CURVATURE-PRESERVING TRANSFORMATIONS OF K-CONTACT RIEMANNIAN MANIFOLDS

By Shûkichi Tanno

Let M be a contact Riemannian manifold with a contact form η, the associated vector field $\xi,(1,1)$-tensor field ϕ and the associated Riemannian metric g. If ξ is a Killing vector field, M is said to be a K-contact Riemannian manifold. Further, M is said to be normal, if ϕ satisfies the relation

$$
\left(\nabla_{X} \phi\right)(Y)=g(X, Y) \xi-\eta(Y) X
$$

for any vector fields X and Y on M, where ∇ is the covariant differentiation with respect to g.

Recently Okumura [2] got the following result:
(A) In a normal contact Riemannian manifold, any curvature-preserving infinitesimal transformation is an infinitesimal isometry.

On the other hand, Sakai [3] got the result:
(B) Any affine transformation of a K-contact Riemannian manifold is an isometry.

In this note, we prove the next theorem which covers the above (A) and (B):
Theorem. Let M, N be K-contact Riemannian manifolds, then any curvaturepreserving transformation of M to N is an isometry.

The proof of our theorem has similar aspect to that in [3]. In an m-dimensional K-contact Riemannian manifold we have

$$
\begin{align*}
& R_{1}(\xi, X)=(m-1) \eta(X), \tag{1}\\
& R(X, \xi) \xi=-X+\eta(X) \xi \tag{2}
\end{align*}
$$

for any vector field X on M, where R_{1} and R denote the Ricci curvature and Riemannian curvature tensor [1].

§ Proof of the theorem.

We denote the corresponding tensors in N by "'". Let φ be a curvaturepreserving transformation of M to N and let x be an arbitrary point of M, and we put $y=\varphi x$. By X, Y, Z, W we denote vector fields on M. In any Riemannian manifold we have

[^0]\[

$$
\begin{equation*}
' g_{y}(\prime R(\varphi X, \varphi Y) \varphi Z, \varphi W)=-g_{y}\left({ }^{\prime} R(\varphi X, \varphi Y) \varphi W, \varphi Z\right), \tag{3}
\end{equation*}
$$

\]

where φ stands for the differential of φ. As φ is curvature-preserving: $\varphi(R(X, Y) Z)$ $={ }^{\prime} R(\varphi X, \varphi Y) \varphi Z$, we have

$$
\begin{equation*}
\left(\varphi^{* \prime} g\right)_{x}(R(X, Y) Z, W)=-\left(\varphi^{*} g\right)_{x}(R(X, Y) W, Z) \tag{4}
\end{equation*}
$$

If we put $Y=Z=W=\xi$, using (2) we have

$$
\begin{equation*}
\left(\varphi^{*} g\right)_{x}(X, \xi)=\sigma_{x} \eta_{x}(X), \tag{5}
\end{equation*}
$$

where $\sigma_{x}=\left(\varphi^{* \prime} g\right)_{x}(\xi, \xi)$. Next we put $Y=Z=\xi$, then

$$
\begin{equation*}
\left(\varphi^{*} g\right)_{x}(-X+\eta(X) \xi, W)=-\left(\varphi^{*} g\right)_{x}(R(X, \xi) W, \xi) . \tag{6}
\end{equation*}
$$

Replace X in (5) by W or $R(X, \xi) W$, then (6) turns to

$$
-\left(\varphi^{* \prime} g\right)_{x}(X, W)+\sigma_{x} \eta_{x}(X) \eta_{x}(W)=-\sigma_{x} \eta_{x}(R(X, \xi) W)
$$

On the other hand, as

$$
\eta_{x}(R(X, \xi) W)=g_{x}(R(X, \xi) W, \xi)=g_{x}(X, W)-\eta_{x}(X) \eta_{x}(W),
$$

we have $\left(\varphi^{*} g\right)_{x}(X, W)=\sigma_{x} g_{x}(X, W)$. Namely φ is a conformal transformation.
Next we prove $\sigma_{x}=1$. Put $X=\varphi \xi$ in (1), then we get

$$
\begin{equation*}
' R_{1 y}(\prime \xi, \varphi \xi)=(m-1)^{\prime} \eta_{y}(\varphi \xi) . \tag{7}
\end{equation*}
$$

Since φ also leaves R_{1} invariant, we have

$$
\begin{equation*}
' R_{1 y}(\prime \xi, \varphi \xi)=R_{1 x}\left(\varphi^{-1 \prime} \xi, \xi\right)=(m-1) \eta_{x}\left(\varphi^{-1 \prime} \xi\right) . \tag{8}
\end{equation*}
$$

From (7) and (8), ${ }^{\prime} \eta_{y}(\varphi \xi)=\eta_{x}\left(\varphi^{-1} \boldsymbol{\xi}\right)$ follows. While we obtain

$$
\begin{aligned}
' \eta_{y}(\varphi \xi) & ={ }^{\prime} g_{y}\left({ }^{\prime} \xi, \varphi \xi\right)={ }^{\prime} g_{y}\left(\varphi \cdot \varphi^{-1} \prime \xi, \varphi \xi\right) \\
& =\left(\varphi^{* \prime} g\right)_{x}\left(\varphi^{-1} \xi \xi, \xi\right)=\sigma_{x} g_{x}\left(\varphi^{-1 \prime} \xi, \xi\right) \\
& =\sigma_{x} \eta_{x}\left(\varphi^{-1} \xi \xi\right) .
\end{aligned}
$$

Thus we get $\sigma_{x}=1$ or ${ }^{\prime} \eta_{y}(\varphi \xi)=0$. Suppose that ${ }^{\prime} \eta_{y}(\varphi \xi)=0$, then we have ${ }^{\prime} R_{y}\left(\varphi \xi,{ }^{\prime} \xi\right)^{\prime} \xi$ $=-(\varphi \xi)_{y}$ by (2) and so

$$
\begin{aligned}
\sigma_{x} & ={ }^{\prime} g_{y}(\varphi \xi, \varphi \xi) \\
& ={ }^{\prime} g_{y}\left({ }^{\prime} R\left({ }^{\prime} \xi, \varphi \xi\right)^{\prime} \xi, \varphi \xi\right) \\
& ={ }^{\prime} g_{y}\left(\varphi \cdot R\left(\varphi^{-1} \prime \xi, \xi\right) \varphi^{-1} \xi, \varphi \xi\right) \\
& =\left(\varphi^{*} g\right)_{x}\left(R\left(\varphi^{-1} \prime \xi, \xi\right) \varphi^{-1} \xi \xi, \xi\right) \\
& =-\sigma_{x} g_{x}\left(R\left(\varphi^{-1} \xi, \xi\right) \xi, \varphi^{-1} \prime \xi\right) \\
& =\sigma_{x} g_{x}\left(\varphi^{-1} \xi \xi, \varphi^{-1 \prime} \xi\right)=1 .
\end{aligned}
$$

Therefore σ is equal to 1 on M, this completes the proof.

References

[1] Hatakeyama, Y., Y. Ogawa, and S. Tanno, Some properties of manifolds with contact metric structure. Tôhoku Math. J. 15 (1963), 42-48.
[2] Okumura, M., Certain infinitesimal transformation of normal contact metric manifold. Kōdai Math. Sem. Rep. 18 (1966), 116-119.
[3] Sakai, T., Some transformations on K-contact and normal contact Riemannian manifolds. Tôhoku Math. J. 18 (1966), 216-224.

Mathematical Institute,
Tôhoku University.

[^0]: Received July 7, 1966.

