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INTERACTION INFORMATION IN MULTIVARIATE
PROBABILITY DISTRIBUTIONS

BY MINORU SAKAGUCHI

We show in this note that the entropy of a multivariate distribution can be
expressed in terms of the sum of one-dimensional marginal entropies, the sum of
transmitted information between each pair of component variables, the sum of
interaction information in trivariate component distributions, and so on (Section 1).
Using this result we give, in Section 2, a class of multivariate distributions having
specified component densities and some preassigned association measure between
some component variables. Proofs of equations and statements which are not so
evident are given in Section 3.

1. Multivariate information transmission.

The transmission of information requires the presence of a source of information
coupled with an appropriate channel; the two together form what is called an infor-
mation system. Here an information system is described in terms of joint proba-
bilities of inputs and outputs, and a channel is defined by its transition probabilities.
The formulae are written as if x, y, etc., were continuous real variables; the obvious
modifications must be made if they are discrete.

Let us consider a communication channel and its input and output. Transmitted
information measures the amount of association between the input and output of
the channel. If input and output are independent, no information is transmitted.
On the other hand, if both are perfectly correlated, all the input information is
transmitted through the channel. In most cases, naturally, information transmission
is found between these extremes.

We are interested in the amount of information transmitted. Suppose that we
have a bivariate probability distribution with the density function p(x, y). This
means that if the input variable assumes a value or signal x, then noise of the
channel alters it, at the output, to a value between y and y+dy with probability
p(y\x)dy, where

p(y\x)=p(χ, y)/\p(x, y)dy,

and that the rules governing the selection of signals at the input must be con-
structed so that they take on values between x and x+dx with probabilities
p(x)dx=dxSP(xty)dy. To avoid complexity we use the same notation p(-) to
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represent the various density functions of random variables, without any suggestion
that they have the same density.

Under these conditions, and if successive signals are independent the amount
of information transmitted per signal is defined by Shannon [4] as

(1. 1) T(x; y)=H(x)+H(y)-H(x, y) = ^p(x, y) l o g ^ ^ dxdy,

where H(x) = -ίp(x)\ogp(x)dxf H(y) = ~Sp(y)logp(y)dy and H(x,y)=—ϊfp(x,y)
\ogp(xy y)dxdy. It is well known (Kullback [2]) that T(x\ y) is non-negative and
equals zero if and only if x and y are independent.

We introduce the conditional entropies

Hχ(y)=Ξ — \\p(x, y) logp(y|x)dxdyy etc.

Then we have the additive formula

Thus we have other expressions of T(x) y) as

(1. 2) T(x; y)=H(x)-Hy(x)=H(y)-Hx(y).

Now let us consider the case where we have several sources that transmit to
y. Then we take the input variable as multidimensional and we have, for instance,

T(u, v; y)=H(u, v)+H(y)-H(u, v, y)
(1.3)

=H(u, v)-Hy(u, v)=H(y)-Hu,M.

We can express T(u, v; y) as a combination of the bivariate transmissions be-
tween u and y, and v and y. Define Tu=Uo(v; y) as transmitted information between
v and y for a particular value of u, namely, u0. If we set

Tu(v, y)= J Tu=Uo(v; y)p(uo)duo,

we easily find that

Tu(v; y)=Hu(v)+Hu(y)-Hu(v, y)
(1.4)

=Ξu(v)-Hu,y(v)=Hu(y)-Hu>v(y).

Hence we have, from (1. 2), (1. 3) and (1. 4),

(1. 5) T(u, v; y)=T(u; y)+ Tu(v; y)= T(p; y)+ Tυ(u; y\

which means that the additive formula for information transmission also holds
true. We have from (1. 2) and (1. 4)

T(v; y ) - Tu(v) y)=
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which may be positive, zero or negative. These identities show the symmetry of
the left-hand side expression in the arguments u and v, and u and y. Since the
symmetry v and y is evident from (1.1) and (1. 3), we get

(1. 6) A(uvy) = T(v; y)- Tu(v; y)= T(u; y)- Tv(u; y)= T(u; v)- Ty(u; v).

We call this quantity A(uvy), following McGill [3], the interaction information
between the three variables. It is the gain or loss in transmitted information
between any two of the variables, due to additional knowledge of the third variable.

We can derive another expression for A(uvy) as follows: subtracting T(v; y)
from both sides of the first identity of (1. 5) we have

(1. 7) T(u, v; y)= T(u; y)+ T(υ; y)-A{uvy\

By (1.3) we have T(u,v;y)=H(u)+Hu(v)+H(y)-H(u,v,y). Then from these two
identities and the fact that T(u\v)=H(v)—Hu(y)1 we finally obtain

(1. 8) H(u, v, y)=H(u)+H(v)+H(y)-(T(u; v)+T(u; y)+T(v; y))+A(uvy).

According to the definition (1. 6) the interaction information is positive (nega-
tive) when the effect of holding one of the interacting variables constant is to
decrease (increase) the amount of association between the other two. We easily
observe from (1. 8)

THEOREM 1'. // the random variables in a trivariate distribution are pairwise
independent, then A(uvy)^0, with equality if and only if the three variables are
mutually independent.

It is well-known that pairwise independence of three random variables does not
imply mutual independence. Let %={au~'>cn} be a probability space with proba-
bilities 1/4 for each elementary event at (z'=l, •••,4). Let A={a1,a2}, B={alya3}
and C={alf a*}. Let u, v and y be indicator functions of the events A, B, and C,
respectively. Then we find that the three random variables are pairwise independent
but are not mutually independent. We have

A(uvy)=H(u, v, y)-(H(μ)+H(p)+H(y)) = 2log2-3log2= -log2.

A class of continuous trivariate distribution having this nature is given in the next

section.
In a similar way as the above discussion we can decompose four-variate

distributions. Let {xu x2, #», y) be a four-variate distribution. Define Ax^faxsy)
as the conditional interaction information between the variables x2, xs and y given
that xι=x\. Define

(1. 9) A
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Then we can prove the following relations:

(1.10) AXχ{x2x3y) = TXl(x2; y) — TXl, Xλ(x2\ y) = —

is invariant under any permutations of the variables x2, xz and y;

(1.11) A(x2xsy)—AXι(x2xzy)(=A(x1x2xsy)f say)

is invariant under any permutation of the variables %u χ2f χz and y\

(1.12) A((xh x2)xBy)=A(x1xsy)+A(x2x

and

(1.13) T(xlt x2, xs, y)= T(xi, y)+ T(x2; y)+ T(x3; y)

—A(xi, x2y)—A(x2xzy)—

These identities correspond to those, in the trivariate case, (1. 4), (1. 6), (1. 7) and
(1. 7), respectively. From (1. 8) and (1.13) we finally obtain, rewriting y as xA,

4

(1. 14) H(xlf x2, #3, #4)=
t=l KJ Kj<l

where the sums Σ' and Σ" contain six T-terms and four A-terms, respectively.
We call Aix^xaXi) higher-order interaction information (with order 2). Note that
this is not equal to the interaction information (with order 1) A((xu X2)x*Xi\ as is
shown by (1.12). For the proofs of (1.10)—(1.14) see Section 3.

From Theorem V and (1.14) we have

THEOREM V. If every three random variables in a four-variate distribution
are independent, then A(xiX2xzx±)Ί^Q, with equality if and only if the four variables
are independent.

Generalization of this theorem to ^-dimensional distributions is immediate.
Define higher-order interaction information recursively by

A{xιx2 - - - xn)=A{x2xz xn)—AXχ{x2xz xn), n ̂  4,

starting from A(xιx2x%x±), where AXl{x2 xn) is defined by a similar expression used
in (1. 9). Then we can prove by mathematical induction the following relations
corresponding to (1.10)—(1.14):

(1. 15) AXl(x2XB 'Xn)^AXl(x3"'Xn) — AXl,X2(X3'-'Xn)= "

is invariant under any permutation of the variables x2,x3, •••,#»;

(1.16) A(xi,x2~ xn) is invariant under any permutation of
the variables xlf x2) •••, #w;

(1.17) A((xί, x2)x3 •"Xn)=A(x1X3 - - xn)+A(x2x3 - xn)

n-l

T(xlf -", xn-ύ y)= Σ T{xi\ y)— J]
ι=l Kj^n-1

(1.18)
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and finally

(1. 19) H(x1} • , *„)= Σ H{xi)~ Σ' Άxϊ, xj)
ι=l Kj

+ Σ" AixiXjxd- ••• +(-l)n~1A(x1~-xn).
KJ<1

From Theorem 1" and (1.19) we get

THEOREM 1. // every in—1) random variables in an n-variate distribution
{with n^3) are independent, then for the higher-order interaction information {with
order n—2) Aixi- Xn) we have (— l) nA(xι--x n)^, with equality if and only if the
n variables are independent.

2. Multivariate distributions with given marginal distributions.

There exist infinitely many bivariate distributions with a given pair of marginal
distributions. Let /i( ) and /2( ) be two given pdfs. A class of bivariate densities
f(xi,x2) with given marginal densities Λ( ) and /2( ) is given by

(2. 1) f(xu X2)=fi(xi)f2(x2){l+aa-2F1(x1))(l-2F2(x2))},

where Fi(xi), £=1,2, is the cdf of /*(#*) and a is an arbitrary constant satisfying
—lίgtfίgl (Gumbel [1]). It is easy to check that the bivariate cdf is given by

(2.2) F(a?i,a?2)=Fi(

and that xx and x2 are independent if and only if a=0. However, the correlation
coefficient of this bivariate distribution depends on /x( ) and /2( ) and cannot be
expressed in terms of a only. We want to show that the constant a actually
measures dependency between the two variables, independently of /x( ) and/ 2( ),
in the following two senses.

(i) Silver [5] defined a measure of association between two random variables
x and y by

A = \ \ (p(x, y) —p(x)p{y))dxdy,

about which he showed some desirable properties in measuring association. For
the density (2. 1) this becomes

(2ux—l){2u2—1) duχdu2 = — .
α(2wl-l)(2M2-l)>0 10

Thus this measure of association is a function of \a\ only and is monotonically
increasing.

(ii) Elementary calculation yields that information transmitted between xx and

x2 is given by
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*' 2\\ i,x2) log

(2.3)
JJ

independently of /ι( ) and ΛCO This is again a function of \a\ only, and increases
monotonically from zero to t(l) in 0^ | t f |^ l . Usual calculation gives another ex-
pression for (2. 3) as

and
CL)=log2- — + — , since Σ m- 2 =—.

4 lb m = 1 b

The class (2.1) can easily be extended to trivariate distributions. Let M ),
i = l , 2, 3, be three given pdf's. A class of trivariate densities f(xlf x2, xs) with given
marginal densities is given by

(2.4)

where Fi( ) is the cdf of /*(•) and the obvious arguments #*, z = l, 2, 3, are omitted.
The corresponding trivariate cdf is

(2. 5)

The four arbitrary constants a, b, c, and d satisfy

(2.6) \a\^ά, \b\^b, \c\£c, \d\^d,

where ά+b+c+d=l. They measure dependency between various variables in the
following sense: T(xΰ χ2)=t(\a\), T(x2;xs)=t(\b\), T(xi, xs)=t(\c\) and A^x^x*) can
be expressed by a function of a, b, c and J, independently of fu f2 and /3. If
a=b=c=0, then the three variables are independent if and only if d=0. The ex-
pression (2. 4) gives a class of examples of trivariate distributions with the property
that any two variables are independent but are not independent between the three
variables. That is, if f(xi, x2, xs) belongs to the class of densities determined by
a=b=c = 0 and d = l , then T(x1;x2)=T(x2;x8)=T(x1;xa)=0, but by (1.7),

—A(x l f x2, X3)= T{xu Xi, xz)

,x2.
7(Λ?l, X2, XS) ίOg—r. r-ΓT dxV

~\\ y(Xl' X2' X^ ^ {f(Xl> X*i Xz)Kfl{

Six 2m(2m-l)(2m+l)3
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by straightforward calculations. The last expression does not involve /Vs and is a
function of only \d\ increasing monotonically from zero to Σ™=i{2m(2ra—l)(2m+l)3}"1

in 0^ | r f |^ l .

3. Proofs.

(1.10): From (1. 7) we have

HXι(x2i xs, y)=Hχ1(x2)+Hχ1(xs)+Hχ1(y)—(Tχ1(x2; #3)+ TXl(x3; y)+ TXl(x2; y))+AXl(x2x άy),

which shows invariance of AXl(x2x3y) under any permutations of x2, x% and y.
From (1. 7) we have

(*) AXl(x2x3y) = TXl{x2\ y) + TXl(xό; y) — TXl(x2, xa;y).

From (1. 5) we have

TXl,χs(x2', y)= T(xlf x-i, χ2; y)— T(χlf x^; y)

= (T(xύ y)+ TXl(x2, x,\ y))-{T{xύ y)+ Tφ*\ y))

= TXl(x2, x*\ y)— TXχixz\ y).

Adding the last identity and (*) side-by-side, we obtain

AXl(x2xsy)+ TχltXi(x2; y)= TXl(x2; y),

which proves (1.10).
(1.11): It suffices to show that A(xίX2x3y) is invariant under any permutation

of xi and any other one variable. From (1. 6) and (1.10) we have

)=A(x2x3y)—AXl(x2x^y)

=(Γ(α?a; y)- Tφ2, y))-(TXl(x2, y)- TXl,φ2, y))

=(T(x2; y)— TXl(x2, y))—(Tx^(x2; y)— TX3,Xl(x2; y))

=A{xιx2y)—AXz

The last expression is invariant under any permutation of xly x2 and y.
(1.12): From (1. 6) and (1.11) we obtain

)= T(xϊ, y)— TX3(xύ y),

)= T(x2, y)— TXz(x2) y),

) = — A{xχx2y)+AXz{xλx2y).

Adding together we get

A(x1xsy)~\-A(x2xsy)—A(xix2x3y)= T{xύ y)+T(x2; y)—A{xιx2y)

—(TXz(xϊ, y)+ Tχz(xι\ y)~AXz{xxx2y))

= T(xu x2) y)- Tφ1} x2; y) (by (1. 7) and (*))

=A{{xux2)x,y) (by 1.6)),
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which proves (1.12).

(1.13): From (1. 7) we have

ΓOi, x2, XB) y)= T{(xu a?2), xz\ y)= T(xlt x2; y)+ T(x3) y)—A((xu x2)xsy)

=(T(xΐ, y)+ T(x2; y)-A(x1x2y))+ T(xs; y)-A((xu x2)x3y).

(1.13) follows from (1.12).
(1.14): From (1.1) and (1. 8) we have

u x2) #3, y)=H(xlt x2, xs)+H(y)— T(xlf x2, x3; y)

) ) — T(x1} x2f x%\ y).= (
Kj

(1.14) follows from (1.13).
Proofs of the relations (1. 15)—(1. 19) by mathematical induction are similar,

so will be omitted.
(2. 3): Termwise integration of the power series

gives (2. 3). Another expression of t(\a\) follows from the decomposition

1 - " I 1 V4 3/4 1/2
2m(2m-l)(2m+l)2 2m 2 m - l r 2m+l

(2. 4) and (2. 6): We show that the right-hand side of (2. 4) is non-negative if
ά+b+c+d=l. We have

-y-r-p—Fi) γ-z—^2) ^ — ? - , similar two inequalities, and

Adding these four inequalities together we get
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