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ON AN ULTRAHYPERELLIPTIC SURFACE WHOSE
PICARD’S CONSTANT IS THREE

By Mitsuru Ozawa

1. Introduction.. Let R be an open Riemann surface. Consider the set M(R)
of non-constant meromorphic functions on R. Let P(f) be the number of values
which are not taken by feT(R). Let P(R) be the supremum of P(f) when f
runs over M(R). Then P(R)=2. The significant meaning of this Picard’s constant
P(R) lies in the following fact: If P(R)<P(S), then there is no non-constant
analytic mapping of R into S. [3].

Let R be an ultrahyperelliptic surface defined by ¥*=g(z), where ¢(z) is an entire
function having an infinite number of zeros of odd order. For this class of surfaces
it is known that P(R)=4. Further it was proved that P(R)=4 if and only if

g(x)=1(x) (" " —r)Ne"”—0),  yi(r—0)x0,  H(0)=0,

where f(x) is a suitable meromorphic function and H(z) is a non-constant entire
function. [4]. If P(R)=3, then

g(x)=,(2)(1 _2.8191{_2,823[’+ﬂ1zezH—2,81/329H+L+/92262L),
B1B:2=0, H(0)=L(0)=0,

with two non-constant entire functions H(x), L(x). Inversely if g(x) has the above

form, P(R)=3.
We shall concern with the inverse problem. In this direction we published a
paper [2] in which we proved the following results:

THEOREM 1. The surface defined by

i =1—2B,0H — 20"+ Bl — 28, Bae™+ E 4 fie*”,
A)
B0,  H(0)=L(0)=0

with two non-constant entive functions H(x) and L(z) has P(R)=3, if
m(r, eX)=o(m(r, ef)).

THEOREM 2. Let R be an ultrahyperelliptic surface defined by (A). If H and
L are polynomials of degree at most two, then P(R)=3 with the following four
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exceptional cases: (1) H=L; (i) H=2L, =168 (iii) 2H=L, fi=168,; (iv) H=—L,
16p:8.=1. In these exceptional cases P(R)=4.

In the present paper we shall prove the following

THEOREM 3. Let R be an ultrahyperelliptic surface defined by (A) wilh two
polynomials H and L of an arbitrary degree, then the same conclusion as in theovem
2 holds.

2. Lemmas. Although we can give more general formulations of some of the
following Lemmas, we shall give somewhat restrictive forms of them, since it is
sufficient to apply to the present cases.

Here H and L are polynomials of the same degree and have their expansions

H= > haz",  L=3lu"
n=1 n=1
Limma 1.

v

m(r, ¢)= % |/l31w<1+0< ! ))

LEMMA 2. N(@; a, e®)~m(r, e®) for a=0.
LemMA 3. Let ¢ be ae—be—1 with two non-zevo constants a, b and Hx=L.
Then
No(7; 0, §)=m(r, e™)—2m(r, eX)+O(log 7)

for r=v,, where N. indicates the N-function of simple a-points of the referred
Sfunction.

Proof. Let
_ ¢J L aell
O Gl T bebgl T
then
’ aet. ’ NpL ’
Hence

N(r; o0, )=N(#; 0, beL+1)~m(r, e~),  N(r; 0, p—1)=0.
Since every common root of (H'—L’")e+H’=0, be’+1=0 satisfies L’=0,
N(r; oo, ¢")=2N(r; 0, be’+1)—O(log 7)
=2m(r, e*)+0(log 7).
Further
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N(r: 0, ¢')=N(r; 0, b(H'—L")e™+H")—O(log 7)
=m(r, eL)+-0(log 7),

if H/—L’x0, This is the case, since HxL. Hence by the second fundamental
theorem for ¢

N(7; 0, 9)+O)=T(r, ¢)
=N(7; 0, )+ N(r; 0, 9)+N(r; 1, 9)—N; 0, ¢’)
—2N(r; 00, ¢)+N(r; o0, ¢")+0(log 7 T(7, ¢))
=N(; 0, 9)+0(og 7 T(7, ¢)).
Further
I(r, p)=m(r, 9)+N; oo, ¢)
=m(r, e?)+m(r, 1/(be"+1))+m(r, e“)+0(1)
=m(7, eZ)+m(r, e’)+ N(r; co, bel+1)—N(7; 0, be™“+1)+m(r, eX)+0(1)
=m(r, eX)+m(r, eX)+0Q1)=0(").

Hence
N, 0, p)+OM)=T(7, 9)=N(r; 0, ¢)+0(log 7).
Further
m(r, ef)=m(r, (p—1)(beL+ 1)) =m(r, ¢)+m(7, e-)+O(L).
Hence
m(r, e)—m(r, eL)=m(r, p)-+0(1)
and

m(r, e®)=m(r, e¥)—m(r, eL)+N(7; oo, )+ O(log 7)

=m(7, p)+N(r; oo, 9)+0(log 7)
=T(r, 9)+0(og N=N(; 0, 9)+0(log 7)
=No(#; 0, )+Ni(7; 0, 9)+Nu(r; 0, ¢)+0(log 7)
=Nu(7; 0, 9)+2m(r, e")+0(log 7)
=Na(7; 0, ¢)+2m(r, eX)+O(log 7).

This is the desired result.

The estimation of this Lemma is best possible. Consider

2¢=e*" —3eH 2= (e’ +2)(e” —1)%

Then

Ny(r; 0, @)=m(r, e®)+0(1), m(, e 2)—2m(r, e®)=m(r, e®).
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LemMA 4. Let ¢ be ae?—1 with a non-zevo constant a. Then
Ny(7; 0, p)=m(r, e”)+O(log 7).

LeMMA 5. Let ¢g1=ae® —bel—1, ¢ = ae 4 ber + 1, ¢y = ae’+bel—1, ¢s=ae™”
—bel+1. If H#L, then

A|m(r, e)—m(r, eb)| = il Ny(r; 0, ¢)+0O(log 7).
I

Proof. Put

o o & b
=" 1 T b1 T T per—1 P T her—1

Then

ae¥ ael

f 1 __ T N\pL / p— T ’__ T N\oL 7
o1 == Gy CH' =D+ HY),  gh= s (O —Lem+ 117,

H H
e (WH'—L')e'—H"), soz=(i—(b(H'—L')eL—H')u

= e —1y bel—1)°
Hence
(Ni+N)#; 0, )+ AN 0, 02)=2m(r, e2)+0(log 7)
and
(Ni+N)(; 0, 02)+(Ni+No)(7; 0, gu)=2m(r, e%)+0(log 7).
Thus

4
dm(r, e)= 3 N(r; 0, ¢;)4-0(log 7)
1

4 4 -
ZI: Nq(7; 0, 0)+ ZII (N1+N1)(#; 0, ¢)+0(log #)

=

Ny(7; 0, ¢j)+4m(r, e)+0O(og 7).

)-Mua

By symmetry of the given expression we have the desired result.

LemMmA 6. Let ¢, be the same as in Lemma 5. Further assume hs=c™"*l;.
Then

dm(r, e?)= 24: Nu(7; 0, ¢)+0(log 7).

Proof. Consider multiple zeros of ¢;. These are common zeros of two equa-
tions ¢1=ae —be*—1=0 and ¢{=aH’e?—bL’e’=0. Then every common root whose
modulus is sufficiently large satisfies
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, e’”’%ssz“‘(l—l—o L )
H__ L — z ~m/8 1
ae”= L —H" — 1 =e 140 <)
(e”’3—1)hsszs‘1<1+0<—z~>>
i sz (140(-) .
belt= ——— = z =e7(14+0(—=) ).
L'—1IT 1 z
(e —1)hesz*? <1+O<—z—)>

Thus we have
1 . T . 1
hsz"<1+0<—)) =2nri — —i— log a+0<—>,
z 3 z

e ht <1—|~O<—i—

ceane(1v0( L)),

z:Bml/s(l—l—O(%)), AB=0.

.2 . 1
>> =2mni— —g— ﬂ.'l—log b—I—O(?)

and hence

Therefore z—co implies #n—oo, m—oo and vice versa. However

=20 D)0 v0(2)

This implies that m/n—exp (7i/3) as z—oo. This is a contradiction, since m/n is a
real rational number. Hence there is no common zero of ¢;=0 and ¢{=0 having
a sufficiently large modulus. This shows that

(N+N2)(z; 0, ¢1)=0(log 7).

Similarly we have the same fact for any ¢, Further there is no common zero of
¢,=0, ¢p=0 for j=k. As in" Lemma 5 we have

mmwgimmaw+$WﬁMma@Hamn

Ny(@; 0, ¢)+0(log 7).

HM»

This is the desired result.

3. Proof of theorem 3. First of all it is sufficient to consider the case that
the degree of H(z) is coincident with that of L(z). In fact if the degree of H(x)
is greater than that of L(x), then m(r, e¥)=o0(m(r, e%)). By theorem 1 we have
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P(R)=3 in this case.
Assume that P(R)=4. Then there are a non-constant entire function K(z) and
two constants 7, 6 (yd(y—0)=0) and a meromorphic function f(x) such that
G=1-2p1e%—2B:eL4-fie*E —2p, Bt L+ Bie®L
—FHeF—7)er—3),  KO)=0.
By Lemma 5, which was proved in [4], we have

Ny(7; 0, eX—1)~Ny(7; 0, eX—0)~m(r, eX)

outside a set of finite logarithmic measure. Since all the simple zeros of (eX—7)
-(eX¥—0) are the zeros of G, we have

2m(r, e¥)~Ny(; 0, (eX—1)(e*—0)=N(r; 0, G)=m(r, G)

outside a set of finite logarithmic measure. If K is a transcendental entire function
or a polynomial of degree greater than that of H, then we have

—— log m(r, G) log m(r, eX)

o= 31_{2 log 7 = }f}} log 7
—— log m(r, e®)
> 711)133 —log ; = the degree of H.

However by its form pg=the degree of H, which is a contradiction. Hence the
degree of K must be less than or equal to that of H. Let p denote the degree of

K and let s denote the degree of H. Then s=p.
Now we shall prove the inversely directed inequality s=p and hence s=p. If

H=L, then
G(R)=1—2(B1+po)e™ +(B1— )™
This implies that P(R)=4. Hence we may omit this case. Since HxL and
G=G1G:GsGs, Gi=1—n/Bie2—n/Brel%,  Gy=1—n/BieH"*+n/ Brel",
Gs=14~Pre?*—n/Bre™?,  Gui=14-nBre*+n/ Bre™?,
we can make use of Lemma 5 for G and we have

1

L il —talr(1:+0() ) = 2 Mot 0, Gi-+0og

= Ny(r; 0, G)+0(og )
=Ny(r; 0, (eX—7)(e¥—0))+0(og 7)
=2m(r, e¥)4+0(og r)=0(P).
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If |As]=|/], then s=p. Further consider Ge™*. and Ge %2, Then applying Lemma
5 and assuming |ks—/]=|/;| we have s=p similarly. Therefore we may assume

that |As|=|ls|=|hs—1|, that is, ks=1[exp(ni/3) or ly=hsexp(xri/3). Now by Lemma 6
we have

2z |hs|1’s<1+0<—1——>> =2m(r, e*)
T r

=Ny(r; 0, G)+0(log 1) =2m(r, e¥)+0(log ) =0(r?).
Hence s=p. Therefore we have s=p.
By a suitable transformation x—ax we may assume that

Kz)=24ap_12?7 14 Fayz.
Put

@)= S, L= 3 L™
1 1

Let 2§ be a zero of eX—y such that for j=0,1, -, p—1

<j>{ — @na) P exp(@imilp) (1+OUM) il 00,
¢ =(—2nm)"?(—i)"'? exp2jxi/p) (1+0A/n*?))  if #<O0.

All of those roots with fixed j are called roots of (j)-direction. Since K=2min+logy
has p solutions for each # and p solutions have almost the same modulus, each
(j)-direction has an infinite number of simple zeros of eX—y for each sufficiently
large positive # and negative #, that is, m(r, eX)/2p simple zeros for positive » and
for negative #, respectively. Evidently

K@P) =27 ap 12?2 =log y-+2nmi.

Hence
HEP)=hy(log 74-2n7i)+ 37 (imos — Gosli)2 ™
m=2
and
Y4
L) =[l,(log 7+ 2nai)+ D] (n-1—am-1lp)zd™ "
m=2
Let
X(): ezzihp’ YO :e2xilp; Azﬁlehp log 7" B: ﬁzelp log 7
and

—1 p—-1
U;,f>=exp<pz (hm—amkp)zi,f”"), V;f>=exp<z (n—atmly z;pm)’
m=1 m=1

F9=1—2AX2UY—2BYIVP+AXI UL —2ABX; Y UP VP+BYP V™
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Evidently FP=G(z)=0 for any simple zero z{ of eX—r.

First of all we shall prove that |X,|=|Y,|=1. Assume that |X,|<1, |Yo|<1.
Since UP=exp On®-0?), VP =exp On®1’?), we have XrUP—0, Y2VP—0 as
n—oo. Hence F{P—1 as n—oco, which contradicts F¥=0. Assume |X,|>1, | Yo|>1.
Then X?U$—0, Y2V{—0 as n——co. Hence F$—1 as n——oo, which contra-
dicts F =0. Assume [Xo|>1,|Y,| =1 Then X;UY =expOn) and YV
=exp O(nP~Y’?) as n—oo. Hence

FP=1—-2AX2U+BY V) +HAX2UP —BY I VP)—o0o

as n—oo, which is a contradiction. Similarly we can conclude that |X,| =<1, |Y,|>1
does not occur. Thus we have the desired result: |Xo|=|Y,|=1.

Next we shall prove that Zm—amkpy=In—anl,=0 for every m (1=m=p—1). Let
mo and m; be the highest indices for which An—anfy=0, l,—anl,>0, respectively.
Assume mo>my. If pa2m,, then there is an index j such that

[arg {(fomy— amfip)2i ™} |

2
=|arg (tm,— amhp)+ _;:_ % I 7;7%0

Jt+o()| < —g— (mod 27).

Hence
exp RA{(Vomy — amyhtp)2™} =exp O(n™'?)

for any sufficiently large #. Hence U =expOm™?). However V§ is at most
exp O(n™’?). Hence F{—oo as n—oo. If p=2m, and if there is an index j satis-
fying the above condition on the argument, then we have the same contradiction.
If p=2m, and if for every j

arg (= am i)+ - +i| ==~ (mod 2n),

then
arg (hmo - amohp) = ‘Z“ (mod =).

Consider —#» with the same index j. Then
arg (fimy—angts)— - +iz-+o()|=o()  (mod ),
which implies that
arg (fimy—amhip)2$™—0  (mod =)
as n——oo. Hence taking an index j* (§ or j41) such that
exp (R{(tmy — amohtp)2 "™} =exp O((—n)'"*)

as #——oo, U§?—co as n——oco. On the other hand V" =expO(—n)™"?) as n
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——oo, which implies that F§¥%—co. This is untenable. When m,<m;, the same
contradiction appears. Hence we have my,=m;.

If p=2m, and p=3, then among three successive indices j (mod p) there are
two indices such that

My 2tm, . 0T

Lils.o= arg (Iny—anylp)+ _g— 3 + P VES o (mod =).
Similarly we have the same fact for
) . .
H = arg Uiy —amgly)+ 5= 750 5.

Hence we can select an index j such that HY), and LY, are not z/2 (mod z). If
both of HS , LY, lie in an open interval (z/2, 37/2) (mod 2z), then UP—0, V-0
as n—co. Hence FP—1 as n—oco. If LY, does not lie and H{ , lie in that in-
terval, then V{@P—oo, UP—0 as n—oo. This implies that F@—oco as n—oco. If
both of LY, HE » do not lie in that interval, then there is another index 7% (j+[p/
2]—1 or j+I[p/2] or j+[p/2]14+1) such that LY, and HY, lie in that interval. This
leads to a contradiction similarly.

If p=2ms,, then either HE) ,=n/2 (mod z) or not and either L) ,==/2 (mod =) or
not. If Hf pxn/2, LY »2x/2 (mod =) leads to a contradiction similarly. If A ,==/2
(mod =), LY »>0 (mod x), then consider —#» with the same index j. Then

arg (hmy— am,hp)z™=0(1)

and
arg (Imy—amylp)2™ 0 —g— (mod =),

which leads to a contradiction. If H{,==/2 (mod =), L{)»=0 (mod =), then arg (/m,
—am,hp) =4 (mod =), arg(lm,— am,lp)=—=/4 (mod z). In this case take an index j
such that L{,=0 (mod 27). Then

V= expRilln,—an @50 (140555 )

is greater than U¥’ in the order so that V{4 U{’—co as n—oo. Hence we have a
contradiction.

Thus we have the desired result: /Zm—anhp=1In—anlp=0 for every m. This
fact implies that H=#4,K and L=[,K and UP=VP=1. From now on we shall
omit the subscript p from /%, and /,. Now we have

1—-2AX2—2BY;+ A X" —2ABX Y2+ B Y =0

for every n=#n, and —n=—n,. Then we have X,=Y,=1 [3]. This implies that %
and / are integers. Further we have
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G=F (X)) =feX"2—n/7)(€X"*+ A/ 1)K — £/ 8)(eK"24A/),
F() =121 — 2By + Bix** — 28, Bax> PP+ iy .

Since eX2—y,, %020 has only a finite number of multiple zeros and an infinite

number of simple zeros and eX? has no zero, /7, —n/7, ~/6 and —a/d must be
the simple zeros of F(y). In the first place we assume that 0<%</. Evidently we
have

FO)=FF)Fs()F(0),
Fi=1—/B"—~Bett,  Fo=1—n/Big*+~/Bit,
B=14+8Bu~~ B, Fi=148/ B +a/ B

Since no two of Fi, F;, Fs, Fy have common zero, we may seek for all the multiple
zeros of each function F,. Since there is no triple zero in each factor F,, every
multiple zero is a double zero. From the equations

{ Fi(0=0, { Fy(=0, { Fy(0=0, { Fi(n=0,

Fi0=0; Fi(0=0; Fi(0=0; Fi(0=0;
we have
=X =X r=—X =-X
{xl=Y; {xl=—Y; {x’=Y; {x’:~Y;

respectively, where y=I/({—h)/By, and Y=~rh/(h—I)a/B.. Thus every double zero is
a common point between A-th roots of X and I-th roots of Y or that of X and of
—Y or that of —X and of Y or that of —X and of — Y, respectively. Let E(x, p)
be the set of |u|Y? exp{(arg w)/p+2nxi/p}, n=0,1, ---, p—1. If E(X, &) ~E(Y, D)x¢,
then there are d common points of E(X, %) and E(Y, /), where d is the greatest
common measure of 7z and /.

If there is no double zero in F(x), then we have 4/=4, that is,

0<h<i=1,

which is untenable. Hence E(X, ) ~E(Y, [)x¢.

If B(—X, h~E(Y, )= ¢, EX, D) ~E(—Y,)=¢ and E(— X, )~E(—Y,))=¢,
then we have 4/—2d=4, that is, 0<2A<2/=2+d=2+h. Hence 2=d=1. Thus
2/=3, which is untenable.

If E(—X, ) ~E(Y, D=x¢ but EX, i) ~E(—Y, )=¢ and E(—X, ) ~E(—Y, )=¢,
then E(—X, h)~E(Y, ) contains just d points and hence 4/—4d=4. Therefore
h<l=14+d=1+h. Thus we have d=1, =1, [=2. Then p=168, holds.

If further E(X, h)~E(—Y, )x¢, then E(—X, h)~E(—Y,)*¢ and these two
sets contain just d points, respectively. Thus we have 2d=/ and 4/—8d=4. Then
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0<h<l=1+42d=1+#h, which implies d=1, =2 and [=3. This is untenable, since
E(—X, 2) ~E(—Y, 3)=¢.

Next assume that 2<0</. Then, putting ~2=—£k, we get
x B2 1 i Be s
F =1_2____ 2(l+h)__2___ 2k+_ 4(l+k)_2,___ 20+ k+
(69) & R R g "
Since 0<k<I+Fk, we can apply the above result. Then we have /+k=2k=2. This
implies that /=k=1 and hence 2= —1, /=1 and 168,8.=1. If /<h<0, we put %
=—k and /=—m. Then we have

._l_x‘”ﬂ
g

Lwi_. —_ i__ 2m__ ﬁ_ 2(m—k) _1_ 4m_2_ﬂL 4Mm—2% _‘B_f_ 4(Mm—k)
PO =12 a2 g P SRy A g
Since 0<m—k<n, we can apply the above fact. Then we have m—k=1, m=2 and
Bi=16pB,, that is, A=—1, [=—2 and B=168..
If /=~h, then we have

G(2)=1—2(B+ Ba)e™ + (81— Po)%e*.
If Bi2p,, then

G(z)=MN<e”—- ]—‘1/[—> (e'f— —11\7) M=(n/Pr+~/B2)%, N=(n/Br—n/B2)".

Hence P(R)=4. If B,=p,, then G(z)=1—4p:e” and hence P(R)=4.
Summing up these results we have theorem 3.

3. We shall apply this theorem 3 to an analytic mapping. Let S be an ultra-
hyperelliptic surface of finite order with P(S)=4, which is defined by

y*=9(x), g(z)=(eX—7)(e*®—0), yi(r—0)=0, K(0)=0.

Here “of finite order ” means that K(x) is a polynomial of z. Let R be an ultra-
hyperelliptic surface of finite order with P(R)=3, which is defined by

y2 =G($), G= 1—ZﬂleH—ZﬁzeL+ﬁfezH——2,31‘826H+L+ﬁ§e2L

with two polynomials H and L, H(0)=L(0)=0 and with two non-zero constants
ﬁly ﬁ?u

Assume there exists an analytic mapping ¢ from Sinto R. Then by a theorem
in [5] there exist an entire function % and a meromorphic function f such that
f?9=G-H. Then by a theorem in [1] A4(z) must be a polynomial of z. Hence Hok
and Lo~ must be polynomials of z. Therefore by the proof of our theorem 3 we
have either Heh—Hoh(0) = Loh — Lon(0) or Hoh— Hoh(0)=2(Loh—Loh(0)), fie>L-n®
=168,e7* or 2(Hoh— Hoh(0))=Loh—L-h(0), 2?7 =168,eL"® or Heh—Ho-h(0)
=—Loh+Loh(0), 168:B:eH MO +Lr® =1,

Put
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Y4 4 v
H(z)= )] hn2", L(z)= Y [2", @)=Y anz".
n=1 n=1 n=0

(1) Heh—Hoh(0)=Leh—L-~(0). Then we have h,=[l, n=1, -, p. Hence
H=L, which implies that P(R)=4. This is a contradiction.

(I1) Heh—Hoh(0)=2(Loh— Lok(0)), [ie?-"® = 16,7, Then we have #,
=2, n=1, .-+, p and H-~(0)=2L-#(0). Hence H=2L and F=168;, which implies
that P(R)=4. This is again a contradiction.

(II) 2(Hoh—Hoh(0))=Loh—Loh(0), Bl 7 =168, This case leads to a
contradiction similarly.

AV) Heh—Hoh(0)=—(Loh—LA(0)), 168,82 ®@+L1 =1 Then we have 4,
=—[,, n=1, .-, p and hence H=—L and H-A(0)=—L-%(0). This implies that 16[3,8.
=1 and hence P(R)=4, which is a contradiction.

THEOREM 4. Let R and S be two ultvahyperelliptic surfaces with P(R)=3 and
P(S)=4 and of finite ovder defined above. Then theve is no analytic mapping from
S into R.

This is a partial solution of our problem in [5].
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