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DIFFERENTIAL GEOMETRY OF FIBRED SPACES

BY KENTARO YANO AND SHIGERU ISHIHARA

Introduction.

To obtain a unified field theory of gravitation and electromagnetism, Kaluza
[4]υ and Klein [5] used a five dimensional Riemannian manifold admitting an
infinitesimal translation and identified a point in the space-time with a trajectory
of the translation in this five dimensional Riemannian manifold.

On the other hand, to obtain a representation of an ^-dimensional manifold
with projective connection, van Dantzig [2], Haantjes [3], Schouten [7], Thomas [8],
Veblen [9], Whitehead [11], one of the present authors [12], [13], [16] and others
used an (^H-l)-dimensional manifold with aίfine connection admitting a vector field
which is concurrent and which defines an infinitesimal affine transformation, and
they identified a point in the manifold with projective connection with a trajectory
of the infinitesimal affine transformation in the manifold with affine connection.
To study the manifold representing a manifold with projective connection, geometers
of Dutch School used the so-called homogeneous curvilinear coordinates and those
of Princeton School used the non-homogeneous curvilinear coordinates.

We call now fibred spaces such manifolds appearing in the unified field theory
and in the theory of representation of projective space. The fibred spaces have
been studied by Davies [14], Mutδ [6] and the present authors [15].

The purpose of the present paper is to develop systematically the theory of
fibred spaces. In § 1 we define the fibred space and discuss tensor fields, invariant
affine connection, induced affine connection and van der Waerden-Bortolotti covariant
differentiation in the fibred space. We develop in § 2 the tensor calculus in fibred
spaces in terms of local coordinates. § 3 is devoted to the study of some special
cases in which the so-called structure field satisfies certain conditions. We study the
structure equations in § 4 and the fibring in the flat space in § 5. In the last § 6,
we examine manifolds with projective connection from our point of view.
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§ 5. The fibring in flat spaces.
§ 6. Manifolds with projective connection.

§ 1. Fibred spaces.

Let M and M be two differentiate manifolds2) of dimension n+l and n re-
spectively, and assume that there exists a differentiate mapping π: M-*M, which
is onto and of the maximum rank n. Then the inverse image π~*(P) of a point P
of M is a 1-dimensional submanifold of M. Denoting π~:(P) by Fp, we call the
submanifold Fp the fibre over a point P of M. We assume in this paper that the
fibre Fp is connected for every point P of M.

We assume that there are given in M a vector field C and a 1-form ή, the
vector field C being non-zero and tangent to each fibre everywhere and the 1-form
η satisfying the conditions

(1-1)

where the operator X denotes the Lie derivation with respect to C. The set
(M, M, π; C, η) satisfying these conditions is called a fibred space. We call M and
M the total space and the base space of the fibred space respectively. The vector
field C and the 1-form ή are called the structure field and the structure l-form of
the fibred space respectively. The ^-dimensional distribution defined in M by the
equation ή=Q is called the field of horizontal planes and the value of this distri-
bution at each point is called the horizontal plane at that point. The mapping
π: M-+M is called the projection of the fibred space. If there is no fear of con-

/v /v

fusion, we call, for the sake of simplicity, a fibred space (M, M, π\ C, ή) simply a
/N/

fibred space M.

Tensor fields in fibred spaces. We shall here introduce some notations as
follows:

1. T(M) is the tangent bundle of M.
2. £ΓΪ(M) is the space of all tensor fields of type (r, s), i.e., of contravariant

degree r and covariant degree s, in M.

3. £Γ(Aί)=Σ3 ;(M).
r,s

The notations T(M), £ΓΪ(M) and £Γ(Λf) denote the spaces corresponding to T(M),
£Π(M) and £Γ(M), respectively, with respect to M

We shall introduce a linear endomorphism T-^TH of £Γ(M) which is characterized
by the following properties:

(H. 1) /*=/ for /€£Γί(M).

2) The differentiability of the manifolds and of the objects we discuss is supposed
alwavs to be of O.
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(H.2) XH=X-τj(X)C for

(H. 3) ωH=ω-ω(C)η for ώ

(H.4) (S®f}H=(SH)®(fH) for S,fe2W).

The tensor field TH is called the horizontal part of f for any f e£Γ(M). If T=fH,
f is said to be horizontal. On putting

(1.2) fr=f_fH for T€£Γ(M),

we call TF the non-horizontal part of T. Especially, for any elements XςζΓKM)
and ώ€£Π(M), ^Γ and ώF are called the vertical parts of X and ώ respectively. If
X=XV, ώ=ώv, they are said to be vertical. We shall now introduce notations as
follows:

4. ζTH(M) is the space of all horizontal tensor fields in M. £rH(M)c£Γ(M).
A tensor field T in M is said to be invariant if J7T=0 holds. We shall here

introduce some notations as follows:
5. J(M) is the space of all invariant tensor fields in M. J(M)c£Γ(M).

6.

7.

Thus we have

8. J(M)%JH(M) denotes the formal tensor product, i.e., the tensor product of
J(M) and JH(M) regarded as two abstract tensor spaces over M.

We denote by j: JH(M)-^J(M) the natural injection. We shall now introduce
a linear homomorphism i: J(M)# JH(M)— >J(M) which is characterized by the
following properties:

(I.I) f(f)=ΛΓ)€c?(XΪ) for

(1.2) i(f)=f for T€J(M).

(1.3) f(5f#Γ)=f(S)®i(f) for

We shall introduce a linear homomorphism T-*TL of £Γ(M) onto J/7(M), which
is characterized by the following properties:

(L.I) /*=/oτr for /€£Γί(M),

(L. 2) for any element J^€£Γi(^) there exists a unique element XL$3H(M) such
that
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(L. 3) ωL=*πω for fi>€£Γι(M),

(L.4) (S®T)L=(SL)®(TL) for S,Γ€£Γ(M),

where the differential mapping of the projection π: M-+M is denoted also by π and
the dual mapping of the differential mapping π is denoted by *ττ. For an element
Te£Γ(M), TL is called its lift.

We shall here introduce a linear homomorphism p: J(M)-»£Γ(M) which is
characterized by the following properties:

(P.I)

where P is an arbitrary point of FP, P being an arbitrary point of M.

(P. 2) (pX)f=P(XfL) for

/ being an arbitrary function in M.

(P. 3) (ASX^)=/>(<0(J^)) for α>

J£ being an arbitrary vector field in M

(P. 4) P(S®f)=(p3)®(pf) for S, f € J(M).

For an element T of J(M), ^T is called its projection.
Taking account of the definition above, we can easily verify the following

formulas:

(1.3)

(1.4)

(1.5)

(1.6)

pT=p(T»), ί

p(TL)=T

(pf)L=f"

(A/y=/

>(TF)=0 for

for

for

for

Te J(M).

Γ62W).

f e J(M).

/v ™

Because of (1. 4) and (1. 5) we see that the projection p: J(M)-^ζ£(M) induces an
isomorphism p: JH(M)-^£(M) and the operation taking lifts is the inverse of the

/x/

restriction of the projection p to JH(M).
We have now

PROPOSITION 1. 1. For any two elements X, Ϋ€ JJ(M), we have
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(1. 7) [X, γ*=[XH, H]H, [X, Y=[XH,

= -2Ω(X9Ϋ)C,

and

(1-8)

where Ω is an invariant 2-form defined by

(1. 9) Ω=dη.

For any two elements X, Fe£Ti(M), we have

(1. 10) [XL, YL]H=[X, Y]L, [XL, YLY=-2Ω(XL, YL)C

(cf. Yano and Ishihara [15]).

We now introduce in M a 2-form Ω such that

(1. 11) Ω=pΩ=p(dφ.

Thus we have

PROPOSITION 1. 2. For any element ώe JJ(M), we have

(1. 12) p(dω) = d(pω) + p(ώ(C))Ω.

When ώ€ JHJ(M), we have

(1. 13) p(dώ)=d(ώ).

(cf. Yano and Ishihara [15]).

Taking account of dΩ=Q, which is a direct consequence of (1. 9), we have
<#2=0 because of (1. 10). Thus the 2-form Ω is closed. We denote by [Ω~\ the
element of H2(M) determined in M by the closed 2-form Ω, where H2(M) denotes
the second cohomology group of the base space M.

If we omit the structure 1-form ή from the set (M, M, π; C, ή), then we have a
set (M, M, π; C) which is called a fibred space without horizontal planes. Suppose
that, in a fibred space (M, M, π C) without horizontal planes, there are^given two
structure 1-forms ^ and % i.e., suppose that J7^=J?/^=0 and ^(C) = /^(C)=1 hold.
Then, putting ζ='τ?— 9, we find because of (1. 11)
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which is equivalent to the condition

Ώ=Ω+d(pζ),

where Ω=p(dή) and fQ—p(d'r\}. This equation shows that the two cohomology
classes [Ω] and [Ώ] coincide with each other. Thus we have

PROPOSITION 1. 3. Let there be given two structure 1-forms η and fη in a fibred
space without horizontal planes. Then the two cohomology classes [Ω] and [Ώ]
coincide with each other, where Ω and Ώ are determined in the base space M by
(1. 11) in terms of η and 'η, respectively. That is to say, to a fibred space without
horizontal planes, there corresponds a unique cohomology class [Ω] e H2(M) in the
base space M.

The unique cohomology class [Ω]ςH2(M) corresponding to a fibred space
(M, M, τr; C) without horizontal planes is called the characteristic class of the fibred
space (M, M, ττ; C) without horizontal planes.

Invariant affine connection^ in fibred space. Let there be given an affine con-
nection 9 in the total space M such that 9 is invariant under the infinitesimal
transformation determined by the structure field C, i.e.,

(1. 14) JC(9γ$=9γ(j:X)+f&nX

for any vector fields X and Ϋ in M. Such an affine connection 9 is called simply
an invariant affine connection in M. When X and Y in (1. 14) are invariant, this
formula reduces to J?(FrJ?)=0. Therefor 9?X is an invariant vector field if X,
Ϋ and 9 are invariant. Thus an invariant affine connection 9 operates in J(M)
as a derivation. Now, we shall define an affine connection F in the base space M
by the following property:

(1. 15) VYX=p(9γLXL\

X and Y being arbitrary vector fields in M. The connection F thus defined is
called the projection of the invariant affine connection 9 given in M or the induced
connection in M.

The torsion tensor f of the affine connection 9 given in M is by definition

T(X, Ϋ)=9zΫ-9τx-[X, Ϋ i

X and Ϋ being arbitrary vector fields in M. Taking account of the definition
(1. 15) and Proposition 1. 1, we see that the torsion tensor f is invariant and its
projection T—pT coincides with the torsion tensor of the induced affine connection
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V in M Thus we have

PROPOSITION 1. 4. Let 9 be an invariant affine connection in a fibred space
M. When 9 is torsionless, so is also the affine connection V induced in M from
9.

We now note the fact that the curvature tensor R of an invariant affine con-
nection 9 is also invariant. We shall study properties of the curvature tensor R
in §4.

We can prove easily the following formulas:

(1.16) p(PγT)=ΓYT for

where Y=pΫ and T=pf, and

(1.17) FγT=p(9YLTL) for

where 9 is an invariant affine connection in M and F its projection.

Van der Waerden-Bortolotti covariant derivative. Suppose that an invariant
affine connection 9 is given in the total space M of a fibred space. Given an ele-

ment Ϋ€ JJ(M), we define a derivation ?γ in the formal tensor product J(M) # 3H(.
by the following properties:

(W.I) Vγf=9γf for TeJ(M).

(W.2) VγT=(9γHT)H for TeJH(M)

(W. 3) Pγ(S%T)=(PγS)%T+S%(ί7γf) for S€j(M),

For any element T^of J(M)#JH(M), the correspondence Ϋ-*VγW defines an ele-

ment FPFof J(M)# 3H(M), Ϋ being an arbitrary element of JS(M). We call PW
*

the van der Waerden Bortolotti covariant derivative of W.

REMARK. Let G be a Lie group of 1 dimension, which is connected. Let there
be given a principal fibre boundle B=(M,M,G) with G as its structure group, M
and M being the total space and the base space respectively. Denote by C the
vector field in M whose value at each point is the image of C by the principal
mapping, where C is a non-zero element of the Lie algebra of G. Take an infini-
tesimal connection η in M and consider the set (M, M, π; C, η\ π being the bundle
projection of B. If we define in this case invariant tensor fields and invariant
affine connections in M as those which are invariant under the right-translation of
the structure group G, then we can develop the same discussions as we had in
this section.
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§ 2. The tensor calculus in fibred spaces.

Let (M, M, τr; C, η) be a fibred space. Since the projection π is differentiable
and of the maximum rank, there exists, for any point P of M, a coordinate neighbor-
hood 0 of P such that U=π(U) is a coordinate neighborhood containing P— τr(P) in
M and the intersection £/ Π FQ is expressed by equations

a1, a2,--- and <zw being constants, with respect to certain coordinates (y1, y2, •••, yn+l)
defined in U, where Q is an arbitrary point of U. We call such a neighborhood
0 a cylindrical neighborhood of M. We restrict ourselves only to cylindrical neighbor-
hoods in M. Thus we call a cylindrical neighborhood of M simply a neighborhood

™ . . .
of M in the sequel for the sake of simplicity.

Given a neighborhood U of M, the set (£/, U, π\ C, 9) is a fibred space which is
called the restriction of the given fibred space to 0, where U=π(U), π is the
restriction of the projection π: M— >Λf, and C and ^ are respectively the restriction
of the structure field and the structure 1-form in M. In the sequel, we shall
identify the operations taking horizontal parts, lifts, projections and etc. in the
fibred space (U, U, π; C, ή) with the corresponding operations in the given fibred space
(M, M, τr; C, rj) respectively.

Let there be given local coordinates (xk)=(x\x2, — ,a?n+1) and (fα)=(f1,f2, — ,fn)
in a neighborhood U of M and in U=π(U) respectively .8) We denote respectively
by Eh and £, the components of the structure field C and the structure 1-form η
with respect to coordinates defined in ί/.4) We may assume that, for an arbitrary
point P with coordinates (ξa) in U, FpΠU is represented by n equations

(2. 1) £"= W)

in Uj where w functions ζa(xh) are differentiable in U and their Jacobian matrix
(dξa/dxh) is of rank Λ. We put

(2.2) E^

a=^^ξa,

where 3* means the operator

3) The indices A, *, y, ̂ , /, m run over the range {1, 2, •••, w+l> and the indices #, &, c, d,
e,f run over the range -{1,2, •••,«}. The so-called Einstein's summation convention is used
with respect to these two systems of indices.

4) Given a tensor field T in M, its components with respect to local coordinates (xh~)
mean defined in U, or, the components of T in U the components of T with respect to
the natural frame {d/dx1} defined in U.
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We then see that n local covector fields ζα with components El

a are linearly
independent in U. Since the structure field C is tangent to fibres, we find

(2. 3) £*£*=!, EiEl

a=0,

the first equaion being a direct consequence of η(C) = l. The n+l local covector
fields ζα and 37 are linearly independent and hence form a local field of coframes in

As a consequence of (2. 3), we see that the inverse of the matrix (El

a, Et) has
the form

(2.4) (EΛ £*)-'=

where, for each fixed index b, Eh

b are components of a local vector field Bb in U.
The n+l local vector fields Bb and C form a local field of frames in 0. At each
point of 0 the coframe {ζα, 57} is dual to the frame {BblC}. The equations (2. 4) are
equivalent to the conditions

(2.5)
EίEl

a==Oy E^=19 i.e.,

(2. 5)'
ζα(C)=0,

or to the conditions

(2. 6) E1

aEh

a+EiE
h=δ».

The first and the second equations of (2. 5) or those of (2. 5)' show that n local vector
fields £δ span the horizontal plane, defined by ή=Eίdxl=Q, at each point of ϋ.

Denoting by X the Lie derivation with respect to the structure^ field C, we
find J?Eh=Q and X£"t=0, which are equivalent to the identity [C, C]=0 and the
second condition of (1. 1) respectively. We also have the relation J?Eί

a=Q. In fact,
as a consequence of (2. 2), we find

(2.7) fyEΊα=3<EΛ

Thus, taking account of (2. 5) and (2. 7), we obtain

Next, taking Lie derivatives of both sides of the first and the second equations of
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(2. 5), and, also taking account of (2. 5) and of the three conditions f£Efl=Q>

and XEΊα=0, we find £Ehτ>=§. Therefore, summing up, we get

(2.8)

Horizontal part. Let there be given a tensor field, say, f of type (1, 1) in the
total space M. The tensor field f has components of the form

f iΛ= Tb

aEibEh

a+ TJEfEh+ ToaEiE*a+ T^E^

with respect to coordinates (xh) defined in a neighborhood U of M, where TV*, Γ&0, T0

a

and TΌ° are certain functions in ΰ. Thus, taking account of (H. 1)— (H. 4), we
easily see that the horizontal part S=TH of T has components

Invariant function. Let there be given an invariant function / in the total
space M. We have by definition J7/=0, i.e.,

(2. 9) Eidif(xh)=0

in each neigborhood U in M. On the other hand, we see from (2. 2) and the second
equation of (2. 3) that each of the n independent functions ξa(xh) appearing in (2. 1)
is a solution of the partial differential equation

with an unknown function F. Therefore, as is well known, the equation (2. 9) im-
plies that, for any invariant function f=f(xh),

(2. 10) /

holds in U. Taking account of (2. 10), we find the formula

(2. 11) 3if=Efdaf

in U for any invariant function /, where the operator dα is defined by

Let / be an invariant function in M (in U). Then its projection f=pf is a
function in M (in U=π(U)) and, conversely, the lift fL of / is equal to /. Thus
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in the sequel we shall identify any invariant function f with its projection f=pf.

Invariant tensor field, projection and lift. Let there be given an invariant
tensor Jϊeld, §zyz f belonging to J\(M) in the total space M. Then, in a neighbor-
hood U of M, T has components of the form

(2. 12) fih= naE*Eh

a+ TboE*E»>+ T,aEiE\+ T^E*

with respect to coordinates (xh) defined in 0, where TV*, 77, 77 and 77 are
invariant functions in U.

Let there be given an invariant tensor field, say, T belonging to J1(M). Then
f has components of the form (2. 12) with invariant functions Tb

a, 77, 77 and 77.
Thus, taking account of (P. 1)~(P. 4), we can easily see that the projection T=pf
has components Tb

a with respect to coordinates (ξa) defined in U=π(U).^
Let there be given a tensor field, say, T of type (1, 1) in the base space M.

Then, taking account of (L. 1)— (L. 4), we can easily verify that the lift f = TL of
T has components of the form

with respect to coordinates (xh) defined in neighborhood U of M if the given T has
components Tb

a=Tb

a(ξc) with respect to coordinates (ία) defined in U=π(U).

/>/
Invariant ajfine connection. Let there be given in the total space M an^ in-

variant aίfine connection 9 which is torsionless.^ Then, taking a vector field X in
M, we know by definition that its covariant derivative VX has components of the
form

with respect to coordinates (xh) defined in each neighborhood 0 of M, where Xh

and Γjh

^ are respectively components of X and coefficients of Ψ with respect to
(xh) in U. Since 9 is torsionless, we have

(2. 13) ΓΛ=ΓΛ

For each fixed index a, the covariant derivative Fζα of local covector field ζα

has components 9 jE? in a neighborhood U of M, Eί

a being the components of ζα

in 17. Because of (2. 7) and (2. 13), we find

5) The components of a tensor field T in M with respect to coordinates (£α) defined
in U, or, the components of T in U mean the components of T with respect to the natural

frame {d/dξb} at each point of U.
6) Throughout the paper, we shall restrict ourselves to torsionless amne connections

in the total space M.
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(2. 14) Pj£t

α = ?<£/.

By virtue of (2. 4) and X£\=0, we can put

VjEf^-Γf&fEt+hfEf
(2. 15)

PjE>= -hoESEt-lcESEi

in each neighborhood 0 of M, where

(2. 16) ΓΛ= Aαc

because of (2. 14). Taking account of (2. 8), we see that Γc\ hcb, hf, lb, A
a and D

are all invariant functions in U, because the affine connection V is invariant. The
first and the second equations of (2. 15) are called the co-Gauss equations and the
co-Weingarten equations respectively of the given fibred space with an invariant
aίfine connection F\

Taking account of (2. 5) and (2. 15), we find

(2. 17)

The invariant functions ΓΛ, hcb, hb

a, etc. are given respectively by the following
formulas:

(2. 18)

because of (2. 15) and (2. 17).

Projection of invariant affine connection. Let there be given an invariant
aίfine connection V in a fibred space M. Taking an invariant vector field X in M,
we see that X has components of the form Xh=X°'Eh

(l-{-XύEh in each neighbor-
hood 0 of M, J^α and XQ being invariant functions inJ7 (cf. (2. 12)). Taking
account of (2. 17), we find that the covariant derivative VX has components of the
form

(2. 19)
+ { -hb

aXb-XQAa}EjEh

a+ {lbX
b-X°D}EjEh,
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where we have put

(2. 20) PcX
a=dcX

a+Γc

a

bX
b.

When X is invariant and horizontal, the formula (1. 29) reduces to the formulas

(2.21) F^=(FcJn£/£\+(/^^

because of X°=Q. Thus the quantity hcb determines an element h of £Π(M) and
an element h of SHl(M) such that

h(Y,X)=p{y(PYLXL)} for X, F€£Π(M),
(2. 22)

Similarly, the quantity hb

a determines an element H of £Γί(M) and an element H
of JHl(M) such that

H(X)=-p(PzXL) for XegKM),
(2. 23)

ff=HL.

Taking account of (2. 21), we see that the quantity 4 determines an element / of
3*?(M) and an element / of £ΓHW) such that

for

By virtue^ of (2. 19), the quantity Aa determines an element A of £Γ5(M) and an
element A of 3Hl(M) such that

and the invariant function D is expressed by the equation

The tensor fields h, H, /, A and £> defined above have respectively components
Acs, >^δα, /&, ^4α and P with respect to coordinates (ξa) in U. These tensor fields are
called the induced tensor fields in M.

Let F and Z be vector fields in the base space M. Denote their components
in a neighborhood U—πφ) of Mby Fα and Zα respectively, where £7 is a cylindri-
cal neighborhood of M. Then their lifts FL and ZL have in £/ components of the
form Yh=YaEh

a and Zh=ZaEh

a respectively. Therefore, taking account of (2.19),
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we see that the vector field W=VγLZL has in 0 components of the form

(2. 24) Wh=( YΨcZ
a)Eha+(hcb YcZ*)Eh,

and hence its projection W=^γZ=p(ΓYLZL) has in U components of the form

W a=

where F is the induced connection in M. Consequently, by means of the definition
(1. 15) of the induced connection, ΫcZ

a appearing in (2. 24) are components in U of
the covariant derivative FZ, where F is the projection of the given invariant aίfine
connection F. This fact shows that the induced connection F has coefficients Γc\
which appeared in (2. 15), with respect to coordinates (ξ α) in U. Thus, taking ac-
count of (2. 18), we have

PROPOSITION 2. 1. Let there be given an invariant and torsionless affine con-
nection 9 in the total space M. Then the connection F induced in the base space
M has coefficients of the form

Γc

a

b= -E'cEWjES-ffrEf)
(2. 25)

in each neighborhood U=π(U), the induced connection F being torsionless, i.e.,

Γ a _ f a
c b — J b c

If we put conventionally in U

VjEΐ
(2. 26)

which are the components of (Fζα)F and (VBby respectively, then the first equa-
tions of (2. 15) and (2. 17) reduce respectively to the equations

(2. 27)

Let there be given an element X of JH1

0(M). Then X has necessarily components
Xh=XaEh

a in each neighborhood U, Xa being invariant functions in U. Thus, in
this case, the formula (2. 21) reduces to the formula

(2. 28) ^JX
h=(FcX

a)E3

cE\^XaFjE
h

aι Xh=X°Έh

a

because of (2. 27). Next, if we suppose that an element of JH(M), say, f belonging
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to 3H\(M} is given in M, then f should have components fi

h=Tt>aEί

bEh>a in 0, Tb

a

being invariant functions in U. We can prove that the covariant derivative 9f of
T has componets of the form

(2. 29) V,fi*=(V<Tf)

where

Van der Waerden-Bortolotti covariant derivative. Let there be given an element

of the formal tensor product J(M)# JH(M), say, f belonging to Jί(M)# J
*

Then T is expressed as follows:

in each cylindrical neighborhood £/ of M, Tf* being invariant functions in U,
where {ei} = d/dxί is the natural frame of coordinates OΛ), {eh} the dual base to
{et}, Ba local vector fields having components Eh

a and ζδ local covector fields

having components £?, all in U. We call Γ/δ

α the components of Γ with respect
to coordinates (xh) and coordinates (ία) defined respectively in U and in U=π(U),

or simply the components of f in (#, C7). Let i: J(M)#JH(M)-*J(M) be the

linear homomorphism defined by (1. 1)~(I. 3) in §1. Then the image f=i(T) has
in U components of the form

(2.30) ?ΛΛ=W£tδ£Λα

Conversely, we find

(2. 31) Tff=fftE<tEh*.

# /v /v

The quantity E17^ determines an element P of JJ(M)# JH;(M), whose image
/N/ *

P=i(P) has components

because of (2. 6) and (2. 30). Therefore P is a projection tensor determining the

horizontal plane field. The quantity El

a determines an element Q of J?(M)# Jm

0(M)

such that i(Q)=P.

Let there be given an element of <3H(M\ say, S belonging to JH{(M). Then

S has in 0 components of the form Si

h=Sύ

aEi*Eh

a as an element of J(M). Thus,
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taking account of (W. 2), we see that, for any element Ϋ of c5i(M), W=ΫγHS
has in 0 components of the form

being the components of . This equation reduces to

(2. 32) Wba

because of (2. 27) and (2. 29), where

= —

Since the vector field Ϋ in (2. 32) is arbitrary, the van der Waerden-Bortolotti
** *

covariant derivative FS of S has components of the form

(2. 33)

Therefore, as a consequence of (W. 1)— (W. 3), for any element of J(M)# JH

*say, T belonging to Jl(M)#Jflί(M), its ^βr^ J^r Waerden-Bortolotti covariant deriva-
* *FT1 has components of the form

*F,rΛβ=9,r
(2. 34)

a rp k e_ Γerr k «N
d e ij b * d b - L j e )

in (#, C7), where Tff denote the components of T in (ί7, C7).

The components ff? of f=i(f) are given by (2. 30) in U, T being an element
of J(M)# JH(M) considered above. Taking account of the formula giving FzT/Λ
we have the formula

(2. 35) Vιffih=$ιTff)EfE*a+ Tff(PιEfiEha+ TffEWιE\)

because of (2. 26) and (2. 34).
As is well known, we have the Ricci formula

(2. 36) VJJX
h-VjVkX

h=RwhXi

for any vector field X having components Xh in U, where Rkji

h denote the com-
ponents of the curvature tensor R of the given invariant affine connection P and
are defined by
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Furthermore, for any element of J(M)# 3H(M\ say, T belonging to JJ(M)# 3H\(M\
which has components Th

b, we have the formula:

(2.37) WjT\-V3hτ\=Rw*Ti*-EJE,'RtofT^

where RdCb
a denote the components of the curvature tensor R of the induced con-

nection V and are defined by

The formula (2. 37) is the Ricci formula for van der Waerden-Bortolotti covariant
differentiation.

Some formulas. The structure 1-form η has its local expression η=Eidxί in
each neighborhood U of the total space M. Taking account of the second equation
of (2. 15), we find

(2. 38) dij= - 4- (ha-hte
Δt

Since ddή=Q, we get

(2. 39) Pd(hci>-hbc)+Fc(hM-

because of PjEz

a=FiEja. The 2-form Ω defined in M by (1. 11) is equal to p(dlj).
Thus, we have from (2. 38)

(2. 40) Ω= - -^(hcb-hbc)dξcΛdξ*.

The identity (2. 39) shows that the 2-form Ω is closed, where Ω determines the
characteristic class of the given fibred space, (cf. Proposition 1. 3).

The horizontal plane field defined by η=§ is integrable if and only if dή=Q
(mod η). Thus, taking account of (2. 40), we have

PROPOSITION 2. 2. The horizontal plane field is integrable if and only if the
condition

holds.

Let Bύ be the local vector fields having components Eh

b in 0. Then, taking
account of (2. 17), we have the formulas:
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[Bc,56] = (^e6-^c)C,
(2. 41)

[£,s*]=o.

§ 3. Special cases.

We discuss, in this section, some of fibred spaces of special type. First, taking
account of (2. 38), (2. 39) and (2. 40), we have

PROPOSITION 3. 1. When, in an (n+\)- dimensional fibred space M, the 2- form
dη is of the maximum rank n, the total space M is necessarily odd-dimensional
(i.e., n+l is odd) and the base space M admits a symplectic structure Ω=p(dη).

Taking account of (2. 17), we have

PROPOSITION 3. 2. In a fibred space M with invariant affine connection f ,
1. PC=0, if and only if hb

a, lb, A
a andJD vanish identically.

2. VγC=aΫ for any vector field Ϋ in M, a being an invariant function in M,
if and only if we have

/δ=0, Aa=Q, hb

a=-aδξ, D=-a.

3. f γC=aΫ-\-ώ(Ϋ)C for any vector field Ϋ in M, a and ώ being respectively
elements of J0

Q(M) and Jl(M), if and only if we have

hb

a=-aδ%, D=-a, ώj=lbEjb-\-aEj,

where ώj denote the components of ώ.
4. Each fibre is a path if and only if we have Aa=Q.

In a fibred space M with invariant affine connection Ϋ , let there be given
a curve ζ expressed by equations xh=xh(t) in a neighborhood ft of M, t being a
parameter. Denoting by C the image π(Q) of 6 by the projection π: M-*M, we
may assume that C is expressed by equations ζa=ξa(t) in U=π(U), where the func-
tions ζa(t) in the right-hand side are defined by ξa(t)=ξa(xh(t)), ξa(xh) being the
functions appearing in (2. 1). In this case, we have

dt ~ dt

and hence, differentiating covariantly both sides,

where we have put



DIFFERENTIAL GEOMETRY OF FIBRED SPACES 275

#&_,KΛ dtf_d& δ*ϊa d*ζa , TJa d?
Ji<>. ~ i * j l Ί,dt dt ' dt2 dt2

^j\ and Γc

b

a being coefficients of the given invariant connection V and its projection
7 respectively. Substituting (2. 27) in (3.1), we have along 6

V -̂
••'0 ι .

Thus we have

PROPOSITION 3. 3. In a fibred space M with invariant affine connection, the
projection of any path of M is also a path with respect to the induced con-
nection if and only if

a being a certain invariant function in M.

A curve C in a fibred space M is said to be horizontal if its tangent vector is
horizontal at each point of 5. When a curve ζ is horizontal in M and a curve C
is the projection π(C) of C in the base space M, the curve C is called a horizontal
lift of C.

Let C be a curve in M and be expressed by equations ζa=ξa(t) in a neighbor-
hood U of M. If a horizontal lift <? is expressed by equations xu—χ\f) in a
neighborhood ί7 such as U=π(U), then the functions xh(t) should satisfy the differ-
ential equation

— •£-' a,
dt ~ * dt '

Differentiating covariantly both sides, we find along the lift C

Λ£δ j^a
h "—

df ~ α dt2 b a dt dt '

which reduces to

because of (2. 27). Thus we have

PROPOSITION 3. 4. In a fibred space M with invariant affine connection, a
horizonal curve 5 in M is a horizontal path if and only if its projection C=π(δ)
is a path in the base space M and the condition
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holds alone C, the equation ζa=ξa(t) being the local expression of C. If this is the
case, the projection π: M-^M preserves the affine parameters on δ and on C*

/v/

PROPOSITION 3. 5. In a fibred space M with invariant affine connection, the
following two conditions are equivalent to each other'.

(a) Any horizontal lift of an arbitrary path given in the base space M is also
a path in M.

(b) hct>+ht,c=Q.

/\/
In the cases of (a), the projection π: M—*M preserves the affine parameters on the
corresponding paths.

PROPOSITION 3. 6. Assume that hCb+hbc=Q holds in a fibred space M with in-
variant affine connection. If there are given an arbitrary point Ϋ in M and an
arbitrary horizontal vector V at P, then there exists always a unique horizontal path
passing through the point P and being tangent to the vector Ϋ at P.

If this is the case, the projection of any horizontal path is also a path in the
base space M.

When, in a manifold with an affine connection, any affine parameter of each
path takes arbitrary given real value along that path, the manifold is said to be
complete (with respect to the affine connection). Thus, taking account of Proposition
3. 6, we have

PROPOSITION 3. 7. Assume that hcb+hbc=0 holds in a fibred space M with an
invariant affine connection P. If the total space M is complete with respect to the
affine connection P, then the base space M is also complete with respect to the
induced affine connection F.

§ 4. Structure equations.

In a fibred space (M, M, π; C, η) with an invariant affine connection P, apply-

ing the operator Ffc to both sides of the second equation of (2. 26) and taking
account of the formulas (2.15), (2.17), (2. 27) and (2. 34), we have an expression for

$j$jEhι, in terms of hcb, hb

a, /&, Aa, D, their covariant derivatives and Eh, Eh

b, Eiy Ez

a.
* * * *

Thus we have an expression for PkPjE
hι)—Pjl7kE

hb in terms of the quantities
mentioned above. If we take account of the Ricci formula (2. 37), we find fol-
lowing formulas:
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Rdob

a= -pdhb

a+ldhb

a+hdbA
a,

(4. 1)

Rdcb° = (Pdhcb + Idhcb) — (Pchdb + Ichdb) — (hdc — hcd)lb,

where we have put

Similarly, applying the operator Ϋk to both sides of the second equation of
(2.17), we have an expression for Vι$jEh in terms of hcb,hb

a,- and Eh

b,E
h,~ .

Thus we have an expression for F kΫ jEh — V / kE
h in terms of the quantities

mentioned above. If we take account of the Ricci formula (2. 36), we find fol-
lowing formulas:

Rd

Rdoo0=-ddD-hdeA
e+hdΊe,

where we have put

The formulas (4. 1) and (4. 2) form the so-called structure equations of the
given fibred space with invariant affine connection. They correspond to those of
Gauss, Codazzi and Ricci in the theory of subspaces.

When the invariant affine connection f is of zero curvature in a fibred space
M, we have eight equations by putting RJCji

h=Q in (4. 1) and (4. 2). However,
among these eight equations, only the following six equations are independent.
Therefore, the structure equations'.

(4.3)
(hdc — hcd)ίb = 0,
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ddD+hdeA
e-hdΊe=Q

hold in the base space M with respect to the induced connection F, if the invariant
affine connection V is of zero curvature in the total space M

§ 5. The fibering in flat spaces.

Let M be an ^-dimensional differentiate manifold with a torsionless affine
connection F. Assume that there exist in M five tensor fields Acδ, Aδ

α, /&, Λa and D
of type (0, 2), (1, 1), (0, 1), (1, 0) and (0, 0), respectively. Denote by Rn+1 the affine
space of n+l dimensions with cartesian coordinates (xh)=(xl, x2, •• ,#w+1). The
natural affine connection V of Rn+1 is torsionless and of zero curvature. We suppose
that there exists in Rn+1 an open set 0, a differentiate mapping π: U—*M of the
maximum rank n, a vector field C in 0 and a 1-form η in 0 such that the set
(U, M, π; C, rj) defines a fibred space with F as its invariant affine connection, and,
such that the affine connection F and the five tensor fields hCb, hb

a, /&, Aa and D
given in M are all induced from the structure of the fibred space (0, M, π\ C, η).
If this is the case, we say that there exists in U a fibering which is compatible
with the structure (F, Acδ, Aδ

α, /δ, A
a, D) over M.

We shall show in this section that, for a differentiable manifold M with a
structure (F, Acδ, Aδ

α, /&, Aα, Z>), there exists in a certain open set 0 of 7?n+1 a fibering
over M, which is compatible with the structure given in M, if the structure given
in M satisfies the conditions (4. 3) and M is a sufficiently small ^-cube.

Let Mbe an rc-cube with coordinates (fα)=(ί1, f2, — , Π (|£Ί <<5α, <5α>0, 0=1, 2, — , »)
and F a torsionless affine connection whose coefficients are denoted by ΓΛ with
respect to coordinates (ξa), where Γc

a

b=Γb

a

c. Assume moreover that there are given
in M five tensor fields Acδ, Aδ

c, /&, Aα and D of the corresponding type, where these
symbols denote respectively the components of the corresponding tensor fields with
respect to coordinates (fα), and these five tensor fields satisfy the conditions (4. 3).
We consider now the following partial differential equations:

dx3

^ ϋ=
dx3 ~~ 3

with unknown functions £αOΛ), Ef(xh) and Ei(xh\ (xh) being the independent vari-
ables, where Γc

α

δ, Acδ, Aδ

α, /δ, A
α and D appearing in (5.1) are given functions

depending on the unknown variables (ζa). It is easily verified that the integrability
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condition of the partial differential equations (5. 1) is the condition (4. 3). Thus the
partial differential equations (5. 1) are completely iηtegrable, because the condition
(4. 3) is assumed to be satisfied by the given /Vα, hcbf hf, lb, A

a and D.
Let a solution (ξa, Ef, Ei) of (5. 1) be given. Denote by Δ the determinant

(5.2) Δ=\Ef,Ei\.

If we take account of (5. 1), we easily verify that the determinant Δ satisfies the
differential equations

(5. 3) - e

Take an arbitrary point P0 with coordinates (xh) in Rn+1 and (n+l)2 values
#Λ &i such that Δ = |#Λ j&,| ̂ 0. Since the equations (5. 1) are completely integrable,
there exists one and only one set of solutions (ξa(xh), El\xh\ Ei(xh)) of (5. 1), which
satisfies the initial conditions

(5. 4) ξa(xh)=0, £ΛrΌ=£Λ £,(**)=£,

where the solution (ξa(xh), El

a(xh), Ei(xh)) is defined in a certain cubic neighborhood
0 containing the point P0. The function Δ(χh) defined by (5. 2) is a solution of a
homogeneous differential equation (5. 3). Thus Δ(xh) does not vanish anywhere in
U, because J(fΛ)=|&Λ ίy^O holds by virtue of the assumption. We denote by ζa

a covector field having components El

a(xh) for each fixed index a and by η a covector
field having components Eif(xh) all in U. Then the n+l covector fields ζα and η thus
introduced are linearly independent at each point of U, because Δ=\Ef, ft|^0 as is
mentioned above. Taking account of (5. 1), we find ^ξaΊ^x^=E^

a for the solution
(ξ^x^Ei^x^E^x*1)). Since the matrix (Ez

a)=(dζaldxί) is of the maximum rank »,
the correspondence

(5. 5) π: (xh)-*(ζ\xhϊ)

defines a differentiate mapping π of 0 into M and π is of the maxiuum rank, the
open set 0 being taken, if necessary, sufficiently small. The image π(0) is an
open set in M. For the sake of simplicity, we denote π(U) simply by M.

Summing up, we have proved the fact that, given in Rn+1 an arbitrary point
PO and n+1 linearly independent covectors £ia, &i at that point P0, then there exist
in Rn+1 a cubic open set 0 containing Po, an onto differentiate mapping π: 0-^M
and n+l linearly independent covector fields £V*, Ei defined in 0 such that Eih=&ih,
Ei—fci at PO and π(P0)=O, where O is the point with coordinates (0,0, •••,()) in
M.

We now construct in 0 n+l vector fields Bb and C having respectively com-
ponents Ehι> and Eh such that
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)=(£,", £<)-'.

Then we get (2. 5) (or (2. 5)') and (2. 6). Moreover, the vector field C thus defined
is tangent to the fibre at each point of 0, where a fibre is by definition the inverse
image π~*(P) of P in 0, P being an arbitrary point of M, In the next step, denoting
by X the Lie derivation with respect to C, we easily find J?Eh=Q and XE?=Q.
On the other hand, taking account of (2. 5) and (5. 1), we obtain the equations

(5. 6)

Thus, by means of (2. 5), (5. 1) and the second equation of (5. 6), we find

Therefore, taking account of (2. 5), we get j£E\=Q because of c£Eί

a=Q and
Consequently, we have j?Ef=Q, j:Et=Q, XEh

b=0 and j;Eh=Q. Thus, summing
up, we see that the set (U, M, π\ C, ή) is a fibred space.

We shall now show that the natural affine connection F of Rn+ί is invariant
under the infinitesimal transformation determined by C. If we denote in 0 the
images by *π of the functions Γc\ hcby hf, lb, A

a and D by the same corresponding
symbols, we find that all of their Lie derivatives JCΓC\ £hc^ •••, £D vanish
identically in 0. Therefore, applying the operator J? to both sides of the two
equations of (5. 6), we have

because of jCEl

a=Q, j:Ez=Q, j;E}l

b=Q and J?Eh=Q. These facts show that the
vector field C leaves in Rn+1 the natural affine connection F invariant. Consequently,
the fibred space (0, M, π\ C, η) has the natural affine connection V as its invariant
affine connection. Thus we have

PROPOSITION 5.1. Let M be a differentiable manifold, which is a sufficiently
small n cube, and there be given a torsionless affine connection V and five tensor
fields hcb, hb

a, lbί A
a, D of the type (0, 2), (1,1), (1, 0), (0,1), (0, 0), respectively in M.

Assume that F, hcb, hb

a, lb, A
a and D satisfy the condition (4. 3). Given a point 0 in

M and a point P0 in Rn+1, then there exists in Rn+1 an open set U containing Po,
an onto differentiable mapping π: U-^M of the maximum rank n, a vector field C
in U and a \-form η in U such that the set (U, M, π; C, ή) is a fibred space having
the natural connection of Rn+1 as its invariant affine connection and the fibering
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determined in 0 by the fibred space (0, M, π\ C, fj) is compatible with the given
structure (V, h<*» hf, h, Aa, D) of M. Such a fibering is determined by giving n+l
linearly independent covector £z

a, &l at the point P0.

Let there be given an affine transformation Jl of Λn+1, which is represented
by equations

Σ
k=l

al and ah being constant, where (χh) and (fxh) are respectively coordinates of a
point P and of its image Jiφ) in Rn+l. We now put

'£,α= Σ>t#Λ '£*= z?*i£* '**= ΣX**+<Λ
Λ=l h-1 fc=l

the matrix (&£) being the inverse of the matrix (a$). If we denote by ('ζa(xh),
Έιa(xh), Έi(xh)) the solution of the differential equation (5.1) which satisfies the
initial conditions

/fα(/ΛΛ)=0, Έl

a(xh)= '&«, '£i('ΛΛ)= '&t,

then we have

'̂ α= Σ «^Λ ;^= Σ
Λ=l Λ=l

Moreover there exists a fibred space ('£/, M, 'τr; XC, ̂ ) with the natural affine connection
V of Rn+1 as its invariant affine connection and the fibering determined by the new
fibred space is compatible with the structure (F, hc^ /if, 4, Aa, D) given in M, where
'U=Jl(U)9 'π=π JΓl, fC=Jl(£) and fη=JKη\ The new fibering is called the
fibering transformed by the affine transformation Jl of the old fibering determined
by the fibred space (U, M, π; C, 9). Thus we have

PROPOSITION 5. 2. The fibering, whose existence is proved in Proposition 5.1,
is determined up to affine transformations in the affine space Rn+1.

% 6. Manifolds with projective connection.

Let (M, My π\ C, η) be a fibred space with an invariant affine connection P, which
is torsionless. Assume that the structure field C satisfies the condition

(6.1) PΫC=aΫ for ?€Ji(M),

α being a non-zero constant. Then, by virtue of Proposition 3. 2, we find

(6.2) hb

a=-aδί, 4-0, Aa=Q, D=-a
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in each cylindrical coordinate 0 of the total space M. Therefore, the equations
(2. 15) and (2. 17) reduce to

VSE?= -Γc

a

bEJ

cEi

b~aEJ

aEi-aEjEl

a'ί

ΨjEι= -hcϋEjcE*-aEjEί,
(6.3)

Change of horizontal planes. Let there be given a 1-form φ in the total space
M such that

(6. 4) -£$=0, #((?)=0.

If we put

(6. 5) 'η=η~φ,

then the set (M, M,π\C, fη) defines a new fibred space, which is said to^ be obtained
by change (6. 4) of horizontal planes from the original fibred space (M, M, ττ; C, ?).

/>/ /v

If we put in each cylindrical neighborhood U of M

(6.6)

invariant functions φb being defined by φb=Ei^φi and ^< being components of the
vector field φ in 0, then we find

and

£E«=Q,

because of (6. 3) and (6. 4), where Eh(=Efl) and Et are components of C and ^ in
0 respectively. If we differentiate covariantly both sides of the first two equations
of (6. 6) and take account of (6. 2), we obtain

(6.7)
V

because of (6. 6).
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Denote by (P, hcb) and ('F, fhcb\ repsectively the structure induced in the base
space M from the fibred spaces (M, M, π\ C, if) and (M, M, π; C, '#). Then we have

(6.8)

as a consequence of (6. 7), φb(=Eίbφi) being components of the projection pφ in
U=π(U) with respect to old fibred space (M, M, τr; C,^), where ΓΛ and Tc

a

b denote
the coefficients of V and T in Z7 respectively.

Thus, taking account of the first equation of (6. 8), we have

PROPOSITION 6. 1. // there is given an invariant affine connection V satisfying
the condition (6. 1) in a fibred space without horizontal planes, then any two con-
nections V and 'V , which are induced in the base space M by giving structure 1-forms
ή and fη in M respectively, are protectively related to each other. That is to say,
if there is given an invariant affine connection V in a fibred space M without
horizontal planes, a projective structure is induced in the base space M, the induced
projective structure being determined by an affine connection 7 induced in M by

r^j

giving a structure 1- form η in M.

Coming back to a fibred space (M, M, π; C, η) with invariant aίfine connection
F satisfying the condition (6. 1), we find from the structure equations (4. 1) and (4. 2)

(6.9)
Rdcb0

and

Rdoba = 0, Rdob° = 0, Race? — 0,
(6.10)

where Rdcb

a denotes the components of the curvature tensor of the aίfine connection
V induced in the base space M.

If we change horizontal planes by means of (6. 5) and put

(6. 11)
'Rdrt°=Rkji

hEk

dE3cE\Eh,

where El

a, Elt E\ and Eh are defined by (6. 6), we find

(6 12)

Rdcb° = Rdcb° — Rdcbaφa
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as consequences of (6. 6). The first equation of (6. 12) shows that the projection
pR of the curvature tensor R of the invariant affine connection V is left invariant
by the change of horizontal planes. Thus, the projection pR of the curvature tensor
R of the invariant affine connection F given in M is determined completely by
giving a fibred space (M, M, π; C) without horizontal planes. Thus we have

PROPOSITION 6. 2. Let there be given an invariant affine connection satisfying
the condition (6. 1) in a fibred space (M, M, π; C) without horizontal planes and
denote by R its curvature tensor. The projection pR in the base space M is com-
pletely determined independently of the choice of horizontal planes. When pR
vanishes identically, the projection of the tensor field R^jfΈh is in M completely
determined independently of the choice of horizontal planes, where Rkjίh denote the
components of R and η=Etdxτ is a structure \-form.

E. Cartan's projective connection. According to E. Cartan's theory of projective
connection [1], a torsionless projective connection Π in M is determined by giving
arbitrarily a pair (F, /zc&) of a torsionless affine connection V and a tensor field h^
of type (0, 2) in M, and, another such pair ('F, '/zcδ) determines the same projective
connection Π if and only if (F, hCb) and ('F, '/zcδ) are related to each other by means
of (6. 8) with a certain covariant vector field φύ. The tensor fields RdCb

a and RdCb°
given by (6. 9) are called the curature tensors of the projective connection Π
determined by (F, /zcδ). Thus we have

PROPOSITION 6. 3. Let there be given an invariant affine connection F satisfying
/V Λk/

the condition (6. 1) in a fibred space (M, M, π; C) without horizontal planes. Then
a projective connection Π is induced in the base space M", where Π is determined by
a pair (F, hCb) induced in M by giving a field of horizontal planes. The projection
pR of the curvature tensor R of F and the projection of the tensor field Rkji

hEh
are the curvature tensor of the induced projective connection Π, where Rkjih denote
the components of R and η=Etdxl is a structure \-form.

In E. Cartan's theory [1], a projective connection is determined by giving
an arbitrary pair (F, hcb) of a torsionless affine connection F and a tensor field hcb of
type (0. 2) in M. However, in our case, the induced tensor field hcύ satisfies neces-
sarily the condition (2.39). That is to say, the 2-form Ω=-(l/2)(hcb-hbc)dζcAdξb

is closed and determines the characteristic class [Ω] of the given fibred space
(M, M, τr; C) without horizontal planes.

Taking account of (6. 9) and (6. 10), we have

PROPOSITION 6. 4. Let there be given an invariant affine connection F satisfying
the condition (6. 1) in a fibred space (M, M", ττ; C) without horizontal planes. The
projective connection Π induced in the base space M is of zero curvature (i.e., Rdct>a=Q
and Rdcb°~ty if and only of the given invariant affine connection F is of zero curva-
ture in the total space M.
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In a fibred space (M, M, π; C, 9) with an invariant affine connection V satisfying
the condition (6. 1), let C be a path in M with respect to V and expressed by
equations xh—xh(f) in a cylindrical neighborhood U, t being an affine parameter.
Then, by means of Proposition 3. 3, the projection C=π(C) is a path in M with
respect to the aίfine connection V induced in M and C has the parameter t as its
protective parameter. The projection C is expressed by equations ξa=ξa(t) in
U=π(U), the function £*(*) being defined by fα(0=fα(«Λ(0) (cf. §3). We define a
function ξ°(t) along C by the integral

S ί Λrί£* ̂ -*«0 at

taken along C, ίo being a constant. Taking account of (6. 3), we have along C

On the other hand, taking account of (3. 2), (6. 2) and (6. 14), we find along C

If we now define a new parameter 5 along C by the differential equation

d*t
,~ 1fi,

 2 °(β 16)

then, as is well known, we have along C

(6.17)

where

is the so-called Schwarzian (cf. [1], [12], [13]). By means of the second equation of
(6. 17), any projective parameter t of a path C given in M is determined as a func-
tion of an affine parameter s of C up to projective transformation t=(at+b)l(ct+d)

a,b,c and d being constant,



286 KENTARO YANO AND SHIGERU ISHIHARA

Normal protective connection. In a fibred space (M, M, π\ C, η) admitting an
invariant affine connection F, which satisfies the condition (6. 1), we assume now
that the curvature tensor R of V satisfies the condition

(6. 18) RnJi
m=0,

which is equivalent to the condition

(6. 19) Recbe=V

because of (6. 10). The condition (6. 18) shows that the invariant affine connection
V has vanishing Ricci tensor. The condition (6. 18) or (6. 19) is equivalent to the
condition

(6. 20) hcb= - -^ (nRcb+Rbc),
n _L

RCb=Recbe denoting the Ricci tensor of the affine connection V induced in M. Thus,
in the present case, the tensor field hcb is determined completely by (6. 20), if there is
given a torsionless affine connection V in the base space M. The projective connection

77 determined in M by the pair (F, hcb\ hcb being given by (6. 20), is called the
normal projective connection corresponding to the affme connection F. Thus we
have

PROPOSITION 6. 5. Let there be given an invariant affine connection ft satisfying
the condition (6. 1) in a fibred space (M, M, π; C) without horizontal planes. The

o

projective connection induced in M is the normal projective connection Π corres-
ponding to an affine connection F, which is induced in M by giving in M a field
of horizontal planes, if and only if the Ricci tensor of the connection V vanishes
identically in M.

Substituting (6. 20) in the first and the second equations of (6. 9), we find

Rdcb

a=RdC

(6. 21)

where the tensor field Mcb is defined by

(6. 22) Mcδ- -

As is well known, the right-hand sides of both equations in (6. 21) are respectively
the WeyΓs projective curvature tensors Wdcb

a and Wdcb of the connection F, which
are determined completely by the aίfine connection F induced in M. Thus, in this
case, we have
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(6.23) 8
deb

a
= W

dc
t

a
, R

deύ
°= ̂  W

dcb
.

On the other hand, an affine connection V in M is said to be protectively flat
if, for any point P of M, there exists a neighborhood such that there exists in that
neighborhood an affine connection which is projectively related to V and of zero
curvature. Then, it is well known that an affine connection ί7 is projectively flat,
provided dimM^S, if and only if its projective curvature tensor Wdcba vanishes
identically, and, that V is projectively flat, provided dimM=2, if and only if its
projective curvature tensor WdCb vanishes identically (cf. Weyl [10]). Thus we
have

PROPOSITION 6. 6. Let there be given an invariant affine connection Ϋ satisfying
the condition (6.1) in a fibred space (M, M,π;C) without horizontal planes. Assume
that the Ricci tensor Rji=Rmji

m vanishes identically in M. Then, the projective
connection Π induced in M is of zero curvature, or equivalently, an affine connection
Ψ induced in M by giving a field of horizontal planes is projectively flat, if and

~ ^
only if the given invariant affine connection Ψ in M is of zero curvature.

The discussion developed in this section reduces to Veblen's theory [9] if we
restrict ourselves only to integrable fields of horizontal planes in fibred spaces.
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