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CONVERGENCE OF NORMAL OPERATORS

BY BURTON RODIN AND LEO SARIO

The first purpose of the present paper is to show that elementary linear opera-
tor theory can be used to give an elegant proof of the fundamental existence theo-
rem of principal functions corresponding to given normal operators L [17]. When
L is defined by a limiting process a harmonic function may also be obtained by
applying the main theorem to each approximating operator and forming a limit of
resulting functions. It is important to know when these processes commute. We
shall give a general criterion to this effect and show that it applies to operators Lo

and Li. Earlier literature on normal operators and their applications is compiled in
the Bibliography.

1. The g-lemma. We start with a slight sharpening of the #-lemma [17]:
LEMMA 1. Let K be a compact subset of a Riemann surface W. There exists

a positive constant q<l such that all harmonic functions u on W satisfy the in-
equality

(1) q inf u+(l — q) max u^u\K^(l~q) min u-{-q sup u.
w K K w

Proof. Harnack's inequality for positive harmonic functions v in the unit disk
reads

An easy consequence is that to any compact set K in a Riemann surface W there
corresponds a constant c>0 such that

for all points P and Q in K and all positive harmonic functions v. To see this
note first that K may be assumed to be connected, thanks to the existence of an
exhaustion for W. K can be covered by a finite number n of parametric disks °Vi
with centers V* such that the subdisks °l?£ corresponding to {z: \z\<l/2} also form
an open cover of K. By Harnack's inequality l/3<fl(Pi)MQi)<3 for PiS^ί, and conse-

Received September 24, 1966.
The work was sponsored by the U. S. Air Force, Grant AF49(688)1345, Stanford Uni-

versity, and the U. S. Army Research Office—Durham, Grant DA-AROD-31-124-G742, Uni-
versity of California, Los Angeles.

165



166 BURTON RODIN AND LEO SARIO

quently l/9<ι;(P<)MQ<)<9 if Pz and Q* are in ^ . To any pair of points P and Q
in K there is a sequence P=Ri, R2, •• ,R W =Q from iΓsuch that R, and R^+i belong
to some cyί ( i = l , •••,«—1); in fact for fixed P the set of such Q's is seen to be
open and closed in K. Thus 97*"1 can be a value for c in (2).

An application of (2) to a function 1—u gives ^(P)^c"1w(Q)+(l—c"1) if u^l
on W. Equivalently, there is a q<l such that u(P)^(l—q)u(Q)+qsupwu for any
harmonic function u on W. This last formula may be applied to —u, P, and some
Q'εK to yield

from which (1) follows immediately.

2. The main existence theorem. Let W be a union of disjoint, bordered
Riemann surfaces. Let a denote the border of W, C(ά) the space of continuous
real-valued functions on a, and H(W) the space of real-valued functions which are
continuous on W and harmonic in its interior. In a natural way we may consider
C{a) and H(W') as real vector spaces.

By definition [17], a normal operator L for Wr is a linear transformation of
C(ά) into H(Wf) such that for all fεC(a)

(3) (Lf)\a=f,

(4) min/^L/^max/,

(5)

In condition (5) β is any cycle on W homologous to α, and

where n is the outer normal to β. The integral is then well-defined and is called
the flux of Lf.

We call a subset W of a Riemann surface W a regular boundary neighborhood
if W— Wf is a regular subregion of W. Let H( W) be the vector space of harmonic
functions on W.

We recall that the cokernel of a transformation L is the quotient space of the
range of L by the image of L; in symbols cokerL=*rgL/imL=H(W')/imL.

The main existence theorem of principal functions [17] can be given the
following algebraic formulation:

THEOREM 1. The linear transformation of H(W) into coker L by p-*p\ W'+im L
has as its kernel the space of real numbers, and as its image the space of cosets
s + i m L with Sβds*=0.
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We shall give a proof of this important theorem by making use of linear
operators. Suppose p is harmonic on W and is the kernel of the mapping
p-*p\W'-\-vm.L. Then p\ Ws'imL and so achieves its maximum on a=dW ac-
cording to (4). This maximum also dominates p\ W. Since p has a maximum at an
interior point of W it is constant. By (3) every constant is in im L, so the kernel
of the mapping in question is precisely the space of real numbers.

The flux Sβds* of a coset 5-fimL is independent of the representative 5 ac-
cording to (5). By Green's formula Sβdp*=0 for any p€H(W). Hence the image of
the mapping p—*p\ W'+\m L is contained in the subspace of cokerL consisting of
cosets with vanishing flux. To complete the proof we must show that every coset
with vanishing flux has a global representative.

3. Reduction of the problem. Given a coset s+ imL in cokerL with Jβds*=0
we must find a p harmonic on W such that p—s is in the image of L. Without
loss of generality we may assume 5 vanishes on a since s—Ls does and it is a
representative of the same coset. Let Ω be a regular subregion of W which con-
tains W—W. We shall now show that our problem can be reduced to that of
finding a function p on dΩ with the property

(6) p=LDp+s,

where D is the " Dirichlet operator " which associates to each continuous function
/ on dΩ the solution of the Dirichlet problem in Ω with boundary values /. The
notation LDp in (6) is of course an abbreviation for L(Dp\a)\dΩ.

Suppose p is a continuous function on dΩ which satisfies (6). Then the har-
monic functions Dp and LDp+s> with domains Ω and W respectively, are equal
to Dp on a and p on dΩ. By the maximum principle they must therefore be
identical in Ωf)W. Hence p=Dp \J(LDβ+s) is a well-defined harmonic function
on W. Since p has the representation LDp+s in W it will evidently serve as the
required global representative of the given coset s+imL.

4. An invertible operator. Let T be the linear operator f-^LDf of C(dΩ) into
itself. Let / be the identity operator on this space. To solve (6) we must show
that sεim(I-T).

Recall that if X is a Banach space and T: X-+X is a linear operator with
| |7Ί |<1 then I—T: X->X has an inverse (I—T)'1 whose norm is no greater than
(1—IITil)"1. In our case, C(dΩ) becomes a Banach space under the sup norm || |U
However, the inequality | | J Γ | | < 1 needed to prove that I—T is invertible, and hence
that s€im(/—Γ), is not valid. Indeed, | | T | | = 1 . Clearly this difficulty can be over-
come if we exhibit a subspace XaC(dΩ) such that (i) X is a Banach subspace, (ii)
when restricted to X T has norm <1, (iii) T ( I ) c I , and (iv) seX. When this has
been accomplished the proof of Theorem 1 will be complete, and we will also have
the estimate

(7) iKz-rni^α

which will be used later (§8).



168 BURTON RODIN AND LEO SARIO

5. Existence of X. Let ω be the harmonic function on Ω π W with boundary
values O o n α and 1 on dΩ. Let X be the kernel of the continuous linear functional
f-*Uofdω* on C(dΩ). Then (i) holds since X is a closed subspace of C(dΩ).

For the proof of (ii) we shall show that if / e Z then Df changes sign on a.
For if that were true we would then have

where the first inequality follows by property (4) of normal operators and the
second follows by the #-lemma applied to the compact set a in the Riemann sur-
face Ω.

Before verifying that Df\a changes sign we pause to note a useful property of
normal operators. Let gζC(ά). Green's formula applied to the open set Ωf] Wf,
with oriented boundary dΩ—a, and the functions Lg and ω yields

(8) [gdω*=[ (Lg)dω*.

This formula implies

(80 [ fdω* = [ (Df)dω*
JΩ J

since D is also a normal operator.
Along a the measure <iω* is positive. Thus the condition / € X, which by (80

is equivalent to the vanishing of J« (Df)dω*, implies that Df is not of constant sign
on a. This proves (ii).

From (8), (80 we see that fzX implies LDfeX, and (iii) follows.
Green's formula applied to 5 and ω, together with the fact that 5=0 along a,

yields 5dΩsdω*=SdΩds*. Hence the hypothesis that 5 has vanishing flux is equivalent
to the condition ssX. Thus (iv) holds, and the proof of the main existence theorem
is complete.

The function p is called an L-principal function with singularity s.

6. Convergence of operators. We recall the operator LOΩ defined by vanishing
normal derivatives on dΩ, and the operator L-LQ characterized by constant values on
sets of components of dΩ corresponding to a given partition [2]. These operators
are examples of how normal operators LΩ on subregions can be used to give, in the
limit Ω—>W, normal operators L for open surfaces Wf. Suppose a singularity
function sΩ with vanishing flux is given on each Ω Π Wf. The main existence
theorem gives functions pQ on Ω such that PQ—SQQMILQ. Suppose further that sΩ

tends uniformly on compacta to a function s harmonic on W. The existence
theorem yields also a function p harmonic on W such that p—seimL. We wish
to find conditions on {LΩ} which will insure that pa-^p uniformly on compacta.

We shall write LΩ^L provided to each compact set K in W and each ε>0
there is an Ωo such that
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for all feC(ά) satisfying | |/ | | β = l and all ΩZDΩQ.

7. Convergence of pΩ. We are considering a family {LΩ} of normal operators
for WΉΩ, where as usual W is a regular neighborhood of the ideal boundary of
a Riemann surface W. In W Π Ω we are given harmonic functions SΩ and principal
functions pΩ in Ω with singularity SQ.

THEOREM 2. Suppose LΩ^L and SΩ tends to a limit function s uniformly on
compacta. Then for a suitably normalized family {PΩ} of principal functions with
singularity SΩ the limit

p=\\mpQ
Ω

exists uniformly on compacta of W, where p is an L-principal function with singu-
larity s.

Proof. Suppose given a compact set Kcz Wr. Let φ be a regular subregion of
W which contains W— W and K. (ψ takes the place of Ω used in the proof of
Theorem 1.) We normalize PΩ,P by an additive constant so that when restricted
to dφ they are in the space X defined in §5. Thus on dφ we have p=(I~T)~1s
and po^il—ToT^Ω where T=LD, TΩ=LΩD, and D is the Dirichlet operator
D: X->H(ψ). We must prove that \\mo-*w\\p—pQ\U=Q.

The hypothesis LΩ^L means that | |Γ-Γ β | | -*0 as Ω-*W. Indeed, if gzC(dψ)
then given ε>0 there is an Ωo such that

if £ D £ 0 . Since \\Dg\\a^\\g\\dφ this gives

\\Tg-TΩg\\dψ^e\\g\\dφ.

We have the estimate

and this upper bound tends to 0 as Ω->W. In fact, this is obviously the case for
the term IKZ-D^IHIsa-slU, and the term IKZ-T^-ίZ-Γ)" 1 ! ! is bounded by
\\T-TΩ\\-(l-\\T\\)-ι<X--\\T0\\-v) since \\T\\<1 and ||T^||<1. The convergence to 0
now follows from the earlier remark that ||Γ— T̂ H—>0- This completes the proof.

8. The main theorem with estimates. Let s be a singularity function as in
the hypotheses of Theorem 1. In many applications it is necessary to have bounds
for the principal function p with this singularity. To obtain them we again recall
the proof of Theorem 1.

For a regular region Ω containing W—W the function p} suitably normalized,
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satisfies (I—T)~1s=p along dΩ, where T=LD is restricted to X. From the estimate
(7) we have H^IU^OL-^T'HslU. This proves the following result [22]:

THEOREM 3. In addition to the hypotheses of Theorem 1 assume s=0 on dWf.
Then the principal function p may be normalized by an additive constant so that

for any region ΩZDW— W. The constant q is determined by Lemma 1 applied to
the surface Ω and the compact set dW.

9. Auxiliary functions. Given an Ω containing W—W, we shall recall the
construction [22] of functions goΩ and g1Ω which are harmonic in WΉΩ except for
a logarithmic pole and have the reproducing property LίΩf=Ufdg% (£=0,1) for all
continuous functions / on a. Such an integral representation will then be used to
prove the strong convergence L

LEMMA 2. Let z be a parameter for a neighborhood of a point B in Ωf] W'.
There exist functions giΩ(-,B) harmonic in Ωf)W'—{B} with Lz behavior along dΩ,
vanishing boundary values on dW, and with the singularity (2π)~1\og\z—z(B)\ at
B (£=0,1).

More precisely, gOβ( »B) has vanishing normal derivative along dΩ,glfl( ,B) has
constant values along the parts of dΩ associated with an unspecified partition, and
the flux of (7i£?(-,B) vanishes along each part separately. The function

hίΩ{z)=giΩ{z) *(B))- ~π

 lQg l*-*(β)l

is supposed to have a harmonic extension to z=z(B).
For the proof, we fix disjoint neighborhoods in W of a=—dW\ BΛ and dΩ,

and denote them by J[, 33, and C respectively. We may assume that Jl U % U C is a
regular boundary neighborhood on the surface W; Γ\Ω—{B}==R and that 33 corre-
sponds to | z | < l . Let v be any harmonic function in <Jϊ with constant values on a
and satisfying Jadv*=— 1. Define a function 5 in J U ^ β U ^ by

v in J,,

-^-log|*-*(B)| in 23,

0 in C.

Note that 5 has total flux zero along the ideal boundary of the surface R.
Let Li be the Li-normal operator for Jl—a, D the Dirichlet operator for 56—{B},

and Li the L^operator for C—dΩ (£=0,1). We now apply the main existence
theorem to the surface R, the singularity function s, and the normal operator
L=L1@D(&Lι. This gives a function pi on R satisfying pi—s=L(pi—s). This pi
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has the required properties except that its values on a may be some constant other
than 0. We merely subtract such a constant from pi to obtain giί3( ,B).

10. Integral representations. Let u be harmonic in W'Γ\Ω. Green's formula
may be applied to u and gίΩ( ,B) on the bordered surface W'[~\Ω—53r, where 33r

corresponds to {\z\<r}. If we note that

lim

lim\ giΩdu*=0,
υ *J0iΰr

we obtain the reproducing formulas

(9) &(B) = \ udgf—\ cjodu*,
J-a JdΩ

udgf-\-\ udgf—gxdu*.
-a JdΩ

In case u has Lo or Li behavior on dΩ these formulas simplify. In particular,
we have

(10) Z W ( A ) = ί fdgfo ( ί=0,l).

For a fixed Ae W we know [22] that the family {gίΩ}Ω converges uniformly
on compacta, in the sense that for any compact subset K of Wf \\giΩ—giΩ<\\κ-*0 as
Ω and Ωf tend to W. In the limit we obtain

L%f=\ fdgf (z"=0,1).
J — a

Therefore, for fixed Ac W, LiΩf(A) converges to Ltf(A) as Ω-*W, and the con-
vergence is uniform for all feC(ά) with | |/| |α^l.

11. Convergence of p0 and px. We are now able to prove the strong con-
vergence LioΈ^Lt (i=0,l). Since | | W Ί k ' ^ | | / I U the family {LiΩf}Ω,f is normal if
| | / | | α ^ l . From this fact, together with the pointwise convergence
which is uniform in / when | | / | | ^ 1 , it follows that 1

THEOREM 4. Let W be a regular boundary neighborhood of the Riemann
surface W, {Ω} an exhaustion of W, and LiΩ (i=0,1) the normal operator for
W'ΓiΩ. Then LiΩ^Lt, where L% is the normal operator for W.

As a consequence we have the following result:

COROLLARY. For an exhaustion {Ω} let sΩ be harmonic in W'Γ[Ω, satisfy



172 BURTON RODIN AND LEO SARIO

Sadst=0, and converge uniformly on compact a to s. Then there are LiΩ-principal
functions pΩ with singularities s0, and an Li-principal function p with singularity s
such that PQ-^P uniformly on compacta.
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