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CYLINDERS IN EUCLIDEAN SPACE E2+N

BY KATSUHIRO SHIOHAMA

Introduction. Massey [1] proved that a complete surface of Gaussian curvature
zero in Euclidean space E3 of dimension 3 is a cylinder. This theorem was extended
to a surface of the principal and the secondary curvatures λ=μ=0 in Euclidean space
E4 of dimension 4. In this paper we shall prove the following theorem:

THEOREM A. A connected, oriented and complete stiff ace M2 of class C4 in Euclid-
ean space E2+N (TV^l) of dimension 2+iV with the curvatures λ1=λ2=' ~λN=0
is a cy

As usual, a cylinder means a surface which is "generated by a moving straight
line with a fixed direction through a curve in E2+N. The author expresses his deep
gratitude to Professor T. Otsuki who gave him a lot of useful suggestions.

1. In the following we consider a connected, oriented and complete surface M2

of class C4 in Euclidean space E2+N. We shall make use of Frenet-frames in the
sense of Otsuki. In our case we cannot define the uniquely determined Frenet-frame,
but we can take suitably such a frame (p, eif e2, e%, •••, e2+π) from the first. Then
we have the following:

(1.1) dp=e1ω1+e2a>2, deA

Σ j j Σ

ί,/=l,2, r,s,t=3, ~,2+N.

(1.2)

where ωu ω2 and ω12 are the basic forms and the connection form of M2 with respect
to the induced metric. And we have

(1. 3) C0lrAω2r = ̂

(1.4) ω l r Λω 2 s +ω l s Λω 2 r=0,

(1.5) G(p)=Σ*r-2.
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By the hypothesis of λ1=λ2 = = λN=0, we could define two sets:

(1. 6) M0={peM2: rankG4r<//0)=O, for all r},

(1. 7) M^ipεM2: there exists r such that rank(Arij(p))=l}.

It is clear that Mo is closed and Mλ is open in M2.
Now suppose that Mx ^φ and take a point p€Mu then there exists r such that

rank(Λrι//>))=l. The asymptotic direction with respect to er at p is defined by the
direction of the tangent vector v^Σi%v%eiy which satisfies Σι,jAnjVιvJ=O. Let ^i be
the unit tangent vector field defined in a neighborhood Up of p in Mi which has the
asymptotic direction with respect to er and let e2 be the unit tangent vector field
orthogonal to ex where the orientation of (e1} e2) is coherent with the one of M2.
Then it follows that

(1.8) u \0 - j or, ωlr=0, ω2r=frω2,

where fr is a continuous everywhere non-zero function defined in Up. By virtue of
(1.4), (1.8) and λ1=λ2= — =λN=0 we get the following:

(1.9) ΛsiJ=(0 ) or, ω18=0, ω2s=fsω2,

where fs is a continuous function defined in Up. For any unit normal vector
e=Σt^et at p, the second fundamental form with respect to e is given by

(1. 10) p Σ
t

The above relation shows that the asymptotic direction at p is independent of the
choice of the unit normal vector at p.

The proof of theorem A will complete if we prove the following theorem.

THEOREM B. Each connected component of M\ is a proper cylinder.

A point of a cylinder is called proper if there does not exist any neighborhood
of the point which is contained in a plane. A cylinder is called proper if all the
points of it are proper. In fact we can easily show that if Mo^φ, then each con-
nected component of Mo is a piece of plane, where Mo is the largest open set con-
tained in Mo. Since M2 is complete and flat by (1. 5), the universal covering space
is E2. And because the covering map π is a local isometry, we get the following:

(1.11)

(1. 12) π-1(Aίί)=(ίr-1(Af1))/

where Mi is the set of all boundary points of Mx in M 2. By virtue of theorem B,
Mo consists of plane stripes in E2+N and we can prove that through each point of
Mi, there passes a unique straight line contained entirely in M{. These facts show
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that through each point of M2, there passes a unique straight line contained
entirely in M2, and we can prove that these straight lines are all mutually parallel,
to others which implies theorem A.

2. Let us prove theorem B. From (1. 8) and (1. 9) we get the following;

(2. 1) ω12=gω2,

where g is a continuous function in Up. Here we consider Up as an open ball.
By (2.1), we get at once

(2.2) ω^du,

where u is a continuous function in Up. It is clear that the asymptotic line through
p is a straight line segment. In fact it is given by ω2=0, then we get along it,
dp=e1du, de1=de2=0 by (1.8), (1.9) and (2.1). By (1.8), (1.9), (2.1) and the
structure equations of M2, we get along it

(2 3) -ίr+^>
(2 4) ! -έ
we may consider that u=0 corresponds to p. Solving these differential equations,
we get the following:

(2.5) g(u)=-

(2.6) h(u)=

where h(u)—Σisf2

s. It is obvious that h{u) is independent of the choice of Frenet-
frames in Up, and so we may consider it on Mi. On the other hand, let us con-
sider the following function:

(2.7) h

making use of any field of frames of M2aEi, h is a continuous function defined
on M2, and by the definitions of Mλ and Mo, we get the following:

(2.8) h\Mλ=h,

(2.9) A|Mo=O.

Making use of h and the expression of h, we can prove that the asymptotic line
through p is a full straight line. In fact, otherwise it is written as x=x(u),
0^u<u0. By completeness, it follows that limMtuox(u)€M2. By virtue of (2. 6)
and (2. 8) we get limwTwo/ϊ(&)^0, which implies that lim^t «<>#(«)€ Mi.

Since g(u) is continuous, we must have g(0)=0, i.e., g=0. And since J^i==0,
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de2=Σsfseso)2:^0, each connected component of Mx is a proper cylinder. Then the

proof of theorem B is completed.
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