functions &(x™) are differentiable in U and their Jacobian matrix
(0&*/ox") is of rank n. We put

(2.2) E‘=0£",

where 0; means the operator

3) The indices #,i,j, &, I,m run over the range {1,2, ..., n+1} and the indices «,b,c¢,d,
e,f run over the range {1,2,-.-,s#}. The so-called Einstein’s summation convention 1s used
with respect to these two systems of indices.

4) Given a tensor field T in I, its components with respect to local coordinates (z*)
mean defined 1n &, or, the components of T in T the components of T with respect to
the natural frame {9/dx?} defined in T.
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We then see that # local covector fields ¢* with components E,* are linearly
independent in U. Since the structure field C is tangent to fibres, we find

2. 3) EiE,=1, EE*=0,

the first equaion being a direct consequence of ;7(5)=1. The n+1 local covector
fields ¢* and 7 are linearly independent and hence form a local field of coframes in
U.

As a consequence of (2.3), we see that the inverse of the matrix (E.%, E;) has
the form

2.4 (ES E)'= (g;)

where, for each fixed index b, E*; are components of a local vector field B, in U.
The n+1 local vector fields B, and C form a local field of frames in . At each
point of J the coframe {¢% 7} is dual to the frame {ﬁb, ¢ }. The equations (2. 4) are
equivalent to the conditions

ERWES =03,  E4WE,=0,

(2.5)
EE*=0, EE,=1, ie,
(By=0¢,  7#(B=0,
2.5 ~ ~
(O)=0, H(C)=1
or to the conditions
(2. 6) ESE"+E;E"=4".

The first and the second equations of (2. 5) or those of (2. 5) show that # local vector
fields B, span the horizontal plane, defined by 7=ZFE;dx*=0, at each point of U

Denoting by £ the Lie derivation with respect to the structure field €, we
find LE»=0 and _E,=0, which are equivalent to the identity [C C1=0 and the
second condition of (1. 1) respectively. We also have the relation .LE,*=0. In fact,
as a consequence of (2.2), we find

@27 0;E"=0.E "
Thus, taking account of (2.5) and (2. 7), we obtain
LE*=EI3;E*+E 0:;E?
=Ei3,E,*+E,"0;E1=0(EJE,*)=0.

Next, taking Lie derivatives of both sides of the first and the second equations of
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(2.5), and, also taking account of (2.5) and of the three conditions _LE"=0, .LE,=0
and LE,*=0, we find LE"=0. Therefore, summing up, we get

LE%=0, LE"=(,
2.8)
LE*=0, LE;=0.

Horizom‘Nal parl. Let there be given a tensor field, say, T of type (1, 1) in the
total space M. The tensor field 7' has components of the form

Ti=T"EPE" o+ TYESE -+ T EiE" o+ T EE"

with respect to coordinates (x"*) defined in a neighborhood U of M , Where Tu%, T3°, T,*
and 7,° are certain functions in l{ Thus, taking account of (H.1)~(H.4), we
easily see that the horizontal part S=T7T% of T has components

Invariant function. Let there be given an invariant function 7 in the total
space M. We have by definition _Lf =0, i.e.,

2.9 E1d;f(z")=0

in each neigborhood {7 in M. On the other hand, we see from (2. 2) and the second
equation of (2. 3) that each of the » independent functions £*(x") appearing in (2. 1)
is a solution of the partial differential equation

; OF
ox®

E =0

with an unknown function F. Therefore, as is well known, the equation (2.9) im-
plies that, for any invariant function f=f(a"),

~

(2.10) I =1E%")
holds in U. Taking account of (2.10), we find the formula
(2.11) 0:f =Eduf

in U for any invariant function f, where the operator d, is defined by

0

aa,= "a'gT.
Let 7 be an invariant function in M (in U). Then its projection f° fpf is a
function in M (in U==(0)) and, conversely, the lift fZ of f is equal to f. Thus
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in the sequel we shall identify any invariant function f with its projection f=pf.

Invariant tensor field, proyectzon and lift. Let there be given an invariant
tensor ﬁeld say, T belonging to 4 l(M) in the total space M. Then, in a neighbor-
hood U of M, T has components of the form

(2.12) Tih= T EPE A T EPEY TP EE 4 T E B

with respect to coordinates (z*) defined in U, where Tp% Ty, Tv* and T,® are
invariant functions in U.

Let there be given an invariant tensor field, say, 7' belonging to .9 {(1\71). Then
T has components of the form (2.12) with invariant functions T3%, T3°, To® and To°.
Thus, taking account of (P.1)~(P.4), we can easily see that the projection T=pT
has components T,* with respect to coovdinates (£%) defined in U=7r(ﬁ).5)

Let there be given a tensor field, say, T of type (1,1) in the base space M.
Then, taking account of (L.1)~(L.4), we can easily verify that the lift T'=7% of
T has components of the form

Tih=TEPE,

with respect to coordinates (z") defined in neighborhood U of M if the gi~ven T has
components Tp*=T,%(&%) with respect to coordinates (§%) defined in U==(U).

Invariant affine connection. Let there be given in the total space M an in-
variant affine connection ¥ which is torsionless.® Then, taklng a vector field X in
M, we know by definition that its covariant derivative 7X has components of the
form

v, Xr=0,504+T X

with respect to coordinates (z") defined in each neighborhood U of M, where X*
and [N'j"z are respectively components of X and coefficients of ¥ with respect to
(") in U. Since ¥ is torsionless, we have

(2.13) I'p=I"",.

For each fixed index a, the covariant derivative pZe of local covector field (?‘
has components ,;E.% in a neighborhood U of M, E being the components of
in U/. Because of (2.7) and (2.13), we find

5) The components of a tensor field T in M with respect to coordinates (£#) defined
in U, or, the components of 7 in U mean the components of 7 with respect to the natural
frame {9/d&b} at each point of U.

6) Throughout the paper, we shall restrict ourselves to torsionless affine connections
in the total space .
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(2.14) V,Ef=V,E°
By virtue of (2.4) and _£E,=0, we can put

215 P B = — T @E S B+ hPE Bt ht EyEd+ AE, B,
' P Ey= — hooE Y ES—LE, Er—LE,ES+DE,E,

in each neighborhood {f of M, where
(2 16) cabzpbac

because of (2.14). Taking account of (2.8), we see that I'c%, A, Av”, &, A® and D
are all invariant functions in J, because the affine connection ¥ is invariant. The
first and the second equations of (2.15) are called the co-Gawuss equations and the
co-Weingarten equations respectively of the given fibred space with an invariant

affine connection /.
Taking account of (2. 5) and (2. 15), we find

o1 P Ery= I E Bt heo B B — I By B +-LESE™,
' P Eb=— BByt LES E'— A“E,E"— DE,E™,

The invariant functions I'c%, ke, #®, etc. are given respectively by the following
formulas:

I 4=—EEiWf ;ES=E1,E ;E,
fiey=— B9 Byl ;E,=— B3 Eifl ;E,
(2.18) It =EnEi ;ES=EIEW] E®
= — EIE W jEry=— B2y B,

because of (2.15) and (2. 17).

Projection of invariant affine conmection. Let there be given an invariagt
affine connection ¥ in a fibred space M. Taking an invariant vector field X in M,
we see that X has components of the form X*=X“E",+X°E" in each neighbor-
hood U of M, X* and X° being invariant functions inNﬁ (cf. (2.12)). Taking
account of (2.17), we find that the covariant derivative 7X has components of the

form
VX0 ={V X~ X} Ef BNyt {hea X O+ @ X+ X)) EE

(2.19)
F{—h" X — X A} E;E o+ {1, X°— X D} EE®,



DIFFERENTIAL GEOMETRY OF FIBRED SPACES 269
where we have put
(2. 20) Ve X®=0.X%4I X0,
When X is invariant and horizontal, the formula (1. 29) reduces to the formulas
(2.21) V, Xt = XDE, E* o+ (hea X E, E"— (B X ) E;E o +(1, X E;E™

because of X?=0. Thus the quantity /e determines an element % of T%(M) and
an element A of JHYM) such that

WY, X)=p{7(Fre X2}  for X, YeTyM),
(2. 22) .
h=he.

Similarly, the quantity %,* determines an element H of Ji(M) and an element H
of JHY{M) such that

HX)=—pWlz X5  for Xeg M),

~

H=H~,

(2. 23)

Taking account of (2.21), we see that the quantity /, determines an element / of
gYAM) and an element I of T#(M) such that

IX)=pliPs X5}  for XeTUAM),

I=Ir,

By virtue of (2. 19), the quantity A® determines an element A of M) and an
element A of JHYM) such that

A=Ar=—ps0)2
and the invariant function D is expressed by the equation
D=—y(750).

The tensor fields %, H, [, A and D defined above have respectively components
by, %, I, A® and D with respect to coordinates (§%) in U. These tensor fields are
called the induced temsor fields in M.

Let Y and Z be vector fields in the base space M. Denote their components
in a neighborhood U==({}) of M by Y* and Z* respectively, where U is a cylindri-
cal neighborhood of M. Then their lifts ¥~ and ZZ have in U components of the
form Y*=Y“E", and Z"=Z"E", respectively. Therefore, taking account of (2. 19),
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we see that the vector field W=FyzZ” has in U components of the form

(2. 24) Wr=(YV.ZYE"+(ha Y°Z¥)E™,

and hence its projection W=VyZ=p(FyrZ*) has in U components of the form
We=YV Z*=Y(0.Z+ 1 *Z"),

where I is the induced connection in M. Consequently, by means of the definition
(1. 15) of the induced connection, V.Z* appearing in (2. 24) are components in U of
the covariant derivative V'Z, where ¥ is the projection of the given invariant affine
connection ¥. This fact shows that the induced connection 7 has coefficients 1'%,
which appeared in (2. 15), with respect to coordinates (¢%) in U. Thus, taking ac-
count of (2.18), we have

ProrosITION 2.1. Let there be given an invariant and torsionless affine con-
nection V in the total space M. Then the conmnection V induced in the base space
M has coefficients of the form

Pcab:‘—E]cEib(ajEza'—fljhiEha)
(2. 25) ~
=E1.E (0;E M+ 1 1 E)
in each neighborhood U=a{l)), the induced connection V being torsionless, i.e.,
cab:Fbac-
If we put conventionally in [f

;jEza—:?jEza‘l‘PcabE]cEib’
(2. 26)

%k

V]'Ehb=‘7thb—Pca’bE]tha,
which are the components of (727" and (Vﬁb)" respectively, then the first equa-
tions of (2.15) and (2.17) reduce respectively to the equations

VS = B Eot i E B+ AESE;,
@. 27)

VB y= hyEf B — h® By E o +-LESE™.

Let there be given an element X of 4 H;(]VI). Then X has necessarily components
Xn=X%E", in each neighborhood U/, X® being invariant functions in U. Thus, in
this case, the formula (2. 21) reduces to the formula

(2. 28) PR =7 XOE S Bt X7 ;Ety  Xh=XE",

because of (2. 27). Next, if we suppose that an element of 4 a(Nf), say, T belonging



DIFFERENTIAL GEOMETRY OF FIBRED SPACES 271

to g H{(IVI) is given in M, then 7 should have components T#=Ty*EPE", in U, Ty*
being invariant functions in U. We can prove that the covariant derivative /T of
7' has componets of the form

. 29) P A= T E EPE ot T s ED) Era T ENT i EM),

where
Vc Tba = ac Tba + Pcae Tbe - chb Tda~

Van der Waerden-Bortolotti covariant derivative. Let there be given an element
~ ~ * ~ A
of the formal tensor product J(M)# JH(M), say, T belonging to Ji(M)# J7Z(M).
*
Then T is expressed as follows:

T=Tyo% bey 204 B,

in each cylindrical neighborhood F of M, T/%* being invariant functions in 07,
where {e;}=0/0x* is the natural frame of coordinates (z*), {¢"} the dual base to
{e;}, Ba local vector fields having components E?, and & local covector fields

~ * .
having components E?, all in U. We call 7% the componentsNOf T with respect
to coordinates (z®) and coordinates (£%) defined respectively in U and in U==n(U),

or simply the components of f in (0,U). Let I % JEM)— (M) lie the
linear homomorphism defined by (I. 1)~(L. 3) in §1. Then the image T=i(T) has
in U components of the form

(2. 30) T =T EPE™,.

Conversely, we find

(2 31) Tjkbﬂ:___T‘jkihEibEha.

The quantity E™, determines an element p of JYM)#% JHYM), whose image
~ *
P=i(P) has components

Pp=EnED
=N—EEr

because of (2. 6) and (2. 30). Therefore P is a projection tensor determining the
horizontal plane field. The quantity £,* determines an element 5 of 4 ‘,’(1\71)# g H,‘,(]VI )
such that i(é)zﬁ.

. Let there be given an element of 9 H(A7I), say, § belonging to 9 H{(JVI). Then
S has in U components of the form S*=S,°EE", as an element of J(M). Thus,
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taking account of (W.2), we see that, for any element ¥ of 4 3(1\71), Vﬂf/=l§;fl§
has in U components of the form

Wit = (P47 8Py B4
= (V97 (SAESE )} EHE,
Yr=yE", being the components of ¥. This equation reduces to
@.32) W =ViE T Se =V 7.5
because of (2.27) and (2. 29), where
PS> =0cSp" 41 %S’ — I'c®Se".

Since the wvector ﬁeld V4 1n (2. 32) is arbitrary, the van der Waerden-Bortolotti
covariant derivative VS of S has components of the form

V Sb EJ ch
(2. 33)
=a]Sba+E]c(rcaesbe_rcebsea)-

Therefore, as a consequence of (W.1)~(W. 3), for any element of ¢ (]\7[)# JH(M),
say, T belongmg to 9 l(M V& JH! (M ), its van der Waerden-Bortolotti covariant deriva-
tive V T has components of the form
ﬁszkb‘Z:azT]‘kha—l‘f‘Lkm ;mba—fzm]kaba
(2. 34)
FEAL % T — 1% T %"
in ([7, U), where T/%" denote the components of 7*‘ in ([7, o).

nge components ’T‘j’%" of ’T‘=i(f) are given by (2.30) in U, I*‘ being an element
of J(M)# 9E(M) considered above. Taking account of the formula giving 7,7 %",
we have the formula

(2. 35) 7T = (77¢ 1TEMELPE A+ Tjkba(‘; EDE 4+ TjkbaEib(i; Ery)

because of (2.26) and (2. 34).
As is well known, we have the Ricci formula

(2. 36) Pl Xr—0 7 X =Re; X

for any vector field X having components X" in U, where B denote the com-
ponents of the curvature tensor R of the given invariant affine connection 7 and
are defined by
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Rijir=0ul ri— 0,0 - DL o~ il i,

Furthermore, for any element of .4 (A7I V4 IH (1\71 ), say, fi‘k belonging to 4 WM VE JHi'(IVI ),
which has components T%;, we have the formula:

(2. 37) ;k;] Thb— ;j;k Thb = ﬁkﬂh Tib - EkdE]cRdcba Th'a,,

where R4;" denote the components of the curvature tensor R of the induced con-
nection V and are defined by

Rdcba=adrcab—acrdab‘l"Fdaerceb‘[‘caerdeb-

The formula (2. 37) is the Ricci formula for van der Waerden-Bortolotti covariant
differentiation.

Some formulas. The structure 1-form 7 has its local expression 7=~Edz in
each neighborhood U of the total space M. Taking account of the second equation
of (2.15), we find

@. 38) dj=— %(kcb—hbc)EfEibdxf/\dxi.

Since ddi=0, we get
(2. 39) V aChes—hoe)+V (hva—hav)+V o(Rae—hea)=0

because of l’; jEz":;iE,“. The 2-form 2 defined in M by (1.11) is equal to p(d7).
Thus, we have from (2. 38)

(2. 40) O S IN)

The identity (2. 39) shows that tkhe 2-form 2 is closed, where 2 determines the
characteristic class of the given fibred space. (cf. Proposition 1. 3).

The horizontal plane field defined by #=0 is integrable if and only if dj=0
(mod 7). Thus, taking account of (2. 40), we have

PROPOSITION 2. 2. The horizontal plane field is integrable if and only if the
condition

hcb= hbc
holds.

Let B, be the local vector fields having components E*, in J. Then, taking
account of (2.17), we have the formulas:
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[Bc» Bb]:(hcb_hbc)c,

(2. 41) o
(€, 3:1=0.

§3. Special cases.

We discuss, in this section, some of fibred spaces of special type. First, taking
account of (2. 38), (2.39) and (2. 40), we have

ProposiTiON 3.1. When, in an (n+1)4dimensio~nal fibred space 1\71, the 2-form
dij is of the maximum rank n, the total space M is necessarily odd-dimensional
(i.e., n+1 is odd) and the base space M admits a symplectic structure 2= p(dy).

Taking account of (2.17), we have

PROPOSITION 3.2. In a fibred space M with invariant affine connection ,

1. PC =0, if and only if m® l,, A® and D vanish identically.

2. P3C=af for any vector field Y in 1\71, a being an invariant function in 1\7[,
if and only if we have

lb=0, Aa'=0, hb“=——a55“, D=—a.

3. 73C =al7~+a‘)(}7)5 for any vector field Vin A'7I, a and & being respectively
elements of JYM) and M), if and only if we have

I =—adg, D=—a, d;=LEP+aF,,

where &; denote the components of @.
4. FEach fibre is @ path if and only if we have A*=0.

In a fibred space M with invariant affine connection 7, let there be given
a curve ¢ expressed by equations x"—-x"(t) in a nelghborhood U of M t being a
parameter. Denoting by (¢ the image =(&) of ¢ by the projection = M—M, we
may assume that C is expressed by equations &*=£%#) in U==({)), where the func-
tions &%) in the right-hand side are defined by &%*(#)=£&%=x"(¥)), &%) being the
functions appearing in (2.1). In this case, we have

das® dx
B

and hence, differentiating covariantly both sides,

g 0z dg
a B et

3.1

where we have put
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Pt dix L . dxl dzt e g e des qgev
ar ~ ar el ar~ de °7dt dr’

I* 7, and I, being coefficients of the given invariant connection F and its projection
P respectively. Substituting (2. 27) in (3. 1), we have along &

240 2 i 2 b
3.2 0% o 0% (Ez dx )hb“ dé

T o dat ar

Thus we have

ProrosiTiON 3.3. In a jjbred space M with invariant affine connection, the
projection of anmy path of M is also a path with respect to the induced con-
nection if and only if

kcb=a52,
a being a certain invarviant function in M.

A curve € in a fibred space M is said to be horizontal if its tangent vector is
horizontal at each pomt of . When a curve & is horizontal in M and a curve ¢
is the projection #(¢) of € in the base space M, the curve € is called a Aorizontal
lift of C.

Let ¢ be a curve in M and be expressed by equations &*=£%#) in a neighbor-
hood U of M. If a horizontal lift & is expressed by equations z*=z"(f) in a
neighborhood J such as U=n=({)), then the functions z*(¢) should satisfy the differ-
ential equation

dz* . dg°
dt =E" dt -’

Differentiating covariantly both sides, we find along the lift &

Fah o, 5 hy 20 dE
g ~EragE B B g dt dt’
which reduces to
Pt 0% dg° d5b> 2
3.3) o B +(hcb E

because of (2.27). Thus we have

ProrosiTiON 3.4. In a fibred space M with invariant affine connection, a
horizonal curve & in M is a horizontal path if and only if its projection C=u(C)
is a path in the base space M and the condition
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&’ d§® _

heo = ar

holds alone C, the equatzon E=E%t) being the local expression of C. If this is the
case, the projection w: M—M preserves the affine parameters on C and on C.

PropPOSITION 3.5. In a fibved space M with invariant affine comnection, the
following two conditions are equivalent to each other:

@) Amny hovizontal lift of an arbitrary path given in the base space M is also
a path in M.

(b) hev+Hpe=0.

In the cases of (a), the projection . M—M Dreserves the affine parameters on the
corresponding paths.

ProPOSITION 3. 6. Assume that hep+hye=0 holds in a fibred space M with in-
variant affine connection. If theve are givem an arbitvary point P in M and an
arbitrary hovizontal vector V at B, then therve exists always a unique hovizontal path
passing through the point P and being tangent to the vector V at P.

If this is the case, the projection of amy horizontal path is also a path in the
base space M.

When, in a manifold with an affine connection, any affine parameter of each
path takes arbitrary given real value along that path, the manifold is said to be
complete (with respect to the affine connection). Thus, taking account of Proposition
3.6, we have

ProOPOSITION 3. 7. Assume that he+he=0 holds in a fibred space M with an
invarianl affine connection V. If the total space M is complete with respect to the
affine commection V, then the base space M is also complete with respect to the
induced affine connection V.

§4. Structure equations.

In a fibred space (ANL M, C, 7) with an invariant affine connection ¥/, apply-

ing the operator f;k to both sides of the second equation of (2.26) and taking
account of the formulas (2. 15), (2. 17), (2. 27) and (2. 34), we have an expression for

ViV ;E™ in terms of e, 2%, Ir, A%, D, their covariant derivatives and E*, EM, E;, E,%.

Thus we have an expression for i;,f jE"b~l§jl§kE”b in terms of the quantities
mentioned above. If we take account of the Ricci formula (2.37), we find fol-
lowing formulas:

R = Rues®—(hahev—he®han)+(hae— hea)l®,
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Raos®=—V alty +-Luhs®+ han A%,
4.1) .
Raes’ =V sheo+-Lahes) —V chas~+lehav) — (Bac— bea)lo,

Rot®=(7 abo~+Lals)—haohs*~+ Dhay,

where we have put
R =E*E1,EWES R, Bun*=E*EiE%E B,
R’ =E*E1,EWE Ry it Ri*=E*EIEWE Ry .

Similarly, applying the operator V. to both sides of the second equation of
(2.17), we have an expression for Vi/;E"* in terms of lw, 2% -+ and E™y, E®, .-,
Thus we have an expression for Fif/;E*»—F7xE" in terms of the quantities
mentioned above. If we take account of the Ricci formula (2.36), we find fol-
lowing formulas:

Rao®=—( ahe—Lahts™) +(F cha* —loha®)+(hac—hea) A%,
ﬁdooa = VdAa - /ldehga' + ldAa' __[_tha’

. 2) .
Rdco’J = (lec - Vcld) - (hdekcc - hcehde) + D(hdc - hcd)y

R’ = —84D—hae A+l
where we have put
Ruo=E*E1EES Ry, Ru=E*EIiEES Ry,
Ru’=E*EiEiE R, Ruo?=E*EIE Ry jit.

The formulas (4.1) and (4.2) form the so-called structure equations of the
given fibred space with invariant affine connection. They correspond to those of
Gauss, Codazzi and Ricci in the theory of subspaces.

When the invariant affine connection ¥ is of zero curvature in a fibred space
M, we have eight equations by putting ﬁkﬁ"=0 in (4.1) and (4.2). However,
among these eight equations, only the following six equations are independent.
Therefore, the structure equations:

R dcba= (hdahcb - hcahdb) - (hdc - kcd)kba:
14 dhba '—ldhba'— hdbAa = 0»
VdAa + }lde}lea - ldAa' - tha = 0,

4. 3)
W aheo+Laher)—V chavtlehap) — (hac—hea)ls=0,
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V aly+lals— haehs®+Dhgy =0,
adD —}-hdeAe - }ldele = 0

hold in the base space M with respect to the induced connection v, if the invarant
affine connection V is of zero curvature in the total space M

§5. The fibering in flat spaces.

Let M be an #n-dimensional differentiable manifold with a torsionless affine
connection V. Assume that there exist in M five tensor fields /ey, %%, I, A and D
of type (0, 2), (1,1), (0,1), (1,0) and (0, 0), respectively. Denote by R™*! the affine
space of n+1 dimensions with cartesian coordinates (xz")=(z!,z?, -, z**'). The
natural affine connection ¥ of R**! is torsionless and of zero curvature. We suppose
that there exists in R™*' an open set U, a differentiable mappmg m: U—M of the
maximum rank #, a vector field Cin U and a 1-form 7 in U such that the set
0, M, = C, 7) defines a fibred space with / as its invariant affine connection, and,
such that the affine connection V and the five tensor fields /e, %%, Iy, A® and D
given in M are all induced from the structure of the fibred space (O, M, =; C, 7)-
If this is the case, we say that there exists in Ua fibering which is compatible
with the structure (V, hep, io*, Iy, A%, D) over M.

We shall show in this section that, for a differentiable manifold M with a
structure (7, ke, 1% I, A% D), there exists in a certain open set [J of R"* a fibering
over M, which is compatible with the structure given in M, if the structure given
in M satisfies the conditions (4. 3) and M is a sufficiently small %-cube.

Let M be an n-cube with coordinates (§%)=(&%, €2, ---, £™) (|€%| < 6%, 0*>0,a=1,2, -, %)
and 7 a torsionless affine connection whose coefficients are denoted by I.% with
respect to coordinates (%), where I';%s=1"5". Assume moreover that there are given
in M five tensor fields A, %%, I, A®* and D of the corresponding type, where these
symbols denote respectively the components of the corresponding tensor fields with
respect to coordinates (6%), and these five tensor fields satisfy the conditions (4. 3).
We consider now the following partial differential equations:

a
aai; =—T %ESES+hlESEi+hE;EP+AEE,,
oE; . o v
5.1) —ax—]=—hchj Ebr—LES B —LEEP+DEE,
0&*
oz =E"

with unknown functions &%), E.(z") and Ei(z"), (z*) being the independent vari-
ables, where I'%, ke, ®, Iy A* and D appearing in (5.1) are given functions
depending on the unknown variables (§%). It is easily verified that the integrability
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condition of the partial differential equations (5. 1) is the condition (4.3). Thus the
partial differential equations (5. 1) are completely integrable, because the condition
(4. 3) is assumed to be satisfied by the given I'?s, e, ho%, Ir, A® and D.

Let a solution (¢% E.% E;) of (5.1) be given. Denote by 4 the determinant

(5. 2) 4=|E®, Ej.

If we take account of (5.1), we easily verify that the determinant 4 satisfies the
differential equations

o4
(5.9) o <[ B &0t + B+ D).

Take an arbitrary point P with coordinates (#%) in R™*' and (n-+1)* values
E2, E; such that 4=|F.%, F,|%0. Since the equations (5. 1) are completely integrable,
there exists one and only one set of solutions (§*(x*), £,*(x"), Ey(x™)) of (5. 1), which
satisfies the initial conditions

6.9 EEM=0, E@#W=E",  E#Y=E,

where the solution (¢%(x"), E,*(x"), Ei(z")) is defined in a certain cubic neighborhood
U containing the point P,. The function 4(z*) defined by (5.2) is a solution of a
homogeneous differential equation (5. 3). Thus 4(z*) does not vanish anywhere in
U, because 4(@")=|E", E;|50 holds by virtue of the assumption. We denote by ¢
a covector field having components E,%(z"*) for each fixed index ¢ and by 7 a covector
field having components E;(z”) all in UJ. Then the n+1 covector fields &% and 7 thus
introduced are linearly independent at each point of {J, because 4=|E2, E;| %0 as is
mentioned above. Taking account of (5.1), we find 06%/dx*=FE,* for the solution
(E(z"), E4(x™), Ex")). Since the matrix (E,*)=(0&%/0x%) is of the maximum rank #,
the correspondence

(5. 5) 7 (a™)—(§%(x™))

defines a differentiable mapping = of {f into M and = is of the maxiuum rank, the
open set [J being taken, if necessary, sufficiently small. The image =) is an
open set in M. For the sake of simplicity, we denote (07 simply by M.

Summing up, we have proved the fact that, given in R"*' an arbitrary point
P, and #+1 linearly independent covectors £:% E; at that point P,, then there exist
in R**' a cubic open set / containing Po, an onto differentiable mapping =: U-m
and #+1 linearly independent covector fields E.% E; defined in U such that Ep=E,
E,=E; at B, and =(P;)=0, where O is the point with coordinates (0,0,--,0) in
M.
We now construct in U #+1 vector fields B, and € having respectively com-
ponents E*; and E* such that
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Emy
< )——— (ES B
Eh

Then we get (2.5) (or (2.5)) and (2. 6). Moreover, the vector field C thus defined
is tangent to the fibre at each point of U/, where a fibre is by definition the inverse
image z~X(P) of P in U, P being an arbitrary point of M. In the next step, denoting
by £ the Lie derivation with respect to C, we easily find LLE"=0 and _LE*=0.
On the other hand, taking account of (2.5) and (5. 1), we obtain the equations

OE™ a erh CIh a 3 3

Fpm =L %ESEr o EY—hE;E Y+ LEE",
(5. 6)

aEh ar cRn CI R a h N h

—a;J—-———hc EfEM+LESEN—AE;E"—DE;E™",

Thus, by means of (2.5), (5.1) and the second equation of (5. 6), we find
LE,=FEI;E;+E;0,E’=0.

Therefore, taking account of (2. 5), we get _LE",=0 because of _LE,*=0 and LE,=0.
Consequently, we have ,CE =0, ,L’E 0, LE"=0 and _LE"=0. Thus, summing
up, we see that the set (U M, =; C #) is a fibred space.

We shall now show that the natural affine connection ¥ of R"*' is invariant
under the infinitesimal transformation determined by C. If we denote in U the
images by *r of the functions "%, #co, 40, I, A* and D by the same corresponding
symbols, we find that all of their Lie derivatives _LI':%y, Lhe, --+, LD vanish
identically in /. Therefore, applying the operator £ to both sides of the two
equations of (5. 6), we have

E™,\ EM\
"C( 0! >—O’ "E< 0! >~0

because of LE*=0, LE,=0, LE"=0 and LE"=0. These facts show that the
vector field € leaves in R** the natural affine connection 7 invariant. Consequently,
the fibred space (U, M, x; C, #) has the natural affine connection / as its invariant
affine connection. Thus we have

ProposITION 5.1. Let M be a differentiable manifold, which is a sufficiently
small n-cube, and there be given a torsionless affine connection V and five tensor
fields heo, M2, 1s, A% D of the type (0,2), (1,1), (1,0), (0, 1), (0, 0), respectively in M.
Assume that V, e, i, Iy, A% and D satisfy the condition (4.3). Given a point O in
M and a point B, in R™, then there exists in R™* an open set U containing Po,
an onto differentiable mappmg m U—M of the maxzmum rank n, a vector fleld o)
in U and a 1- -form # in U such that the set (U M, =; C 7) is a fibred space having
the natural connection of R™' as its invariant affine connection and the fibering
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determined in U by the fibred space (U, M, x;C, 7) is compatible with the given
structure (V, hes, o™, loy A%, D) of M. Such a fibering is determined by giving n+1
linearly independent covector E.% E, at the point P..

Let there be given an affine transformation . of R™, which is represented
by equations

n+1
‘ah= 3 aigt+at,  |af] =0,
k=1

ap and~ a" being constant, v~vhere (z*) and (‘z*) are respectively coordinates of a
point P and of its image _4(P) in R™"*. We now put
n+1 n+1 n+1
'El= Y BB, 'B,= 3, ViEy, =3 aiit+at,
h=1 h=1 k=1
the matrix (b%) being the inverse of the matrix («l). If we denote by (’&%(z"),
'E(x"), ' Ex™)) the solution of the differential equation (5.1) which satisfies the
initial conditions

TEY 1) =0, 'EXHEN="E.", 'E('E="E,,
then we have

Be= LB B B0E. =St +ar).
k=1 k=1 k=1

Moreover there exists a fibred space (O, M,"n; ’5, ’7) with the natural affine connection
P of R™* as its invariant affine connection and the fibering determined by the new
fibred space is compatiblgv with the structure (7, %, %, ls, A% D) given in M, where
=), 'n=ro A7, ’C=J(CN) and ‘j=J(7). The new fibering is called the
fibering transformed by the affine transformation A of the old fibering determined
by the fibred space O, M, =, C, #). Thus we have

PROPOSITION 5. 2. The fibering, whose existence is proved in Proposition 5.1,
is determined up to affine transformations in the affine space R"*.

§6. Manifolds with projective connection.

Let (M , M, =; 5, 7) be a fibred space with an invariant affine connection 7, which
is torsionless. Assume that the structure field C satisfies the condition

6.1) PoC=al’  for Ve gy,
« being a non-zero constant. Then, by virtue of Proposition 3.2, we find

6.2) 7y’ = —adg, le=0, A*=0, D=—a
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in each cylindrical coordinate U/ of the total space M. Therefore, the equations
(2.15) and (2. 17) reduce to

PES=—I MES Ep—aE, E;—aE;E",
VjE@ = hchJCEib - anEL,
6. 3)
ViEh=T"%E S Ety+hoE S El+aEEm,
ViEr=adl.

_ Change of horizontal planes. Let there be given a 1-form & in the total space
M such that

(6. 4) L£8=0,  FE)=0.
If we put
(6.5) i=7—,

then the set (A7I, M, w; 5, ’7) defines a new fibred space, which is said to be obmjned
by change (6.4) of horizontal planes from the oriNginal fibred space (M, M, =; C, ).
If we put in each cylindrical neighborhood U of M

-E-lazEzay E1=Ei’“¢i;
(6. 6) _ _
Ety=E"+$,E", Er=FE",
invariant functiong ¢y being defined by ¢,=FE%¢; and ¢; being components of the
vector field ¢ in U, then we find
Eny .
< )= (B E)H

Eh
and
IEhb= ] IE-h':O’
£Ela=0) oE-E-'b=O?

because of (6.3) and (6. 4), where E*(=E") and E, are components of € and /7 in
U respectively. If we differentiate covariantly both sides of the first two equations

of (6.6) and take account of (6. 2), we obtain

ﬁjEta,: —(Fc“b+a¢65g+a¢b5§‘)E]°Ei"-—aE-J“Ei—anE-ﬂ,
6.7 oL o o
VjEr': _(/Zcb+‘7c¢b—a'¢c¢b)E]cEib_a’EjEZ

because of (6. 6).
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Denote by (7, &) and (7, "hev). repsectlvely the structure induced in the base
space M from the fibred spaces (M M, x; C 7) and (M M,z C, ’%). Then we have

®.9) 'Tfy=T""o+agedg+agd?,
,hcb = hcb"’“ Vc¢b - a¢c¢b

as a consequence of (6.7), ¢o(=E%p:;) being components of the pro;ectlon b¢ in
U=x(0) with respect to old fibred space (M, M, ; G, 7), where I':% and 'I"% denote
the coefficients of 7 and ’F in U respectively.

Thus, taking account of the first equation of (6. 8), we have

PROPOSITION 6.1. If there is given an invariant affine connection V satisfying
the condition (6.1) in a fibved space without horizontal planes, them any two con-
nections V and 'V, which are induced in the base space M by giving structure 1-forms
7 and 'f in M vespectively, are projectively velated to each other. That zs to say,
if theve is given an invariant affine comnection V in a fibred space M without
horizontal planes, a projective structurve is induced in the base space M, the induced
Drojective structure being delermined by an affine connection V induced in M by
giving a structure 1-form 7 in M.

Coming back to a fibred space (1\71, M,z C, %) with invariant affine connection
V satisfying the condition (6. 1), we find from the structure equations (4.1) and (4. 2)

R ie® = Ruer® o[ (0%hoy— 08 has) — (hae— e8],

6.9) N
Rdcbo: thcb~ Vchdb
and
Run*=0, Run’=0, Rue®=0,
(6. 10)

~ ~ ~
Rdcoo=0, Rdooa=0’ Rdaoozo,

where Rgu:* denotes the components of the curvature tensor of the affine connection
V induced in the base space M.
If we change horizontal planes by means of (6.5) and put

'Ri*=R R0 58 SE N oL O
(6.11) N o

'Raey’= ﬁkjihE kB EGE,,
where E2 E, E*, and E" are defined by (6. 6), we find

6.12) e
'Rae’=Ract’— Racs*Pa
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as consequences of (6.6). The first equation of (6.12) shows that the projection
PR of the curvature tensor R of the invariant affine connection 7 is left invariant
by the change of horizontal planes. Thus, the projection p of the curvature tensor
R of the invariant affine connection V given in M is determined completely by
giving a fibred space (M, M, =; C) without horizontal planes. Thus we have

PrOPOSTION 6. 2. Let there be given an invariant affine connection satisfying
the condition (6.1) in a fibved space (A7[,M,zr; (,N“) without horvizontal planes and
denote by R its curvature tensor. The projection pﬁ in the base space M is com-
pletely determined independently of the choice of hovizontal planes. When pR
vanishes identically, the projection of the temsor field ﬁm"Eﬂ is in M completely
detevmined independently of the choice of hovizontal planes, where ﬁkﬁ" denote the
components of R and j=FEdx* is a structure 1-form.

E. Cartan’s projective connection. According to E. Cartan’s theory of projective
connection [1], a torsionless projective conmection II in M is determined by giving
arbitrarily a pair (7, 4») of a torsionless affine connection /' and a tensor field /.
of type (0, 2) in M, and, another such pair ('V,’A.) determines the same projective
connection I if and only if (7, k) and ('V, ’he) are related to each other by means
of (6.8) with a certain covariant vector field ¢,. The tensor fields Rio® and Ry’
given by (6.9) are called the curature tensors of the projective connection IT
determined by (¥, k). Thus we have

ProrosiTION 6.3. Let there be giveg an invgriant affine connection V satisfying
the condition (6.1) in a fibved space (M, M, w; C) without hovizontal planes. Then
a projective connection Il is induced in the base space M, wheve Il is determined by
a pair (V, hey) induced in M by giving a field of horizontal planes. The projection
PR of the curvature tensor R of V and the projection of the temsor field ﬁkﬁ"Eh
are the curvature tensor of the induced projective connection II, wheve ﬁkﬁ" denote
the components of R and j=Edx* is a structure 1-form.

In E. Cartan’s theory [1], a projective connection is determined by giving
an arbitrary pair (7, A.) of a torsionless affine connection / and a tensor field /4., of
type (0.2) in M. However, in our case, the induced tensor field /4., satisfies neces-
sarily the condition (2.39). That is to say, the 2-form £2=—(1/2)(/zco— hoc)dE° NdE®
is closed and determines the characteristic class [£] of the given fibred space
(A7I, M, r; 5) without horizontal planes.

Taking account of (6.9) and (6. 10), we have

PROPOSITION 6. 4. Let theve be given an invariant affine connection V satisfying
the condition (6.1) in a fibred space (M,M:r; C) without horizontal planes. The
projective connection Il induced in the base space M is of zevo curvature (i.e., Ry*=0
and Ran’=0) if and only of the given invariant affine connection V is of zero curva-
ture in the total space M.
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In a fibred space (A7I, M, =; 5, #) with an invariant affine connection ¥ satisfying
the condition (6.1), let & be a path in M with respect to 7 and expressed by
equations z*=g"¢) in a cylindrical neighborhood [, ¢ being an affine parameter.
Then, by means of Proposition 3.3, the projection C==(f) is a path in M with
respect to the affine connection ¥ induced in M and C has the parameter ¢ as its
projective pavameter. The projection C is expressed by equations &*=&%#) in
U=x(l)), the function £%¢) being defined by &%#)=£Xz"(?) (cf. §3). We define a
function &°(¢) along C by the integral

¢ dxt
6.13 ()= —_—
( ) E(t) StOEi It df

taken along C, #, being a constant. Taking account of (6. 3), we have along C

6.14) & g e dee dg _a<d5° )

ar  ar ar " ar dt dt
On the other hand, taking account of (3. 2), (6.2) and (6. 14), we find along C

d&*
dt

dot B di ae

©19 @ TaE ST a A

:“—E’La

If we now define a new parameter s along C by the differential equation

&t
ds® d&®

(& =2
ds

then, as is well known, we have along C

(6. 16)

0% _ dgt agv
(6 17) W——O, {t,S}—-—Zahcb—dT ar
where
d’t dt \?
_dst 8 [dst
R A
ds ds

is the so-called Schwarzian (cf. [1], [12], [13]). By means of the second equation of
(6. 17), any projective parameter ¢ of a path ¢ given in M is determined as a func-
tion of an affine parameter s of C up to projective transformation ¥=(at+b)/(ct+d)
(ad—bc=0), a,b,c and d being constant,
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Normal projective connection. In a fibred space (1\71, M, =; C, 7) admitting an
invariant affine connection F, which satisfies the condition (6.1), we assume now
that the curvature tensor R of / satisfies the condition

(6.18) B,;i"=0,
which is equivalent to the condition
(6.19) Ro'=0

because of (6.10). The condition (6.18) shows that the invariant affine connection
/ has vanishing Ricci tensor. The condition (6.18) or (6.19) is equivalent to the
condition

1

(6. 20) hoy=— ——

(nRey+ Rye),

Rey=Rex® denoting the Ricci tensor of the affine connection ¥ induced in M. Thus,
in the present case, the tensor field /. is determined completely by (6. 20), if there is
given a torsionless affine connection 7 in the base space M. The projective connection

1T determined in M by the pair (7, kw), he being given by (6. 20), is called the
normal projective commection corresponding to the affine connection V. Thus we
have

ProPOSITION 6.5. Let there be giveﬂg an z'nvajiant affine connection V satisfying
the condition (6.1) in a fibved space (M, M, r;C) without horizontal planes. The

projective connection induced in M is the normal projective comnection Il corres-
ponding to an affine connection V, which is induced in M by giving in M a field
of horizontal planes, if and only if the Ricci tensor of the conmection V vanishes
identically n M.

Substituting (6. 20) in the first and the second equations of (6.9), we find

Rier®= Rues®+ (84 My — 08 Myp) -+(Mae— M.a)og,
6. 21)

aB ey’ =V aMey—V :Muy),

where the tensor field M., is defined by
1
(6. 22) Mep=— m(”Rcb"{'RbC)'

As is well known, the right-hand sides of both equations in (6. 21) are respectively
the Weyl's projective curvaiure tensors Wae® and Wae of the connection F, which
are determined completely by the affine connection V induced in M. Thus, in this
case, we have
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5 a a ﬁ 0 1
(6. 23) Raer®= Wae®, aey’= - Waes.

On the other hand, an affine connection V in M is said to be projectively flat
if, for any point P of M, there exists a neighborhood such that there exists in that
neighborhood an affine connection which is projectively related to F and of zero
curvature. Then, it is well known that an affine connection F is projectively flat,
provided dim M=3, if and only if its projective curvature tensor Wy,® vanishes
identically, and, that FV is projectively flat, provided dim M=2, if and only if its
projective curvature tensor Wy vanishes identically (cf. Weyl [10]). Thus we
have

PROPOSITION 6. 6. Let there be gz’vey an invariant affine connection V satisfying
the condition (6. 1) in a fibred space (M, M, =; 5) without horizontal planes. Assume
that the Ricci tensor ﬁji=ﬁmﬂ"‘ vanishes identically in M. Then, the projective
connection Il induced in M is of zero curvature, or equivalently, an affine connection
V induced in M by giving a field of horizontal plgnes is projectively flat, if and
only if the given invariant affine conmection V in M is of zero curvature.

The discussion developed in this section reduces to Veblen’s theory [9] if we
restrict ourselves only to integrable fields of horizontal planes in fibred spaces.
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