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ON AN ULTRAHYPERELLIPTIC SURFACE WHOSE
PICARD'S CONSTANT IS THREE

BY MITSURU OZAWA

1. Introduction.. Let R be an open Riemann surface. Consider the set W(R)
of non-constant meromorphic functions on R. Let P(f) be the number of values
which are not taken by /€3W(2?). Let P(R) be the supremum of P{f) w h e n /
runs over W{R). Then P{R)^2. The significant meaning of this Picard's constant
P(R) lies in the following fact: If P(R)<P(S), then there is no non-constant
analytic mapping of R into S. [3].

Let R be an ultrahyperelliptic surface defined by y2=g(x), where g(x) is an entire
function having an infinite number of zeros of odd order. For this class of surfaces
it is known that P(R)^L Further it was proved that P(R)=4 if and only if

g(x)=f{x)\eHW-γ)(eHW-δ\ γδ{γ-δ)*Q, H(0)=0,

where f(x) is a suitable meromorphic function and H(x) is a non-constant entire
function. [4]. If P(R)=3, then

g{x)=f{x)\l-2βιe
H-2β2e

L+β1

2e2H-2βιβ2e
H+L+β2V

L\

βφz^O, H(0)=L(0)=0,

with two non-constant entire functions H(x), L(x). Inversely if g{x) has the above
form, P(R)^3.

We shall concern with the inverse problem. In this direction we published a
paper [2] in which we proved the following results:

THEOREM 1. The surface defined by

y2=l-2β1e
H-2β2e

L+βle2H-2β1β2e
H+Li-β2

2e
2L

f

(A)

ftft^O, //(0)=L(0)=0

with two non-constant entire functions H(x) and L(x) has P(R)=3, if

rf eL)=o(tn(r, e11)).

THEOREM 2. Let R be an ultrahyperelliptic surface defined by (A). If II and
L are polynomials of degree at most two, then P(R)=3 with the following four
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exceptional cases: (i) H=L; (ii) H=2L, $=1601; (in) 2H=L, βl=16β2; (iv) H=-L,
exceptional cases P(R)=A.

In the present paper we shall prove the following

THEOREM 3. Let R be an ultrahyperelliptic surface defined by (A) with two
polynomials H and L of an arbitrary degree, then the same conclusion as in theorem
2 holds.

2. Lemmas. Although we can give more general formulations of some of the
following Lemmas, we shall give somewhat restrictive forms of them, since it is
sufficient to apply to the present cases.

Here H and L are polynomials of the same degree and have their expansions

LEMMA 1.

m(r, eH)= — \hs\t

LEMMA 2. N(r; a, eH)~m(r, eH) for

LEMMA 3. Let ψ be aeH—beL—l with two non-zero constants a, b and
Then

N2(r; 0, ψ)^m(r, eπ)—2m{r, eL)-\-O(log r)

for r^n, where N2 indicates the N function of simple a-points of the referred
function.

Proof. Let

Ύ beL+l

then

Hence

N(r, oo, <p)=N(r, 0, beL+l)~m(r, eL), N(r; 0, ^ - l ) = 0 .

Since every common root of b(H'-L')eL+H'=0, beL+l=0 satisfies L'=0,

N(r; oo, φ')=2N(r; 0, beL+l)-O(log r)

=2m(r, eL)+O(log r).

Further
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r\ 0, φ')=N{r\ 0, b(H'-L')eL+H')-O(\og r)

=m(r, eL)-\-O(\og r),

if H'—L'^O, This is the case, since H^L. Hence by the second fundamental
theorem for φ

N(r, 0, φ)+θa)^T(r, φ)

^N(r; 0, φ)+N(r, oo, <p)+N(r, 1, 0-iV(r; 0, ^0

-2M^; oo, φ)+N(r, oo, ̂ 0+O(log f T(r, φ))

=N(r, 0, 0+oαog r T(r, φ)).

Further

T(r, φ)=m(rf φ)+N(r, oo, ^)

^m(r, eH)+τn(r, l/(beL+l))-\-m(r, eL)+O(l)

=tn(r, eH)+rn(r, eL)+N(r; oo, beL+l)—N(r9 0, k H l ) + w ( r , eL)+O(l)

=m(r, eH)+m{r, eL)+O(l)=O(rs).

Hence

N(r, 0, ^)+O(l)^Γ(r, 0^iV(r; 0, ^)+O(log r).

Further

w(f, eH)=m{r, (φ-l)ψeL+l))^nι(r, φ)+m(r, eL)+CHX).

Hence

m(f, eH)—m(r, eL)^m(r, φ)+O(l)

and

m(f, eH)=m(r, eH)—m(r, eL)-\-N{r'y oo, ̂ )-f O(log r)

^m(r, φ)+N(r, oo, ̂ )+O(log r)

^T(r, φ)+CX}og r)^N(r; 0, φ)+O(log r)

=N2(r; 0, φi+Nfa 0, 9)+M(r, 0, ^)+O(log r)

^N2(r; 0, 9?)+2w(r, ^I-)+O(log r)

=N2(r; 0, 0)+2m(r, ^)+O(log r).

This is the desired result.

The estimation of this Lemma is best possible. Consider

2ψ=eSH-3eH+2=(eH+2)(eH-l)2.

Then

r, 0, ψ)=m(r, eH)+O(l), m(r, eBH)-2rn(r} e
H)=m(r, eH).
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LEMMA 4. Let φ be aeH—l with a non-zero constant a. Then

r; 0, ψ)=m(r, eH)+O(log r).

LEMMA 5. Let φ1=aeII—beL—l, ψ2 = aeπ + beL + 1, φ ό = aeIIJrbeL—l, ψ4=aeπ

-beL+l. If H^Lf then

4\m(r, eH)-m(ry eL)\^ Σ Mr; 0, φj)+O(ίog r).

Proof

ψi -

Then

Put

φi φ2

beLjr\ ' ψι beLJr\

^--Φ^Ϋf^H'-L')eL+H>)' «= ae

f aeH

ψ3~~ (beL-l)'

Hence

r, 0, y)i)+(iVi+NiXr, 0, ψ2)^2m(r, eL)+O(\og r)

and

(Wi+tfiXr; 0, φ*)+(Ni+Ni)(r, 0, φ,)^2m(r, eL)+O(log r).

Thus

4m(r, e11)^ ΣN(r; 0, ^)+O(log r)
1

= Σ ^(r ; 0, φj)+ Σ (Ni+NXr, 0, φj)+O(log r)
4

1 1

4

1
; 0, ^ )+4m(r, eL)+O(\og r).

By symmetry of the given expression we have the desired result.

LEMMA 6. Let φ3 be the same as in Lemma 5. Further assume hs=eH/sls.
Then

Σ N2(r9 0, 0y)-fO(log r).
1

Proof. Consider multiple zeros of φλ. These are common zeros of two equa-
tions φ!=aeH—beL—1=0 and φ[ = aHfeH~bUeL=0. Then every common root whose
modulus is sufficiently large satisfies
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Thus we have

[ — ))=2nπi- -~-i—loga+0( — ) ,
\ z ) / 6 \ z )

ιsz
s(l+θ(—)) = 2mπi- - |- πi-
\ \ z / / ό

and hence

z=An1/s(l+θ(— )),
\ \ z

z=Brn1/s[l+O' X

Therefore z-^oo implies ?̂ ->oo, m->oo and vice versa. However

This implies that m/n—>e%p (ττi/3) as z->oo. This is a contradiction, since m/n is a
real rational number. Hence there is no common zero of 9̂ 1=0 and ψί=0 having
a sufficiently large modulus. This shows that

Similarly we have the same fact for any φJ% Further there is no common zero of
φj=O, ψjc=Q for j^k. As in* Lemma 5 we have

4m(r, eH)^ ; 0,

; 0.

r, 0, r)

r).

This is the desired result.

3. Proof of theorem 3. First of all it is sufficient to consider the case that
the degree of H{x) is coincident with that of L(x). In fact if the degree of H(x)
is greater than that of L(x), then m(r, eL)=o(rn(r, e11)). By theorem 1 we have
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P(R)=3 in this case.
Assume that P(R)=i. Then there are a non-constant entire function K(x) and

two constants γ, δ(γδ(γ—δ)^O) and a meromorphic function f(x) such that

G=l-2β1e
H-2β2e

L+βle2II-2β1β2e
H+L+β2

2e
2L

=f2(eκ-r)(eκ-δ), K(0)=0.

By Lemma 5, which was proved in [4], we have

N2(r; 0, eκ-γ)~N2(r\ 0, eκ-δ)~nι(r, eκ)

outside a set of finite logarithmic measure. Since all the simple zeros of (eκ—γ)
-(eκ—δ) are the zeros of G, we have

2m(r, eκ)~N2(r; 0, (eκ-γ)(eκ-δ))^N(r; 0, G)^m(r, G)

outside a set of finite logarithmic measure. If K is a transcendental entire function
or a polynomial of degree greater than that of H, then we have

log m(rf G) - — log m(rf e
κ)

pG= lim -Λ ^ lim
log r

Λ ^ l i m Λlog r r->co l o g r

—— log m(r, eH) ,. , , ττ> lim , — - = the degree of H.
' r->oo log r

However by its form ^ ^ t h e degree of H, which is a contradiction. Hence the
degree of K must be less than or equal to that of H. Let p denote the degree of
K and let s denote the degree of H. Then s^p.

Now we shall prove the inversely directed inequality s^> and hence s=p. If
HΞΞL, then

This implies that P(R)=L Hence we may omit this case. Since H^L and

we can make use of Lemma 5 for G and we have

r, 0,Gj)+O(logr)

=N2(r; 0,G)+O(logr)

=NΛ(r, 0, ( ^ - r ) ( ^ - ^ ) ) + O ( l o g r)

^2rn(r, eκ)4-O(\ogr)=O(rp).



ULTRAHYPERELLIPTIC SURFACE 251

If |A,|=3F|/,|, then s^p. Further consider Ge~2L and Ge~2H. Then applying Lemma
5 and assuming \hs—ls\^\ls\ we have s^p similarly. Therefore we may assume
that \hs\ = \ls\ = \hs—ls\, that is, hs=lsexp(m/3) or ls=hsexp(πi/3). Now by Lemma 6
we have

\h\s(l+θ(^-pj)^2m(rf e11)
π

^N2(r; 0, G)+O(logr)^k2tn(r, eκ)+O(\ogr)=O(rp).

Hence s^p. Therefore we have s=p.

By a suitable transformation x—>ax we may assume that

Put
P P

1 1

Let zip be a zero of eκ—γ such that for j=Q, 1, •••,/>—1

if ^ > 0

/p)) if

All of those roots with fixed; are called roots of (/^direction. Since K=2πin+logγ
has p solutions for each n and p solutions have almost the same modulus, each
(i)-direction has an infinite number of simple zeros of eκ—γ for each sufficiently
large positive n and negative n, that is, m(r, eκ)j2p simple zeros for positive n and
for negative n, respectively. Evidently

z}p=log γ+2nπi.

Hence

and

Let

and

m=2

Σ (
m = l
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Evidently F}P=G(z}p)=O for any simple zero zψ of eκ-γ.
First of all we shall prove that |XO| = | F O | = 1. Assume that |Zoi<l, | F O | < 1 .

Since ί / ^ - e x p O ^ - 1 ^ ) , V(J)=expO(nCp-Ό/p)) we have X«U}P-+0, YZVSP-+0 as
«->oo. Hence FSP-A as n->oo, which contradicts F</}=0. Assume |XO |>1, | F O | > 1 .
Then X%U(

n

j)->0, Ff F^->0 as «->-oo. Hence F ^ —l as n->-oo, which contra-
dicts F ^ = 0. Assume |X0| >1, I F o | g 1. Then X$ U& = exp O(ή) and F?F#>
=expθ(ttc p~1 ) / 3 ί) as n^oo. Hence

as w—>oo, which is a contradiction. Similarly we can conclude that |Zo |^ l , | F O | > 1
does not occur. Thus we have the desired result: |J^o| = | F o | = l .

Next we shall prove that hm—amhp=lm—amlp=0 for every m(l^m^p—l). Let
m0 and mι be the highest indices for which hm—amhp^0, ίm—aJp^0, respectively.
Assume w o>mi. If p^2m0j then there is an index j such that

πarg (hm(]-amohp)+ - 5 — — H —.7+0(1)
Δ p p

< — (mod 2^).

Hence

for any sufficiently large n. Hence Uc

iP=exp0(nm°/p). However Vψ is at most
expθ(nmι/p). Hence Fip-*oo as n->oo. If p=2m0 and if there is an index satis-
fying the above condition on the argument, then we have the same contradiction.
If p=2m0 and if for every j

arg (hmo - ocmjιv) +-^-+πj^ =-γ (mod 2π),

then

arg (hm0 — amohp)= -j- (mod π).

Consider — n with the same index j . Then

arg {hmQ-amQhp)- -j- +jπ+o(ΐ) =o(l) (modπ),

which implies that

arg (hmo-amohp)zίi)m°-»O (mod π)

as n-^—oo. Hence taking an index i* (j or i+1) such that

as n—>—oo, Uiί^—*oo as ^—>—oo. On the other hand F$/*)=expO((—^)mi/p) as n
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—»—oo, which implies that F^-^oo. This is untenable. When mo<mu the same
contradiction appears. Hence we have mo=mi.

If p^2m0 and p^S} then among three successive indices j (moάp) there are
two indices such that

TU) — (1 _ / ϊ_i_ JL Hh. 2πm<>
J-Ίmn.V^^ arSΓ (ίj jn β'raΛ'ϋJH ^ Γ~0 *' 2 p p

Similarly we have the same fact for

[p= arg (hmo—amohp)+— — H —j.

Hence we can select an index j such that H(JlP and L$,p are not τr/2 (mod π). If
both of Htiίp, Ltiip lie in an open interval (τr/2, 3τr/2) (mod 2π), then U^-^0, ViP-*O
as n—>oo. Hence F$/}-^l as n-^oo. If L^0

}

(P does not lie and HHlP lie in that in-
terval, then F^-^oo, Uψ-^Q as n->oo. This implies that F^-^oo as n-^oo. If
both of L^p, H^lp do not lie in that interval, then there is another index /* (j+[pl
2]—1 or j+[p/2] or j+[p/2]+ϊ) such that L ^ i and R^p lie in that interval. This
leads to a contradiction similarly.

If p=2m0, then either H^tP=π/2 (mod TΓ) or not and either L^tP=π/2 (mod π) or
not. If HHlp^π/2, L ^ p^ττ/2 (mod TΓ) leads to a contradiction similarly. If H^mP=π/2
(mod TΓ), Liilp^O (mod π), then consider — ̂  with the same index j . Then

arg (hno-amohp)z}!)m*=o(X)

and

arg (/mo — amolp)z(ri)m° 3F -^- (mod π),

which leads to a contradiction. If H(JlP=π/2 (mod TΓ), LHlP=0 (mod TΓ), then arg(Am o

—(χmohp)=π/4t (mod TΓ), arg(/Wo—cxmjp)=— τr/4 (mod TΓ). In this case take an index /
such that LίilP=0 (mod 2π). Then

is greater than C/̂ i) in the order so that F$/} ± U^—>oo as ^->oo. Hence we have a
contradiction.

Thus we have the desired result: hm—amhp=ίm—amlp=0 for every m. This
fact implies that E.=hpK and L=1PK and [ 7 ^ = 7 ^ = 1 . From now on we shall
omit the subscript p from Ap and lp. Now we have

for every ^ ^ 0 and —nS—n^ Then we have Xo=i ; ro=l [3]. This implies that h
and / are integers. Further we have
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a ) = / 2 ( * * / 2 - ^

Since eκ/2—χ0, χo^O has only a finite number of multiple zeros and an infinite
number of simple zeros and eκ/2 has no zero, * / £ — */r> \/<^and — \/δ must be
the simple zeros of F(χ). In the first place we assume that 0<h<l. Evidently we
have

F(χ)=F1(χ)F2(χ)F,(χ)F,(χ),

Since no two of Flf F2, F3, F 4 have common zero, we may seek for all the multiple
zeros of each function F3. Since there is no triple zero in each factor FJy every
multiple zero is a double zero. From the equations

we have

vz__ y . V Z — _ y vz__ y .

respectively, where χ=//(/—A) */&, and Y=hlQι—t)^/JZ Thus every double zero is
a common point between h-th roots of X and l-th roots of F or that of X and of
- F o r that of —X and of Y or that of —X and of — Y, respectively. Let E(u, p)
be the set of |^|1/2)exp{(arg u)/p+2nπi/p}, «=0,1, -,p-l. If E(X, h)^E(Y, t)*φ,
then there are d common points of E(X, h) and E(Y, I), where d is the greatest
common measure of h and /.

If there is no double zero in F(χ), then we have 4/= 4, that is,

O<A</=1,

which is untenable. Hence E(X, h)^E(Y, t)±?φ.
If E(-X, h)^E(Yy I) = φ, E(X, h)^E{~ Y, t) = φ and E(- X, h)^E{- F, /) - <p,

then we have 4/—2rf=4, that is, 0<2h<2l=2+d^2+h. Hence h=d=l. Thus
2/= 3, which is untenable.

If £ ( - X , A)^£(F, / ) ^ ^ but ^(X, A ) ^ £ ( - F, / ) = ^ and ^ ( - X , A K £ ( - F, /)=^,
then E(—X, h)^E(Y, I) contains just rf points and hence 4/—4J=4. Therefore
A < / = 1 + J ^ l + A . Thus we have d=l, A=l, /=2. Then ^=16/32 holds.

If further E(X, h)^E(-Y, l)*φ, then E(-X, h)^E(-Y,t)*φ and these two
sets contain just J points, respectively. Thus we have 2d^h and Al—Sd=i. Then



ULTRAHYPERELLIPTIC SURFACE 255

^ l + A , which implies d=ly h=2 and 1=3. This is untenable, since

Next assume that h<O<L Then, putting h=—k, we get

'" β \ L ' β \ A '

Since 0<k<l+k, we can apply the above result. Then we have l-hk=2k=2. This
implies that ί=k=l and hence A=—1,1=1 and 1 6 ^ 2 = 1 . If Kh<0, we put A
= — & and l=-~m. Then we have

_ 9 J _ L Λ,4m-2fc i P1

 V4fro-fc)

A2 - 1

1 V 2 m 2 ^ T
P2 + Jl

Since 0<w—k<n, we can apply the above fact. Then we have tn~k=l> m=2 and
βl=l6β2, that is, A=—1, ί=~2 and ^=16^2.

If /=Λ, then we have

G(z)=l-2(βι+β2)ex+(β1-β2)*e*".

If βi^βi9 then

Hence P(R)=4. If ^ = ^ 2 , then G(e)=1-4^5^ and hence
Summing up these results we have theorem 3.

3. We shall apply this theorem 3 to an analytic mapping. Let S be an ultra-
hyperelliptic surface of finite order with P(S)=4, which is defined by

Here " of finite order " means that K(x) is a polynomial of x. Let R be an uitra-
hyperelliptic surface of unite order with P(R)=3, which is defined by

y2=G(x), G = l-2β1e
H-2β2e

L+βle2H-2β1β2e
II+L'i-βle2L

with two polynomials H and L, H(0)=L(0)=0 and with two non-zero constants

βl, β*.

Assume there exists an analytic mapping ψ from S into R. Then by a theorem
in [5] there exist an entire function h and a meromorphic function / such that
f2g=^GoH. Then by a theorem in [1] h{z) must be a polynomial of z. Hence H°h
and L°A must be polynomials of z. Therefore by the proof of our theorem 3 we
have either H*h-H*h<$) = L*h - L«hί$) ox Hoh-H°h(Q)=2(L°h-Loh®)), βle2L°hW

= 16βιe
H'hW or 2(#°A-#°/K0))=L°Λ-L°/K0), βle2H°hW = l6β2e

L°hW or
= -Loh-\-L

Put
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H(Z)= Σ hnZU, L(Z)= Σ lnZn, Σ
n=l n=l n=0

( I ) Hoh-Hohφ)=Loh-Loh(0). Then we have * „ = / „ , n=l, ---,p. Hence
H=L, which implies that P(R)=i. This is a contradiction.

(II) Hoh-Hohφ)=2(Loh-Loh(0))> βle2L°hW=l6βie

H°hW. Then we have hn

=2ln,n=l, - Ίp and Hoh(0)=2Lohφ). Hence H=2L and βl=16βu which implies
that P(R)=4:. This is again a contradiction.

(III) 2(Hoh-Hohφ))=Loh-Loh(0), fte2H'h™=16β2e
L'hW. This case leads to a

contradiction similarly.
(IV) Hoh-Hohφ) = -(Loh-Lohφ)), 16β1β2e

HαhW+LαhW = l. Then we have hn

= -In, n=l, ~,p and hence H= -L and H°h(0)=-Loh(0). This implies that 16/9^
= 1 and hence P(i?)=4, which is a contradiction.

THEOREM 4. Let R and S be two ultrahyperelliptic surfaces with P(R)=3 and
P(S)=4 and of finite order defined above. Then there is no analytic mapping from
S into R.

This is a partial solution of our problem in [5].
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