ON THE EXISTENCE OF ANALYTIC MAPPINGS, I

By Genkō Hiromi and Hideo Mutō

§ 1. Introduction. Let R and S be two ultrahyperelliptic surfaces defined by two equations $y^{2}=G(z)$ and $u^{2}=g(w)$, respectively, where G and g are two entire functions having no zero other than an infinite number of simple zeros. Let φ be a non-trivial analytic mapping of R into S. Let \Re_{R} and \Re_{S} be the projection maps $(z, y) \rightarrow z$ and $(w, u) \rightarrow w$, respectively. Then the composed function $h(z)=\mathfrak{F}_{s^{\circ}} \varphi \circ \mathfrak{F}_{\vec{R}}^{-1}(z)$ reduces to an entire function of $z[6]$. Further when the order ρ_{G} of G is finite, let G_{c} be a canonical product having the same zeros with the same multiplicities as those of G. Similarly we use ρ_{g} and g_{c} with respect to g.

In this paper we shall prove the following two theorems:
Theorem 1. Assume that $\rho_{G_{c}}<\infty$ and $0<\rho_{g_{c}}<\infty$ and that there exists a nontrivial analytic mapping φ of R into S. Then $\rho_{G_{c}}$ is an integral multiple of $\rho_{g_{c}}$.

Theorem 2. Assume that there exists a non-trivial analytic mapping φ of R into itself. Then φ is a univalent conformal mapping of R onto itself and the corresponding function $h(z)$ is a linear function of the form $e^{2 \pi i p / q} z+b$ with a suitable rational number p / q.

Theorem 1 was proved in [7]. However there were some overlooked parts in the estimation of counting functions. Further when the order of G is finite and is not zero, theorem 2 can be derived from theorem 1. Here we shall show that theorem 2 holds good without any condition on the order of G.

The authors wish to express their thanks to Professor M. Ozawa for his valuable advices.
§ 2. Preliminaries. We need to quote some theorems in order to prove our theorems. In [6], Ozawa proved the following theorem:

Theorem A. If there exists a non-trivial analytic mapping φ of R into S, then there exists a pair of two entire functions $h(z)$ and $f(z)$ of z satisfying an equation of the form

$$
f(z)^{2} G(z)=g \circ h(z)
$$

and vice-versa.
Here $h(z)$ is the composed function introduced in $\S 1$. Clearly an equation
Received November 24, 1966.
$f(z)^{2} G(z)=g \circ h(z)$ may be replaced by an equation of the form

$$
f^{*}(z)^{2} G_{c}(z)=g_{c} \circ h(z)
$$

with a suitable entire function $f^{*}(z)$.
In [1], Edrei and Fuchs proved the following theorem:
Theorem B. Let $E(z)$ and $F(z)$ be transcendental entire functions. Assume that the zeros of $E(z)$ have a positive exponent of convergence. Then the zeros of $E \circ F(z)$ cannot have a finite exponent of convergence.

The proof of theorem B depends on a result of Valilon [9].
In [2], Fatou proved the following theorem:
Theorem C. Let $E(z)$ be a transcendental entire function. Then if $E(z)=z$ has at most a finite number of roots, $E \circ E(z)=z$ has an infinite number of roots.

In the following $F(z)$ is a non-constant meromorphic function and the notations T, m, N, N_{1} and \bar{N} are used in the sense of Nevanlinna [3], [5]. The notation $N_{2}(r ; a, F)$ is the N-function of simple a-points of F. Then Nevanlinna's first fundamental theorem is expressible in the following form:

Theorem D. (Theorem 1.2 in [3]) Suppose that $F(0) \neq a, \infty$ for a given complex number a. Then we have

$$
m(r ; a, F)+N(r ; a, F)=T(r, F)-\log |F(0)-a|+\varepsilon(a, r),
$$

where $|\varepsilon(a, r)| \leqq \log ^{+}|a|+\log 2$.
Next we quote some theorems fundamental to derive Nevanlinna's second fundamental theorem.

Theorem E. (Theorem 2.1 in [3]) Let $a_{1}, a_{2}, \cdots, a_{q}(q>2)$ be distinct finite complex numbers and suppose that $\left|a_{\mu}-a_{\nu}\right| \geqq \delta$ with a fixed $\delta>0$ for $1 \leqq \mu<\nu \leqq q$. Then we have

$$
m(r ; \infty, F)+\sum_{\nu=1}^{q} m\left(r ; a_{\nu}, F\right) \leqq 2 T(r, F)-N_{1}(r, F)+S(r, F),
$$

where

$$
N_{1}(r, F)=N\left(r ; 0, F^{\prime}\right)+2 N(r ; \infty, F)-N\left(r ; \infty, F^{\prime}\right)
$$

and

$$
S(r, F)=m\left(r ; \infty, \frac{F^{\prime}}{F}\right)+m\left(r, \infty, \sum_{\nu=1}^{q} \frac{F^{\prime}}{F-a_{\nu}}\right)+q \log ^{+} \frac{3 q}{\delta}+\log 2-\log |c|
$$

with $F(z)-F(0)=c z^{2}+\cdots, c \neq 0$.

Lemma F. (Lemma 2.3 in [3]) Suppose that $0<r<R$. Then we have

$$
\begin{aligned}
m\left(r ; \infty, \frac{F^{\prime}}{F}\right)< & 4 \log ^{+} T(R, F)+4 \log ^{+} \log ^{+} \frac{1}{|F(0)|}+5 \log ^{+} R \\
& +6 \log ^{+} \frac{1}{R-r}+\log ^{+} \frac{1}{r}+14
\end{aligned}
$$

with $F(0) \neq 0, \infty$.
Lemma G. (Lemma 2.4 in [3]) Suppose that $T(r)$ is continuous, increasing and $T(r) \geqq 1$ for $r_{0} \leqq r<\infty$. Then we have

$$
T\left(r+\frac{1}{T(r)}\right)<2 T(r)
$$

outside a set of r which has linear measure at most 2 .
We shall use the following precise form of Nevanlinna's second fundamental theorem which is easily obtained by combining theorem E, lemma F and lemma G.

Theorem H. Let $a_{1}, a_{2} \cdots, a_{q}(q>2)$ be distinct finite complex numbers. Suppose that $F(z)$ is a non-constant meromorphic function with $F(z)-F(0)=c z^{2}+\cdots, c \neq 0$, and that $F(0) \neq 0, \infty, a_{1}, a_{2}, \cdots, a_{q}$. Further suppose that $T\left(r_{0}, F\right) \geqq 1$. Then we have

$$
\begin{aligned}
(q-1) T(r, F) \leqq & N(r ; \infty, F)+\sum_{\nu=1}^{q} N\left(r ; a_{\nu}, F\right)-N_{1}(r, F)-\log |c| \\
& +K_{1} \log T(r, F)+K_{2} \log r+K_{3} \sum_{\nu=1}^{q}\left\{\log ^{+}\left|F(0)-a_{\nu}\right|+\log ^{+} \log ^{+}\left|F(0)-a_{\nu}\right|\right\} \\
& +K_{4} \log ^{+} \log ^{+} \frac{1}{|F(0)|}+K_{5}
\end{aligned}
$$

outside a set E_{F} of r which has linear measure at most $2+r_{0}$, where $K_{\imath}(i=1, \cdots, 5)$ are absolute constants depending on given complex numbers $a_{1}, a_{2}, \cdots, a_{q}$, but independent of the function $F(z)$.

Finally we quote a lemma concerning the characteristic of a composed function:
Lemma I. If $F(z)$ and $E(z)$ are two transcendental entire functions, then for any given positive number K there exists a number r_{0} such that

$$
T(r, F \circ E) \geqq \frac{1}{3} T\left(r^{K}, F\right)
$$

for all $r \geqq r_{0}$, and r_{0} depends on K and E but not on F.
The proof of lemma I is contained in the proof of lemma 2.6 in [3].
§ 3. Proof of theorem 1. By theorem A we may consider the possibility of a functional equation $f(z)^{2} G_{c}(z)=g_{c} \circ h(z)$ with two suitable entire functions $f(z)$ and $h(z)$.

The first aim confronting us is to prove that $h(z)$ must be of finite order in our case. Assume contrarily that $h(z)$ is of infinite order. Since g_{c} has no zero other than an infinite number of simple zeros, we have

$$
\begin{align*}
& N\left(r ; 0, g_{c} \circ h\right)=N_{2}\left(r ; 0, g_{c} \circ h\right)+N_{1}\left(r ; 0, g_{c} \circ h\right)+\bar{N}_{1}\left(r ; 0, g_{c} \circ h\right), \\
& \bar{N}_{1}\left(r ; 0, g_{c} \circ h\right) \leqq N_{1}\left(r ; 0, g_{c} \circ h\right) \leqq N\left(r ; 0, h^{\prime}\right) \leqq T\left(r, h^{\prime}\right)+O(1) \tag{3.1}\\
& \leqq T(r, h)+O(\log (r T(r, h))) \leqq 2 T(r, h)
\end{align*}
$$

outside a set of finite measure. Further we have

$$
N\left(r ; 0, g_{c} \circ h\right) \geqq \sum_{\nu=1}^{p} N\left(r ; w_{\nu}, h\right)
$$

for an arbitrary but fixed number p of zeros $\left\{w_{\nu}\right\}$ of g_{c} and for all r. Since $h(z)$ is transcendental, by Nevanlinna's second fundamental theorem applied to $h(z)$ we have

$$
\begin{aligned}
\sum_{\nu=1}^{p} N\left(r ; w_{\nu}, h\right) & \geqq(p-1) T(r, h)-O(\log (r T(r, h))) \\
& \geqq(p-2) T(r, h)
\end{aligned}
$$

outside a set of finite measure. Thus we have

$$
N\left(r ; 0, g_{c} \circ h\right) \geqq K T(r, h),
$$

and by (3.1)

$$
N_{2}\left(r ; 0, g_{c} \circ h\right) \geqq K T(r, h)
$$

for an arbitrary but fixed number K and for all r outside a set of finite measure. Using the functional equation $f(z)^{2} G_{c}(z)=g_{c} \circ h(z)$, we have

$$
\begin{aligned}
K T(r, h) & \leqq N_{2}\left(r ; 0, g_{c} \circ h\right) \leqq N\left(r ; 0, G_{c}\right) \\
& \leqq T\left(r, G_{c}\right)+O(1)
\end{aligned}
$$

outside a set of finite measure. Hence

$$
\begin{equation*}
(K-1) T(r, h) \leqq T\left(r, G_{c}\right) \tag{3.2}
\end{equation*}
$$

for an arbitrary but fixed number K and for all r outside a set of finite measure. Since G_{c} is of finite order, there exists a constant C_{1} such that

$$
\begin{equation*}
T\left(r, G_{c}\right) \leqq r^{G_{1}} \tag{3.3}
\end{equation*}
$$

holds for all sufficiently large r. On the other hand, since h is of infinite order, there exists a sequence $\left\{r_{n}\right\} \uparrow \infty\left(r_{1} \geqq 2\right)$ such that

$$
\begin{equation*}
T\left(r_{n}, h\right) \geqq r_{n}^{C_{2}}, \quad C_{2}=2 C_{1} \tag{3.4}
\end{equation*}
$$

remains true. Further we have $T(r, h) \geqq T\left(r_{n}, h\right)$ for $r \geqq r_{n}$ and $\left(r_{n}+1\right)^{C_{1}} \leqq r_{n}{ }^{C_{2}}$ for all n. Therefore by (3.3) and (3.4)

$$
T(r, h) \geqq T\left(r, G_{c}\right)
$$

holds on the set $S=\cup_{n=1}^{\infty} S_{n}, S_{n}=\left[r_{n}, r_{n}+1\right]$. Since S is of infinite measure, this contradicts (3.2) with $K>2$. Therefore $h(z)$ must be of finite order.

Next we shall prove that $h(z)$ must be a polynomial. Assume that $h(z)$ is transcendental and of finite order. Then by the same estimations as above we have

$$
\begin{aligned}
N_{1}\left(r ; 0, g_{c} \circ h\right) & \leqq 2 T(r, h), \\
N\left(r ; 0, g_{c} \circ h\right) & \geqq N_{2}\left(r ; 0, g_{c} \circ h\right) \geqq K T(r, h)
\end{aligned}
$$

for an arbitrary but fixed number K and for all sufficiently large r. Therefore we have

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{N\left(r ; 0, g_{c} \circ h\right)}{T(r, h)}=\infty, \quad \lim _{r \rightarrow \infty} \frac{N\left(r ; 0, g_{c} \circ h\right)}{N_{2}\left(r ; 0, g_{c} \circ h\right)}=1 . \tag{3.5}
\end{equation*}
$$

Using the functional equation $f(z)^{2} G_{c}(z)=g_{c} \circ h(z)$, we have

$$
\begin{aligned}
N_{2}\left(r ; 0, g_{c} \circ h\right) & \leqq N\left(r ; 0, G_{c}\right), \\
N(r ; 0, f) & \leqq N\left(r ; 0, h^{\prime}\right) \leqq T(r, h)+O(\log (r T(r, h))) \\
& \leqq 2 T(r, h)
\end{aligned}
$$

for all sufficiently large r. Hence we have

$$
N(r ; 0, f)=o\left(N\left(r ; 0, g_{c} \circ h\right)\right)=o\left(N_{2}\left(r ; 0, g_{c} \circ h\right)\right)=o\left(N\left(r ; 0, G_{c}\right)\right)
$$

for all sufficiently large r. Thus we have

$$
\begin{equation*}
N(r ; 0, f) \leqq N\left(r ; 0, G_{c}\right) \tag{3.6}
\end{equation*}
$$

for all sufficiently large r. The exponent of convergence of zeros of G_{c}, which is equal to the order of G_{c} [5], is finite by assumption. Further by (3.6) the exponent of convergence of zeros of f is finite. Therefore the exponent of convergence of zeros of $f^{2} G_{c}$ is finite. On the other hand, since $h(z)$ is not polynomial and ρ_{g} is positive, by theorem B the exponent of convergence of zeros of $g_{c} \circ h(z)$ cannot be finite. Consequently we have a contradiction and $h(z)$ must be a polynomial.

Let $h(z)$ be a polynomial of the form $a_{0} z^{\nu}+a_{1} z^{\nu-1}+\cdots+a_{\nu}$. Then we have for any ε with $0<\varepsilon<1$

$$
n\left(r ; 0, g_{c} \circ h\right) \geqq n\left(\left|a_{0}\right| r^{v}(1-\varepsilon) ; 0, g_{c}\right)-O(1)
$$

and hence

$$
N\left(r ; 0, g_{c} \circ h\right) \geqq N\left(\left|a_{0}\right| r^{\nu}(1-\varepsilon) ; 0, g_{c}\right)-O(\log r) .
$$

Therefore we have

$$
\rho_{N\left(r, 0, g_{c} \circ h\right)} \geqq \nu \rho_{N\left(r, 0, g_{c}\right)}=\nu \rho_{g_{c}} .
$$

Further we have by (3.5) and (3.6)

$$
\rho_{N\left(r, 0, g_{c} \circ h\right)} \leqq \rho_{N\left(r, 0, \sigma_{c}\right)}=\rho_{G_{c}} \leqq \rho_{N\left(r, 0, g_{c^{\circ}}\right)} \leqq \rho_{g_{c^{\circ}} \delta l} .
$$

On the other hand we have by Pólya's method [8]

$$
\rho_{g_{c}{ }_{c o h}} \leqq \nu \rho_{g_{c}} .
$$

Therefore we have the desired result:

$$
\begin{equation*}
\rho_{G_{c}}=\nu \rho_{g_{c}} . \tag{3.7}
\end{equation*}
$$

Remark. In the case of $\rho_{a c}=0$ and $\rho_{g_{c}}>0$ (3.7) implies that there is no nontrivial analytic mapping of R into S.
§4. Proof of theorem 2. By theorem A it is sufficient to consider the possibility of a functional equation $f(z)^{2} G(z)=G \circ h(z)$ with two suitable entire functions $f(z)$ and $h(z)$. And it is sufficient to prove that $h(z)$ is a linear function $a z+b$. For we can prove the desired result by the same argument as in [7, p. 6].

At first we shall prove that $h(z)$ must be a polynomial. Assume that $h(z)$ is a transcendental entire function. Then its iteration $h_{n+1}(z)=h \circ h_{n}(z)=h_{n} \circ h(z)$ with $h_{1}(z)=h(z)$ is transcendental an satisfies an equation $f_{n}(z)^{2} G(z)=G \circ h_{n}(z)$ with a suitable entire function $f_{n}(z)$. By theorem C the equation $h(z)=z$ or $h \circ h(z)=z$ has an infinite number of roots. Therefore we may assume that the equation $h(z)=z$ has an infinite number of roots. Let z_{0} be an arbitrary non-zero root of $h(z)=z$. And we choose distinct complex numbers $w_{1}, w_{2}, \cdots, w_{10}$ from the set of zeros of $G(z)$. Without loss of generality we may assume that $z_{0} \neq w_{i}(i=1,2, \cdots, 10)$. In the following argument complex numbers $z_{0}, w_{1}, w_{2}, \cdots, w_{10}$ are fixed.

If we put $h(z)=z_{0}+c\left(z-z_{0}\right)^{k}+\cdots, c \neq 0$, then we have

$$
\begin{equation*}
h_{n}(z)=z_{0}+c^{1+k+\cdots+k^{n-1}}\left(z-z_{0}\right)^{k^{n}}+\cdots . \tag{4.1}
\end{equation*}
$$

Since $h(z)$ is transcendental, we have

$$
\lim _{r \rightarrow \infty} \frac{T(r, h)}{\log r}=\infty,
$$

and for an arbitrary given constant K there exists a number r_{1} such that

$$
T(r, h)>K \log r
$$

holds for all $r>r_{1}$.
By lemma I there exists a number r_{2} such that

$$
\begin{aligned}
T\left(r, h_{n}\right)=T\left(r, h_{n-1} \circ h\right) & \geqq \frac{1}{3} T\left(r^{6 k}, h_{n-1}\right) \\
& \geqq \frac{1}{3^{2}} T\left(r^{(6 k)^{2}}, h_{n-2}\right) \geqq \cdots \geqq \frac{1}{3^{n-1}} T\left(r^{66)^{n-1}}, h\right)
\end{aligned}
$$

for all $r>r_{2}$ and for all n. If we put $r_{3}=\max \left(2, r_{1}, r_{2}\right)$, we have

$$
\begin{equation*}
T\left(r, h_{n}\right)>K(2 k)^{n-1} \log r \tag{4.2}
\end{equation*}
$$

for all $r>r_{3}$ and for all n.
Consider a function $H_{n}(z)=h_{n}\left(z+z_{0}\right)$. If we put $r_{0}=2\left(r_{3}+\left|z_{0}\right|\right)$, then we have

$$
\begin{aligned}
T\left(r_{0}, H_{n}(z)\right) & \geqq \frac{1}{3} \log ^{+} M\left(\frac{r_{0}}{2}, H_{n}(z)\right) \geqq \frac{1}{3} \log ^{+} M\left(r_{3}, h_{n}(z)\right) \\
& \geqq \frac{1}{3} T\left(r_{3}, h_{n}(z)\right)
\end{aligned}
$$

Since we may assume that $K \log r_{3}>3$, we have by (4.2)

$$
\begin{equation*}
T\left(r_{0}, H_{n}(z)\right)>(2 k)^{n-1} \tag{4.3}
\end{equation*}
$$

Further $H_{n}(0)=z_{0}$. Therefore we can apply theorem H to $H_{n}(z)$ and by (4.1) we have

$$
\begin{align*}
& 9 T\left(r, H_{n}\right) \leqq \sum_{\nu=1}^{10} N\left(r ; w_{\nu}, H_{n}\right)-N\left(r ; 0, H_{n}^{\prime}\right)+\log ^{+}\left(\frac{1}{|c|}\right)^{1+k+\ldots+k^{n-1}} \\
&+K_{1} \log T\left(r, H_{n}\right)+K_{2} \log r+K_{3} \tag{4.4}
\end{align*}
$$

outside a set E_{n} of r which has linear measure at most 2 , where K_{1}, K_{2}, K_{3} are constants which depend on $z_{0}, w_{1}, \cdots, w_{10}$ but not on n. On the other hand by an equation $f_{n}(z)^{2} G(z)=G \circ H_{n}\left(z-z_{0}\right)$ we have

$$
\begin{aligned}
& \sum_{\nu=1}^{10} N\left(r ; w_{\nu}, H_{n}\right)-N\left(r ; 0, H_{n}^{\prime}\right) \leqq \sum_{\nu=1}^{10} \bar{N}\left(r ; w_{\nu}, H_{n}\right) \\
\leqq & \sum_{\nu=1}^{10} \bar{N}_{1}\left(r ; w_{\nu}, H_{n}\right)+\sum_{\nu=1}^{10} N_{2}\left(r ; w_{\nu}, H_{n}\right) \\
\leqq & \frac{1}{2} \sum_{\nu=1}^{10} N\left(r ; w_{\nu}, H_{n}\right)+N\left(r ; 0, G^{*}\right) \\
\leqq & 5 T\left(r, H_{n}\right)+N\left(r ; 0, G^{*}\right),
\end{aligned}
$$

where $G^{*}(z)=G\left(z+z_{0}\right)$. Hence (4.4) reduces to

$$
4 T\left(r, H_{n}\right) \leqq N\left(r ; 0, G^{*}\right)+\log ^{+}\left(\frac{1}{|c|}\right)^{1+k+\cdots+k n-1}+K_{1} \log T\left(r, H_{n}\right)+K_{2} \log r+K_{3}
$$

The exceptional set E_{n} has linear measure at most $r_{0}+2$. Therefore we have

$$
\begin{aligned}
0 \leqq & \left\{N\left(r^{\prime} ; 0, G^{*}\right)-T\left(r^{\prime}, H_{n}\right)\right\}+\left\{\log \left(\frac{1}{|c|}\right)^{1+k+\ldots+k^{n-1}}-T\left(r^{\prime}, H_{n}\right)\right\} \\
& +\left\{K_{1} \log T\left(r^{\prime}, H_{n}\right)-T\left(r^{\prime}, H_{n}\right)\right\}+\left\{K_{2} \log r^{\prime}+K_{3}-T\left(r^{\prime}, H_{n}\right)\right\}
\end{aligned}
$$

for at least one number $r^{\prime} ; r_{0} \leqq r^{\prime} \leqq 4 r_{0}$. By (4.3) each term in the right hand side is negative for sufficiently large n. We have a contradiction. Consequently $h(z)$ must be a polynomial.

Next assume that $h(z)$ is a polynomial of degree at least 2 . Then $h^{\prime}(z)$ has a finite number of zeros. Further there exists a number K_{0} such that $h(z)$ has at least two simple w-points in $|z|<|w|$ if $|w|>K_{0}$. Suppose that $G(z)$ has p simple zeros in $|z| \leqq K_{0}$ and q simple zeros in $K_{0}<|z|<K^{\prime}$. We may assume that $p<q$. Then $G \circ h(z)$ has at least $2 q$ simple zeros in $|z|<K^{\prime}$. This is a contradiction since $G(z)$ and $G \circ h(z)$ have the same number of simple zeros. Consequently $h(z)$ must be a linear function.
§5. Remarks. Let R_{3} and S_{3} be two regularly branched three-sheeted covering surfaces defined by two equations $y^{3}=G_{3}(z)$ and $u^{3}=g_{3}(w)$, respectively, where G_{3} and g_{3} are two entire functions having no zero other than an infinite number of simple or double zeros. In [4] one of the authors proved the following:

If there exists a non-trivial analytic mapping φ of R_{3} into S_{3}, then there exists an entire function $h(z)$ of z such that either $\nu(z)^{3} G_{3}(z)=g_{3} \circ h(z)$ or $\mu(z)^{3} G_{3}(z)^{2}=g_{3} \circ h(z)$ remains true where $\nu(z)$ is an entire function of z and $\mu(z)$ a single-valued regular function of z excepting possibly all the double zeros of $G_{3}(z)$ at which it might have simple poles. The converse holds good.

Using this we have the following theorems.
ThEOREM 1'. Assume that $\rho_{G_{3 c}}<\infty$ and $0<\rho_{g_{3 c}}<\infty$ and that there exists a non-trivial analytic mapping φ of R_{3} into S_{3}. Then $\rho_{G_{3 c}}$ is an integral multiple of $\rho_{g_{3 c}}$.

Theorem 2^{\prime}. Assume that there exists a non-trivial analytic mapping φ of R_{3} into itself, then φ is a univalent conformal mapping of R_{3} onto itself and the corresponding entire function $h(z)$ is a linear function of the form $e^{2 \pi \imath p / q} z+b$ with a suitable rational number p / q.

Theorem 1^{\prime} was stated in [4] without proof. We can prove theorem 1^{\prime} and theorem 2^{\prime} by the same method as in $\S 3$ and $\S 4$. Further by the same method as in $\S 4$ we can prove the following:

Let $g(z)$ be an entire function having no zero other than an infinite number of zeros with multiplicity at most $m-1$. Then if an equation

$$
f(z)^{m} g(z)=g \circ h(z)
$$

holds good with two suitable entire functions $f(z)$ and $h(z), h(z)$ must be a linear function of the form $e^{2 \pi n p / q} z+b$ with a suitable rational number p / q.

References

[1] Edrei, A., and W. H. J. Fuchs, On the zeros of $f(g(z))$ where f and g are entıre functions. J. Anal. Math. 14 (1964), 243-255.
[2] Fatou, P., Sur l'itération des fonctions transcendantes entieres. Acta Math. 47 (1926), 337-370.
[3] Hayman, W. K., Meromorphic functions. Oxford (1964).
[4] Mutō, H., On the exıstence of analytıc mappings. Kōdaı Math. Sem. Rep. 18 (1966), 24-35.
[5] Nevanlinna, R., Eindeutige analytische Funktionen. Berlin 2nd ed. (1953).
[6] Ozawa, M., On the exıstence of analytic mappings. Kōdaı Math. Sem. Rep. 17 (1965), 191-197.
[7] Ozawa, M., On the existence of analytıc mappıngs, II. Kōdaı Math. Sem. Rep. 18 (1966), 1-7.
[8] Pólya, G., On an integral function of an integral function. J. London Math. Soc. 1 (1926), 12-15.
[9] Valiron, G., Sur un théorème de M. Fatou. Bull. Sc1. Math. 46 (1922), 200-208.

> Tokyo University of Education, and
> Tokyo Institute of Technology.

