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ON THE EXISTENCE OF ANALYTIC MAPPINGS, 1
By Genko Hiromi anD Hipeo MuTo

§1. Introduction. Let R and S be two ultrahyperelliptic surfaces defined by two
equations y?2=G(z) and #*=g(w), respectively, where G and ¢ are two entire functions
having no zero other than an infinite number of simple zeros. Let ¢ be a non-trivial
analytic mapping of R into S. Let Pz and Ps be the projection maps (z, ¥)—z and
(w, u)—w, respectively. Then the composed function A(z)=Psep-Pz(2) reduces to
an entire function of z [6]. Further when the order pg of G is finite, let G, be a
canonical product having the same zeros with the same multiplicities as those of

G. Similarly we use p, and ¢, with respect to g.
In this paper we shall prove the following two theorems:

THEOREM 1. Assume that pg,<oo and 0<pg<oco and that there exists a non-
trivial analytic mapping ¢ of R into S. Then pe, is an integral multiple of pg,.

THEOREM 2. Assume that there exists a non-trivial analytic mapping ¢ of R
into itself. Then ¢ is a univalent conformal mapping of R onto itself and the
corresponding function h(z) is a linear function of the form e*P/iz+b with a
suitable vational number plq.

Theorem 1 was proved in [7]. However there were some overlooked parts in
the estimation of counting functions. Further when the order of G is finite and
is not zero, theorem 2 can be derived from theorem 1. Here we shall show that

theorem 2 holds good without any condition on the order of G.
The authors wish to express their thanks to Professor M. Ozawa for his

valuable advices.

§2. Preliminaries. We need to quote some theorems in order to prove our
theorems. In [6], Ozawa proved the following theorem:

THEOREM A. If there exists a non-trivial analytic mapping ¢ of R into S,
then there exists a pair of two entive functions Wz) and f(z) of z satisfying an

equation of the form
f2PG(2)=g°h(z)
and vice-versa.

Here %(z) is the composed function introduced in §1. Clearly an equation
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EXISTENCE OF ANALYTIC MAPPINGS 237
S(2)?)G(2)=g-h(z) may be replaced by an equation of the form
THR)G2)=gcoh(z)

with a suitable entire function f*(z).
In [1], Edrei and Fuchs proved the following theorem:

TuEOREM B. Let E(z) and F(z) be transcendental entive functions. Assume
that the zeros of E(z) have a positive exponent of convergence. Then the zeros of
E-F(2) cannot have a finite exponent of convergence.

The proof of theorem B depends on a result of Valilon [9].
In [2], Fatou proved the following theorem:

TaEOREM C. Let E(2) be a transcendental entire function. Then if E(z)=z
has at most a finite number of voots, E-E(z)=z has an infinite number of roots.

In the following F(z) is a non-constant meromorphic function and the nota-
tions 7,m, N, Ny and N are used in the sense of Nevanlinna [3], [5]. The nota-
tion Ny(7; @, F) is the N-function of simple ¢-points of F. Then Nevanlinna’s first
fundamental theorem is expressible in the following form:

TraeorREM D. (Theorem 1.2 in [3]) Suppose that F(0)xa, co for a given com-
Dlex number a. Then we have

m(r; a, F)+N(7; a, F):T(ry F)'—log IF(O)”‘CZI+€((1, 7’);
where |e(a, v)| =log*|a|-+log 2.

Next we quote some theorems fundamental to derive Nevanlinna’s second
fundamental theorem.

TueoreM E. (Theorem 2.1 in [3]) Let ai, as, -+, ag (¢>2) be distinct finite com-
Dlex numbers and suppose that |a,—a,|=0 with a fixed 6>0 for 1=p<v=q. Then
we have

mir; oo, )+ 31 m(r; @, FY=2T(r, F)—Ni(r, F)+S(r, ),
=1

where
Ny, F)=N(; 0, F")~-2N(#; o0, F)—N(r; co, ')

and

I P A -3¢ _
S(r, F)—m(r, oo, 7 >+m(r, OO,VZ:=l F__ﬂy)—[—qlog 5 +log 2—log |c|

with F(z)—F(0)=cz*4---, ¢ 0.,
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LemMmA F. (Lemma 2.3 in [3]) Suppose that 0<r<R. Then we have

. _F_,_ + A ¢ +
m(r, oo, L )<4log T(R, F)-+410g* og" T +6 log' R

1 1
+ + =
+6 log 7 +log y+14,

—7
with F(0)x0, co.

LEMMA G. (Lemma 24 in [3]) Suppose that T(v) is continuous, increasing and
T=1 for rv=r<oo. Then we have

T(r—l— %) L2T(r)

outside a set of v which has linear measurve at most 2.

We shall use the following precise form of Nevanlinna’s second fundamental
theorem which is easily obtained by combining theorem E, lemma F and lemma G.

TaEOREM H. Let ai, a5 -+, al(q>2) be distinct finite complex numbers. Suppose
that F(z) is a mon-constant meromorvphic function with F(z)—F(0)=cz*+---, c=x0,
and that F(0)x0, co,ay, as, -+, @q. Further suppose that T(v,, F)=1. Then we have

(@D T, F)S N 00, F)+ 3! N(r; a,, F)—N(r, F)—log |c]
y=1

+K,log T(r, F)+K;log v+ K, f_} {log*|F(0)—a,|+log" log*| F(0)—a,|}

v=1

+ K, log* log* K

1
RO

outside a set Ep of v which has linear measure at most 2+v,, where K, (i=1,---,5)
are absolute constants depending on given complex numbers i, as, -, a, but in-
dependent of the function F(z).

Finally we quote a lemma concerning the characteristic of a composed function:

LeMmMA 1. If F(2) and E(2) are two transcendental entive functions, then for
any given positive number K there exists a number v, such that

T(r, FoE)= % (X, F)

for all r=r,, and v, depends on K and E but not on F.

The proof of lemma I is contained in the proof of lemma 2.6 in [3].



EXISTENCE OF ANALYTIC MAPPINGS 239

§3. Proof of theorem 1. By theorem A we may consider the possibility of a
functional equation f(2)*G.(z)=¢g.°h(z) with two suitable entire functions f(z) and
h(z).

The first aim confronting us is to prove that A(z) must be of finite order in
our case. Assume contrarily that %(z) is of infinite order. Since g. has no zero
other than an infinite number of simple zeros, we have

N7; 0, geoht)=Ny7; 0, geoh)+Ni(#; 0, geoht)+Ny(7; 0, gooh),
B. 1) Ni(7;0, geo ) S Ny(7; 0, geo ) < N(; 0, 1)< T(r, I')+0(1)
=T(r, )+O0(og(rT(r, ))=2T(r, h)

outside a set of finite measure. Further we have
D
N(#;0,9.00)= 3 Nr;s w,, b)
y=1

for an arbitrary but fixed number p of zeros {w,} of g. and for all . Since A(z)
is transcendental, by Nevanlinna’s second fundamental theorem applied to %(z) we
have

ZP:IN(r; w,, =(p—1)T @, h)—O(og(rT(r, h)))
" =(p—2)T(r, h)
outside a set of finite measure. Thus we have
N(#; 0, geoB)Z KT (v, 1),
and by (3.1)
Ny(7; 0, geoB)Z KT (v, h)

for an arbitrary but fixed number K and for all 7 outside a set of finite measure.
Using the functional equation f(z)*G.(z)=g.°/(z), we have

KT(r, ))=Nuy(1; 0, g.oh) = N(7; 0, Ge)
=T, Go)+0(1)
outside a set of finite measure. Hence
3.2 K-1)Tm=T® Go)

for an arbitrary but fixed number K and for all » outside a set of finite measure.
Since G, is of finite order, there exists a constant C; such that

3.3 T(r, Gy =r®
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holds for all sufficiently large ». On the other hand, since % is of infinite order,
there exists a sequence {7,} 1 co (r=2) such that

(3. 4) T(rn ) zra®,  Co=2C,

remains true. Further we have T(r, )=T(rs, k) for r=7, and (r,41)%=#,° for
all n. Therefore by (3.3) and (3.4)

T(?’, h)g T(ry GC)

holds on the set S=US$.; Su, Su=[7s,7»+1]. Since S is of infinite measure, this
contradicts (3.2) with K >2. Therefore A(z) must be of finite order.

Next we shall prove that A(z) must be a polynomial. Assume that /(z) is
transcendental and of finite order. Then by the same estimations as above
we have

Ni(7;0,9.0)=2T(r, h),
N(#;0, geo )= Na(7; 0, geo )= KT (r, h)

for an arbitrary but fixed number K and for all sufficiently large . Therefore
we have

3.5) fim N0 0eeh) . N 0,960h) _

lim =27y —°> MGt el -

Using the functional equation f(2)’Ge(2)=g.°/(z), we have
Ny(7; 0, geoh) =N(7; 0, Go),
N#; 0, /Y= N(r; 0, )= T(r, h)+O0log(r T(z, h)))

=2T(r, k)

for all sufficiently large ». Hence we have
N(7; 0, )=0(N#; 0, geoh))=0(N(r; 0, geoht))=0o(N(1; 0, Gc)

for all sufficiently large ». Thus we have
(3.6) N 0,/)=N(r;0,Ge)

for all sufficiently large ». The exponent of convergence of zeros of G., which is
equal to the order of G. [5], is finite by assumption. Further by (3. 6) the exponent
of convergence of zeros of f is finite. Therefore the exponent of convergence of
zeros of f2G, is finite. On the other hand, since #(z) is not polynomial and p, is
positive, by theorem B the exponent of convergence of zeros of g.o/(z) cannot be
finite. Consequently we have a contradiction and /%(z) must be a polynomial.

Let 4(z) be a polynomial of the form @yz’+a2"~*+---+a,. Then we have for
any ¢ with 0<e<1
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n(r; 0, geoh)Z n(|ao] ' (L—e); 0, g0)—O(1)
and hence
N(#; 0, geel)= N(@o|r'(1—e); 0, 9.)—O(log 7).
Therefore we have
PN 0, geom) Z VPN 0, 0= YPg,
Further we have by (3.5) and (3. 6)
ONCr; 0, gooh) = PN 0, G ™= 00 == PNCr; 0, 90on) = Pgeone
On the other hand we have by Pélya’s method [8]

Pgon=YPge

Therefore we have the desired result:
3.7 06, =VYPg,

REMARK. In the case of pe.=0 and p,,>>0 (3.7) implies that there is no non-
trivial analytic mapping of R into S.

§4. Proof of theorem 2. By theorem A it is sufficient to consider the pos-
sibility of a functional equation f(2)!G(z)=Go-h(z) with two suitable entire func-
tions f(z) and A(z). And it is sufficient to prove that #(z) is a linear function
az+b. For we can prove the desired result by the same argument as in [7, p. 6]

At first we shall prove that A(z) must be a polynomial. Assume that A(z) is a
transcendental entire function. Then its iteration A, 1(2)=rhohu(2)="h.h(z) with
hi(2) = W(z) is transcendental an satisfies an equation fn(2))G(2)=Gok,(z) with a
suitable entire function f,(z). By theorem C the equation A(z)=z or keh(z)=z has
an infinite number of roots. Therefore we may assume that the equation A(z)=z
has an infinite number of roots. Let z, be an arbitrary non-zero root of /(z)=z.
And we choose distinct complex numbers wi, we, ---, w1 from the set of zeros of
G(z). Without loss of generality we may assume that z,>w;(=1,2,---,10). In
the following argument complex numbers z, wi, ws, -+, w1 are fixed.

If we put A(z2)=2z0+c(z—z0)*+---, cx0, then we have
4.1 hn(z):Zo_!_cl+k+~~~+lcn‘l(z_zo)k"'+,”_

Since #(z) is transcendental, we have

roe  lOg v

>

and for an arbitrary given constant K there exists a number 7, such that
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T(r,h)>Klog r

holds for all r>7,.
By lemma I there exists a number 7, such that

T, I)=T5, In- o1 Z - T, )

1 1
= 3 T(rem? hy )= =

= g T 1)

for all »>7, and for all . If we put 7s=max(2, 71, 7.), we have
4. 2) T (7, ha)>K (2" log 7

for all »>7; and for all #.
Consider a function H,(z)=/h,(2+z2). If we put 7,=2(r3+|z|), then we have

7o

T Ho@)2 5 log* M (13-, F2)) = log* M(rs, hn(a)

1
= 5 T, 1a(2)).

Since we may assume that K log #:>>3, we have by (4.2)

4. 3) T(ro, Ha(2))>(2k)" .

Further H,(0)=2z, Therefore we can apply theorem H to H,.(z) and by (4.1) we
have

>1+k+-~-+k”‘1

10
9T(r, Hn)= X, N(r; w,, Ha)—N(7; 0, H;)+log* (%
y=1

4. 4)
+ K, log T(r, Hn)+K: log r+K;

outside a set E, of  which has linear measure at most 2, where K, K, K; are
constants which depend on =z, wy, -+, wi but not on z. On the other hand by an
equation fn(2)*G(2)=G°H,(z—z,) we have

10 0 _
E N(r; Wy, Hn)_N(r; 0) H;l)§ Z N(T; Wy, Hn)
y=1 y=1
10 10

é §N1(7’; ww Hn)+ éM(y; wv» Hn)

10
= 3 N w, H)+Nr; 0, G¥)

v=1

=5T(r, H)+N(r, 0, G*),
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where G*(z)=G(z-+2,). Hence (4.4) reduces to

+K; log T(r, H,)+ K> log 7+ K.

)1+k+~~-+k7l—l

4T(r, H)=N(r; 0, G¥)+log* <%

The exceptional set £, has linear measure at most 7,+2. Therefore we have

1\ LHktetkn1
) ~ TG, Hy)

0= (N(; 0, G¥)—T(, H)}+ {mg (Tel

+{Kilog T(r', Ho)—T(', Ho)}+{K: log v+ Key— T (', Hp)}

for at least one number #/; 7,=#'=47,. By (4.3) each term in the right hand side
is negative for sufficiently large z». We have a contradiction. Consequently #(z)
must be a polynomial.

Next assume that 4(z) is a polynomial of degree at least 2. Then 4’(z) has a
finite number of zeros. Further there exists a number K, such that 4(z) has at
least two simple w-points in |z|<|w| if |w|>K, Suppose that G(z) has p simple
zeros in |z|=K, and ¢ simple zeros in K,<|z]<K’. We may assume that p<gq.
Then GeA(2) has at least 2¢q simple zeros in |z|<K’. This is a contradiction since
G(z) and Gok(z) have the same number of simple zeros. Consequently /(z) must
be a linear function.

§5. Remarks. Let R; and S: be two regularly branched three-sheeted cover-
ing surfaces defined by two equations ¥*=Gy(2) and #®*=gs(w), respectively, where
Gs and gs are two entire functions having no zero other than an infinite number
of simple or double zeros. In [4] one of the authors proved the following:

If theve exists a non-trivial analytic mapping ¢ of Rs into Ss, then there exists
an entive function W(z) of z such that either v(2)*Gs(2)=gs°h(2) or p(2)*Gs(2)?=gs-h(z)
remains true where v(z) is an entive function of z and ((z) a single-valued
regular function of z excepting possibly all the double zeros of Gs(z) at which it
might have simple poles. The converse holds good.

Using this we have the following theorems.

THEOREM 1’. Assume that pg,,<co and 0<pg,,<co and that there exists a
non-trivial analytic mapping ¢ of Rs into Ss. Then pe,, is an integral multiple of

pyac'

THEOREM 2'. Assume that theve exists a non-trivial analytic mapping ¢ of Rs
into itself, then ¢ is a univalent conformal mapping of Rs onto itself and the cor-
responding entive function Wz) is a linear function of the form e*®/iz4-b with a
suitable rational number plq.

Theorem 1’ was stated in [4] without proof. We can prove theorem 1’ and
theorem 2’ by the same method as in §3 and §4. Further by the same method
as in §4 we can prove the following:
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Let o(z) be an entive function having no zero other than an infinite number of
zeros with multiplicity at most m—1. Then if an equation

F(@"g(z)=g°h(2)

holds good with two suitable entive functions f(z) and hz), Wz) must be a linear
Sunction of the form e*®liz+b with a suitable rational number plq.
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