CYLINDERS IN EUCLIDEAN SPACE \boldsymbol{E}^{2+N}

By Katsuhiro Shiohama

Introduction. Massey [1] proved that a complete surface of Gaussian curvature zero in Euclidean space E^{3} of dimension 3 is a cylinder. This theorem was extended to a surface of the principal and the secondary curvatures $\lambda=\mu=0$ in Euclidean space E^{4} of dimension 4. In this paper we shall prove the following theorem:

Theorem A. A connected, oriented and complete surface M^{2} of class C^{4} in Euclidean space $E^{2+N}(N \geqq 1)$ of dimension $2+N$ with the curvatures $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{N}=0$ is a cylinder.

As usual, a cylinder means a surface which is generated by a moving straight line with a fixed direction through a curve in E^{2+N}. The author expresses his deep gratitude to Professor T. Ōtsuki who gave him a lot of useful suggestions.

1. In the following we consider a connected, oriented and complete surface M^{2} of class C^{4} in Euclidean space E^{2+N}. We shall make use of Frenet-frames in the sense of O Otsuki. In our case we cannot define the uniquely determined Frenet-frame, but we can take suitably such a frame ($p, e_{1}, e_{2}, e_{3}, \cdots, e_{2+N}$) from the first. Then we have the following:

$$
\begin{gather*}
d p=e_{1} \omega_{1}+e_{2} \omega_{2}, \quad d e_{A}=\sum_{B} \omega_{A B} e_{B}, \quad \omega_{A B}+\omega_{B A}=0, \tag{1.1}\\
A, B=1,2, \cdots, 2+N . \\
\left\{\begin{array}{l}
d \omega_{i}=\omega_{i j} \wedge \omega_{j}+\sum_{r} \omega_{i r} \wedge \omega_{r}, \quad d \omega_{12}=\sum_{r} \omega_{1 r} \wedge \omega_{r 2}, \\
d \omega_{i r}=\omega_{i j} \wedge \omega_{j r}+\sum_{s} \omega_{i s} \wedge \omega_{s r}, \\
d \omega_{r s}=\sum_{i} \omega_{r j} \wedge \omega_{j s}+\sum_{t} \omega_{r t} \wedge \omega_{t s}, \\
\vdots, j=1,2, \quad r, s, t=3, \cdots, 2+N . \\
\omega_{i r}=\sum_{r} A_{r i j} \omega_{j}, \quad A_{r i j}=A_{r j i},
\end{array}\right.
\end{gather*}
$$

where ω_{1}, ω_{2} and ω_{12} are the basic forms and the connection form of M^{2} with respect to the induced metric. And we have

$$
\begin{equation*}
\omega_{1 r} \wedge \omega_{2 r}=\lambda_{r-2} \omega_{1} \wedge \omega_{2}, \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
\omega_{1 r} \wedge \omega_{2 s}+\omega_{1 s} \wedge \omega_{2 r}=0 \tag{1.4}
\end{equation*}
$$

[^0]By the hypothesis of $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{N}=0$, we could define two sets:

$$
\begin{align*}
& M_{0}=\left\{p \in M^{2}: \operatorname{rank}\left(A_{r i j}(p)\right)=0, \text { for all } r\right\}, \tag{1.6}\\
& M_{1}=\left\{p \in M^{2}: \text { there exists } r \text { such that } \operatorname{rank}\left(A_{r i j}(p)\right)=1\right\} . \tag{1.7}
\end{align*}
$$

It is clear that M_{0} is closed and M_{1} is open in M^{2}.
Now suppose that $M_{1} \neq \phi$ and take a point $p \in M_{1}$, then there exists r such that $\operatorname{rank}\left(A_{r i j}(p)\right)=1$. The asymptotic direction with respect to e_{r} at p is defined by the direction of the tangent vector $v=\sum_{\imath} v^{2} e_{i}$, which satisfies $\sum_{\imath, \rho} A_{r i} v^{\imath} v^{j}=0$. Let e_{1} be the unit tangent vector field defined in a neighborhood U_{p} of p in M_{1} which has the asymptotic direction with respect to e_{r} and let e_{2} be the unit tangent vector field orthogonal to e_{1} where the orientation of (e_{1}, e_{2}) is coherent with the one of M^{2}. Then it follows that

$$
A_{r i \jmath}=\left(\begin{array}{cc}
0 & 0 \tag{1.8}\\
0 & f_{r}
\end{array}\right) \quad \text { or, } \quad \omega_{1 r}=0, \quad \omega_{2 r}=f_{r} \omega_{2}
$$

where f_{r} is a continuous everywhere non-zero function defined in U_{p}. By virtue of (1.4), (1.8) and $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{N}=0$ we get the following:

$$
A_{s i j}=\left(\begin{array}{cc}
0 & 0 \tag{1.9}\\
0 & f_{s}
\end{array}\right) \quad \text { or, } \quad \omega_{1 s}=0, \quad \omega_{2 s}=f_{s} \omega_{2}, \quad(s \neq r)
$$

where f_{s} is a continuous function defined in U_{p}. For any unit normal vector $e=\sum_{t} a^{t} e_{t}$ at p, the second fundamental form with respect to e is given by

$$
\begin{equation*}
d^{2} p \cdot e=\sum_{t} a^{t} f_{t} \omega_{2} \omega_{2} \tag{1.10}
\end{equation*}
$$

The above relation shows that the asymptotic direction at p is independent of the choice of the unit normal vector at p.

The proof of theorem A will complete if we prove the following theorem.

Theorem B. Each connected component of M_{1} is a proper cylinder.

A point of a cylinder is called proper if there does not exist any neighborhood of the point which is contained in a plane. A cylinder is called proper if all the points of it are proper. In fact we can easily show that if $\stackrel{\circ}{M}_{0} \neq \phi$, then each connected component of $\stackrel{\circ}{M}_{0}$ is a piece of plane, where $\stackrel{\circ}{M}_{0}$ is the largest open set contained in M_{0}. Since M^{2} is complete and flat by (1.5), the universal covering space is E^{2}. And because the covering map π is a local isometry, we get the following:

$$
\begin{align*}
& \pi^{-1}\left(\stackrel{\circ}{M}_{0}\right)=\overparen{\pi^{-1}\left(M_{0}\right)}, \tag{1.11}\\
& \pi^{-1}\left(M_{1}^{\prime}\right)=\left(\pi^{-1}\left(M_{1}\right)\right)^{\prime} \tag{1.12}
\end{align*}
$$

where M_{1}^{\prime} is the set of all boundary points of M_{1} in M^{2}. By virtue of theorem B, \check{M}_{0} consists of plane stripes in E^{2+N} and we can prove that through each point of M_{1}^{\prime}, there passes a unique straight line contained entirely in M_{1}^{\prime}. These facts show
that through each point of M^{2}, there passes a unique straight line contained entirely in M^{2}, and we can prove that these straight lines are all mutually parallel, to others which implies theorem A.
2. Let us prove theorem B. From (1.8) and (1.9) we get the following;

$$
\begin{equation*}
\omega_{12}=g \omega_{2}, \tag{2.1}
\end{equation*}
$$

where g is a continuous function in U_{p}. Here we consider U_{p} as an open ball. By (2.1), we get at once

$$
\begin{equation*}
\omega_{1}=d u, \tag{2.2}
\end{equation*}
$$

where u is a continuous function in U_{p}. It is clear that the asymptotic line through p is a straight line segment. In fact it is given by $\omega_{2}=0$, then we get along it, $d p=e_{1} d u, d e_{1}=d e_{2}=0$ by (1.8), (1.9) and (2.1). By (1.8), (1.9), (2.1) and the structure equations of M^{2}, we get along it

$$
\begin{gather*}
\frac{d g}{d u}+g^{2}=0 \tag{2.3}\\
\frac{1}{2} \frac{d}{d u} \sum_{s} f_{s}^{2}+\sum_{s} f_{s}^{2} \cdot g=0 \tag{2.4}
\end{gather*}
$$

we may consider that $u=0$ corresponds to p. Solving these differential equations, we get the following:

$$
\begin{align*}
& g(u)=\frac{g(0)}{g(0) u+1}, \tag{2.5}\\
& h(u)=\frac{h(0)}{[g(0) u+1]^{2}}, \tag{2.6}
\end{align*}
$$

where $h(u)=\sum_{s} f_{s}^{2} . \quad$ It is obvious that $h(u)$ is independent of the choice of Frenetframes in U_{p}, and so we may consider it on M_{1}. On the other hand, let us consider the following function:

$$
\begin{equation*}
\bar{h}=\sum_{s}\left(\operatorname{trace}\left(A_{s i j}\right)\right)^{2} \tag{2.7}
\end{equation*}
$$

making use of any field of frames of $M^{2} \subset E^{4}, \bar{h}$ is a continuous function defined on M^{2}, and by the definitions of M_{1} and M_{0}, we get the following:

$$
\begin{align*}
& \bar{h} \mid M_{1}=h, \tag{2.8}\\
& \bar{h} \mid M_{0}=0 . \tag{2.9}
\end{align*}
$$

Making use of \bar{h} and the expression of h, we can prove that the asymptotic line through p is a full straight line. In fact, otherwise it is written as $x=x(u)$, $0 \leqq u<u_{0}$. By completeness, it follows that $\lim _{u \uparrow u_{0}} x(u) \in M^{2}$. By virtue of (2.6) and (2.8) we get $\lim _{u \uparrow u_{0}} \bar{h}(u) \neq 0$, which implies that $\lim _{u \uparrow u_{0}} x(u) \in M_{1}$.

Since $g(u)$ is continuous, we must have $g(0)=0$, i.e., $g=0$. And since $d e_{1}=0$,
$d e_{2}=\sum_{s} f_{s} e_{s} \omega_{2} \neq 0$, each connected component of M_{1} is a proper cylinder. Then the proof of theorem B is completed.

References

[1] Massey, W. S., Surfaces of Gaussian curvature zero in Euclidean 3-space. Tôhoku Math. Journ. 14 (1962), 73-79.
[2] Ōtsuki, T., On the total curvature of surfaces in Euclidean spaces. Japanese Journ. Math. 36 (1966), 61-71.
[3] Ōtsuki, T., Surfaces in the 4 -dimensional Euclidean space isometric to a sphere. Kōda1 Math. Sem. Rep. 18 (1966), 101-115.
[4] Shiohama, K., Surfaces of curvatures $\lambda=\mu=0$ in E^{4}. Kōdaı Math. Sem. Rep. 19 (1967), 75-79.
[5] Singer, I., Differential Geometry. Massachusetts Inst. Tech. (1962). (Mimeographed)

Department of Mathematics,
Tokyo Institute of Technology.

[^0]: Recerved November 17, 1966.

