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ON THE EXISTENCE OF ANALYTIC MAPPINGS, I

BY GENKO HIROMI AND HIDEO MUTO

§ 1. Introduction. Let R and S be two ultrahyperelliptic surfaces defined by two
equations y2=G(z) and u2=g(w), respectively, where G and g are two entire functions
having no zero other than an infinite number of simple zeros. Let φ be a non-trivial
analytic mapping of R into S. Let φ Λ and $# be the projection maps (z, y)-^z and
(w, u)-+w, respectively. Then the composed function h(z)='^soφo^βR\z) reduces to
an entire function of z [6]. Further when the order pG of G is finite, let Gc be a
canonical product having the same zeros with the same multiplicities as those of
G. Similarly we use pg and gc with respect to g.

In this paper we shall prove the following two theorems:

THEOREM 1. Assume that pGc<^oo and 0<pgc<oo and that there exists a non-
trivial analytic mapping ψ of R into S. Then pGc is an integral multiple of pQc.

THEOREM 2. Assume that there exists a non-trivial analytic mapping ψ of R
into itself. Then φ is a univalent conformal mapping of R onto itself and the
corresponding function h{z) is a linear function of the form e2πιp/qz-{-b with a
suitable rational number p/q.

Theorem 1 was proved in [7]. However there were some overlooked parts in
the estimation of counting functions. Further when the order of G is finite and
is not zero, theorem 2 can be derived from theorem 1. Here we shall show that
theorem 2 holds good without any condition on the order of G.

The authors wish to express their thanks to Professor M. Ozawa for his
valuable advices.

§ 2. Preliminaries. We need to quote some theorems in order to prove our
theorems. In [6], Ozawa proved the following theorem:

THEOREM A. // there exists a non-trivial analytic mapping ψ of R into S,
then there exists a pair of two entire functions h(z) and f{z) of z satisfying an
equation of the form

f(zfG(z)=goh{z)

and vice-versa.

Here h(z) is the composed function introduced in § 1. Clearly an equation
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EXISTENCE OF ANALYTIC MAPPINGS 237

f(z)2G(z)=g°h(z) may be replaced by an equation of the form

f*(z)2Gc(z)=gcoh(z)

with a suitable entire function f*(z).
In [1], Edrei and Fuchs proved the following theorem:

THEOREM B. Let E(z) and F(z) be transcendental entire functions. Assume
that the zeros of E(z) have a positive exponent of convergence. Then the zeros of
EoF(z) cannot have a finite exponent of convergence.

The proof of theorem B depends on a result of Valilon [9].
In [2], Fatou proved the following theorem:

THEOREM C. Let E(z) be a transcendental entire function. Then if E(z)~z
has at most a finite number of roots, EoE(z)=z has an infinite number of roots.

In the following F(z) is a non-constant meromorphic function and the nota-
tions Z1, m, N, Nt and N are used in the sense of Nevanlinna [3], [5]. The nota-
tion N2(r, a, F) is the iV-function of simple ^-points of F. Then Nevanlinna's first
fundamental theorem is expressible in the following form:

THEOREM D. (Theorem 1.2 in [3]) Suppose that F(0)^a, oo for a given com-
plex number a. Then we have

m(r; a, F)+N(r; a, F)=T(r, F)- log \F(0)-a\+e(a, r),

where \ε(a, f)\ ̂ log + |# | +log 2.

Next we quote some theorems fundamental to derive Nevanlinna's second
fundamental theorem.

THEOREM E. (Theorem 2.1 in [3]) Let au a2, ~ ,aq (q>2) be distinct finite com-
plex numbers and suppose that \aμ—av\^δ with a fixed <5>0 for l^μ<v^q. Then
we have

m(r; oo, F)+ Σ Mr; av, F)^2T(r, F)-M(r, F)+S(r, F),

where

M(r, F)=N(r; 0, F')Λ-2N{r, oo, F)-N(r; oo, F')

and

S(r, F)=m(r\ oo, Jl^j+m^ oo, g -JΪL^+q log" - ^ +log 2-log \c\

with F(z)-F(0)=czx+"Ίc^0.
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LEMMA F. (Lemma 2.3 in [3]) Suppose that 0<r<R. Then we have

m(r\ oo, ip^ <4 \og+T(R, F)+4 log+ log+ * +5 log+i?

1 s R-r

with F(0)^0, OO.

LEMMA G. (Lemma 2.4 in [3]) Suppose that T(r) is continuous, increasing and
^ 1 for r 0 ^r<oo. Then we have

X<2T(r)

outside a set of r which has linear measure at most 2.

We shall use the following precise form of Nevanlinna's second fundamental
theorem which is easily obtained by combining theorem E, lemma F and lemma G.

THEOREM H. Let alfa2 ~-,aq(q>2) be distinct finite complex numbers. Suppose
that F{z) is a non-constant meromorphic function with F(z)—F(0)=czλ-\—, c^O,
and that F(0)^0,oo,a1,a2, •• , # ί . Further suppose that T(r0, F ) ^ l . Then we have

(q-ΐ)T(r, F)^N(r; oo, F)+ Σ N(rf a», F)-M(r, F)-log \c\

+K1log T(r,F)+K2logr+KsΣ

outside a set EF of r which has linear measure at most 2+r0, where Kz(i=ly * ,5)
are absolute constants depending on given complex numbers a1,a2,--,aq, but in-
dependent of the function F(z).

Finally we quote a lemma concerning the characteristic of a composed function:

LEMMA I. If F(z) and E(z) are two transcendental entire functions, then for
any given positive number K there exists a number r0 such that

T(rfFoE)^~T(rK,F)

for all r^n, and n depends on K and E but not on F.

The proof of lemma I is contained in the proof of lemma 2.6 in [3].
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§ 3. Proof of theorem 1. By theorem A we may consider the possibility of a
functional equation f(z)2Gc(z)=gc

oh(z) with two suitable entire functions f(z) and
h(z).

The first aim confronting us is to prove that h(z) must be of unite order in
our case. Assume contrarily that h{z) is of infinite order. Since gc has no zero
other than an infinite number of simple zeros, we have

N(r, 0, gc°h)=mr, 0,0β A)+iVi(r; 0, <7C°A)+M(r; 0,

(3.1) M(r, 0, geoh^Nάr, 0, gc°h)^N(r; 0, A')^ T(r,

^ Γ(r, A)+O(log(rΓ(r, A)))^2Γ(r, A)

outside a set of finite measure. Further we have

iV(r,0,gβoΛ)^ 2 iV(r; «;„,*)

for an arbitrary but fixed number p of zeros {wv} of gc and for all r. Since h{z)
is transcendental, by Nevanlinna's second fundamental theorem applied to h{z) we
have

, h)-O(log(rT(r, h)))

outside a set of finite measure. Thus we have

and by (3.1)

for an arbitrary but fixed number K and for all r outside a set of finite measure.
Using the functional equation f(z)2Gc(z)=gc

oh(z), we have

KT(r, h)^N2(r; 0, gc°h)^N(r; 0, Gc)

outside a set of finite measure. Hence

(3.2) (K-l)T(rfh)^T(r,Ge)

for an arbitrary but fixed number K and for all r outside a set of finite measure.
Since Gc is of finite order, there exists a constant d such that

(3.3) T(r,
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holds for all sufficiently large r. On the other hand, since h is of infinite order,
there exists a sequence {rn} ΐ oo fa ^2) such that

(3.4) T(rn>h)^rn

G% C 2 = 2 d

remains true. Further we have T(r,h)^T(rn,h) for r^rn and (rn+l)GlSrn

Ci for
all n. Therefore by (3. 3) and (3.4)

holds on the set S= Όn=iSn, Sn=[rn, rn+l]. Since S is of infinite measure, this
contradicts (3.2) with K>2. Therefore h(z) must be of finite order.

Next we shall prove that h(z) must be a polynomial. Assume that h(z) is
transcendental and of finite order. Then by the same estimations as above
we have

N(r\ 0, gc°h)^N2(r, 0, gc°h)^KT(r, h)

for an arbitrary but fixed number K and for all sufficiently large r. Therefore
we have

(3. 5) lim 7F,—Γ\ ^^y AIΠI-T77—^ 7T- = 1 .

Using the functional equation f(z)2Gc(z)=gc°h(z), we have

(r;0,gcoh)^N(r;0,Gc),

N(r; 0,f)^N(r; 0, h')^T(r, A)+O(log(rΓ(r, A)))

for all sufficiently large r. Hence we have

N(r; 0,f)=o(N(r; 0, geoh))=o(N2(r, 0, ge°h))=o(N(r, 0, Gc))

for all sufficiently large r. Thus we have

(3.6) N(r;0,f)^N(r,0,Gc)

for all sufficiently large r. The exponent of convergence of zeros of Gc, which is
equal to the order of Gc [5], is finite by assumption. Further by (3. 6) the exponent
of convergence of zeros of / is finite. Therefore the exponent of convergence of
zeros of pGc is finite. On the other hand, since h(z) is not polynomial and pg is
positive, by theorem B the exponent of convergence of zeros of gc°h(z) cannot be
finite. Consequently we have a contradiction and h{z) must be a polynomial.

Let h(z) be a polynomial of the form a^zv-^axz
v~xΛ Vav. Then we have for

any ε with 0 < ε < l
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n(r, 0, gc°h)^n(\ao\ra-ε); 0, gc)~O(l)

and hence

N(r; 0, gcoh)^N(\ao\rva-ε); 0, gc)-O(log t).

Therefore we have

pN(r 0, gc°h )^VpN(r; 0, gcϊ = Vpgc-

Further we have by (3. 5) and (3.6)

PNQr; 0, gcoh^pN(r; 0, Gc) = PGc^pN{r; 0, g coK)^k P q c*h.

On the other hand we have by Pόlya's method [8]

Therefore we have the desired result:

(3.7) pσe=vpge

REMARK. In the case of poc^O and ρQc>0 (3.7) implies that there is no non-
trivial analytic mapping of R into S.

§4. Proof of theorem 2. By theorem A it is sufficient to consider the pos-
sibility of a functional equation f(z)2G(z)=G°h(z) with two suitable entire func-
tions f{z) and h{z). And it is sufficient to prove that h(z) is a linear function
azΛ-b. For we can prove the desired result by the same argument as in [7, p. 6].

At first we shall prove that h{z) must be a polynomial. Assume that h{z) is a
transcendental entire function. Then its iteration hn+i(z)=h°hn(z)=hn

oh(z') with
hi(z) = h{z) is transcendental an satisfies an equation fn(z)2G(z)=G°hn(z) with a
suitable entire function fn(z). By theorem C the equation h(z)=z or h°h(z)=z has
an infinite number of roots. Therefore we may assume that the equation h(z)=z
has an infinite number of roots. Let z0 be an arbitrary non-zero root of h(z)=z.
And we choose distinct complex numbers wl9W2,' ,Wio from the set of zeros of
GO). Without loss of generality we may assume that zo^Wi(i=l,2, •••, 10). In
the following argument complex numbers zo,wuW29'",Wio are fixed.

If we put h(z)=zo+c(z—zo)
k+--, C*F0, then we have

(4. 1) hn(z) = Zo \

Since h{z) is transcendental, we have

l i m = o o ,
r-*oo log r

and for an arbitrary given constant K there exists a number γx such that
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T(χ,h)>Klogr

holds for all r>n.
By lemma I there exists a number r2 such that

T(r, *„)= T(r, A»-ioA)^ -ί

for all r>r 2 and for all n. If we put r3=max(2, n, r2), we have

(4.2) T(r>hn)>K(2kγ-ί\ogr

for all r>r 3 and for all n.
Consider a function Hn(z)=hn(z+z0). If we put ro=2(r3+|zo|), then we have

T(r0, Hn{z))^ -ί l o g + M ^ , Hn(z^j ^ y Iog+M(r8, *„(*))

Since we may assume that Klog r 3 >3, we have by (4.2)

(4. 3) Γ(fQ, Hn(z))>{2k)n-\

Further Hn(0)=z0. Therefore we can apply theorem H to Hn(z) and by (4.1) we
have

10 / I \l+fe+ +fcn~1

9Γ(r, iϊ«)g Σ Wfo w., Hn)-N(r; 0, £fί)+log+ -pr
p=l V C /

(4.4)
+K log T(r, J3»)+JK2 log r+K*

outside a set En of r which has linear measure at most 2, where Kίf K2, iΓ3 are
constants which depend on z0, wlf •••, w10 but not on n. On the other hand by an
equation fn(z)2G(z)=G°Hn(z—Zo) we have

10 10

10 _

v=l

1 10
< V

"2"

< 5 Γ ( r > Hi

10

r; «;„ Hn)+N(r;

t)+N(r, 0, G*),

0, G*)
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where G*(z)=G(z+z0). Hence (4.4) reduces to

4Γ(r, Ξn)^N(r; 0, G*)+log+ ( j ^ ) ' + * + +" +& log T(r, Hn)+K2 log r+K*.

The exceptional set En has linear measure at most r o +2. Therefore we have

0,G*)-T(r/,£Γn)} +

log Γ(r', Hn)-T(r', Hn)} + {K2 log

for at least one number rf\ ro^r'^4ro. By (4.3) each term in the right hand side
is negative for sufficiently large n. We have a contradiction. Consequently h{z)
must be a polynomial.

Next assume that h(z) is a polynomial of degree at least 2. Then h\z) has a
finite number of zeros. Further there exists a number Ko such that Λ(̂ ) has at
least two simple ^-points in | z | < M if \w\>K0. Suppose that G(z) has p simple
zeros in \z\^K0 and q simple zeros in K0<\z\<K'. We may assume that p<q.
Then G°h(z) has at least 2q simple zeros in \z\<K'. This is a contradiction since
G{z) and G^hiz) have the same number of simple zeros. Consequently h(z) must
be a linear function.

§5. Remarks. Let Rz and S3 be two regularly branched three-sheeted cover-
ing surfaces defined by two equations yz=Gz{z) and u*=g3(w), respectively, where
G3 and g3 are two entire functions having no zero other than an infinite number
of simple or double zeros. In [4] one of the authors proved the following:

// there exists a non-trivial analytic mapping φ of Rs into S3, then there exists
an entire function h{z) of z such that either v(z)*Gz(z)—gz°h(z) or μ{zfG3{zf=g^h{z)
remains true where v{z) is an entire function of z and μ{z) a single-valued
regular function of z excepting possibly all the double zeros of Gs(z) at which it
might have simple poles. The converse holds good.

Using this we have the following theorems.

THEOREM V. Assume that pasc<oo and 0<|Og3c<oo and that there exists a
non-trivial analytic mapping φ of R3 into S3. Then ρGsc is an integral multiple of

THEOREM 2'. Assume that there exists a non-trivial analytic mapping φ of R%
into itself, then ψ is a univalent conformal mapping of RΆ onto itself and the cor-
responding entire function h{z) is a linear function of the form e2πιp/qz+b with a
suitable rational number p/q.

Theorem V was stated in [4] without proof. We can prove theorem V and
theorem 2' by the same method as in § 3 and § 4. Further by the same method
as in §4 we can prove the following:
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Let g(z) be an entire function having no zero other than an infinite number of

zeros with multiplicity at most m—1. Then if an equation

f(z)mg(z)=goh(z)

holds good with two suitable entire functions f(z) and h(z), h(z) must be a linear
function of the form e2πιp/Qz+b with a suitable rational number p/q.
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