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ON A CONTINUITY LEMMA OF EXTREMAL LENGTH AND
ITS APPLICATIONS TO CONFORMAL MAPPING

BY NOBUYUKI SUITA

§ 1. Introduction.

1. The continuity of the extremal length of a curve family joining two
disjoint compact sets in the plane with respect to their exhaustion was first
discussed by Wolontis [10]. Later Strebel [7] showed the continuity for the Riemann
surface and its two sets of compact boundary components (in the Stoilow com-
pact ificat ion), and recently Marden and Rodin [4] generalized it for a wider class
of curves. In the present paper we shall show the continuity of the extremal
length with respect to increasing curve families. Such a property was already
discussed for particular curve families in a problem of conformal mappings by
Marden and Rodin [4], but we state the continuity in a general form.

As an application of the continuity lemma, we shall discuss a problem of
conformal mapping from a domain onto a slit rectangle. The problem was first
treated by Grδtzsch [2] in the case of finite connectivity. In our former paper [8]
we constructed a slit rectangle mapping function for a domain whose outer bounda-
ry was isolated. In the present paper we shall show that a plane domain with a
preassigned boundary component given four distinct curves (vertices) can be mapped
onto a horizontally slit rectangle with possible horizontal incisions, if the extremal
length of the family of curves joining one pair of edges corresponding to vertical
sides is finite.

§ 2. Preliminary.

2. We sum up some known results for extremal lengths. Let R be a Riemann
surface and let Γ be a family of curves on R. We mean by a curve a collection
of at most countable open connected arcs whose member is locally rectifiable. Let
ρ{z)\dz\ be a nonnegative measurable metric. We call p measurable on Γ, if the
integral of p along each γsΓ exists. A metric p is called admissible, if it is
measurable and its integral along each γeΓ is not less than one. An admissible
class, denoted by POO, is the collection of all admissible metrics. The closure of
the intersection of P(Γ) with the /2-space of the metrics with finite norm is called
a generalized admissible class and written by P*(Γ). The module of Γ is defined by

inf \\p2dxdy= inf
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and denoted by modΛ There exists a unique metric p0 within P*(Γ) called a
(generalized) extremal metric, which satisfies moάΓ^\\pQ\\2' so long as P*(Γ)^φ [6].
The metric ô gives the minimum norm within the family P*(Γ) and the deviation
of peP*(Γ) from the extremal metric ô is given by

(1) ll^-^o||2^IHI2-INI2

[9]. The reciprocal of modΓ is the extremal length of Γ, denoted by λ(Γ).
Following Fugulede [1], we term a curve family with zero module an ex-

ceptional curve family. A statement is said to hold for almost all γzΓ, if it is
false for an exceptional subfamily of Γ.

3. There is an alternative definition of the extremal length originally due to
Fugulede [1] and used in the theory of functions by Marden and Rodin [4]. In
their definition the admissible class of metrics for Γ, denoted by P'CO, is the
collection of all Borel measurable metrics which satisfy

[ p\dz\^l for almost all γsΓ.

Then the family P'(Γ) is equivalent to the family P*(Γ) in the following sense:
Every metric p$P*(Γ) has an equivalent Borel measurable p such that p—p almost
everywhere which is contained in P'(Γ). On the other hand Pf(Γ)cP*(Γ). In
fact p has the property that Srp\dz\^l for almost all ^ G Γ , which is shown as a
property of an admissible metric measurable on Γ [9]. For the exceptional curve
family with respect to ρsP'(Γ)y denoted by Λ(p), we can select a sequence of
metrics μn€P(Λ(p)) such that ||μn||

2—»0. The sequence of metrics pn=max(p,μn) is
admissible and tends to p, which implies pςP*(Γ). Clearly the closure of the
intersection of P'(Γ) with the /2-space coincides with P*(Γ). Fugulede proved the
existence of an extremal metric in the I2(lp)-comςλeύon of P'(Γ) [1]. It seems to
us that the proof of the existence of the extremal metric is easy in P*(Γ) [5], but
for the continuity lemma in § 3, the proof based on P'(Γ) is much easier than on

§3. A continuity lemma.

4. We now state

LEMMA 1. Let {Γn} be an increasing sequence of ctirυe families. Put Γ=\jΓn.
Then we have

\imλ{Γn)=λ(Γ).
n—*oo

Proof We prove the lemma for the module. The module of a curve family
is infinite if its generalized admissible class is void, and in the case that
p*(Γn)=φ for some n the statement is evident. If P*(Γn)±ϊφ for all n there
exists a unique extremal metric pn in every P*(Γn). The sequence {moάΓn} is in-
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creasing. Hence if lim mod/\=oo, modΓ=oo. Suppose the sequence {moάΓn} is
bounded. Then by the inequality (1) we have \\pm—Pn\\2^\\pm\\2—\\pn\\2 (m>ή). pn

tends to a metric p0 from the boundedness of the sequence and we get |||θ||2^|||0o||2

for psP*(Γ).
We now show po€P*(Γ) which implies the extremality of p0. From the

definition of admissible metric we have P(Γ)= ΓϊP(Γn). We prove P*(Γ)= 0P*(Γn).
Clearly P*(Γ)a Γ\P*(Γn). Suppose pGP*(Γn) for all n. If we take an equivalent
metric measurable on Γn, denoted by the same notation p, we have

(2) [ p\dz\^l for almost all γsΓn.

Let Λn(p) be the exceptional family of Γn for the inequality (2). Then the ex-
ceptional family Λ(p) of Γ is equal to \jΛn(p). By Hersch's lemma [3] we have
modΛ(p)^ΣnmodΛn(p)=0, which implies that Λ(p) is exceptional (see also [1]).

P*(Γn) contains the extremal metrics pv for v^n and hence po€P*(Γn). So we

get PoeP*(n.

§ 4. Application to conformal mappings.

5. Let Ω be a plane domain. A boundary component a of Ω is defined by a
decreasing sequence of subdomains {Δn} of Ω which satisfies the conditions that
each member has a single analytic relative boundary compact in 42, Ω—Δn is a
domain, Jn +iCz/w and f]Δn=φ. We call the sequence {Δn} a boundary component
a of Ω. {Δn} is called a defining sequence of a. Two defining sequences {Δn} and
{Δ'n} are said equivalent when every Δn contains some Δ'm and vice versa. We can
assign to a a point set on the complex sphere defined by Π Cl (Jn), where Cl (Δn)
denotes the closure taken in thê _ complex sphere, and the set is also written by a.
A sequence of domains Ωn=Ω—Δn exhausts Ω and it is called an exaustion of Ω in
the direction to α.

We say, a curve γ\ z=z(t) (0<f<l) tends to a if each member of the defining
sequence of a contains the image of a suitable interval (s, 1) (resp. (0,1)) under z(t).

6. We denote by {7v}J=i four mutually disjoint piecewise analytic curves
starting from the points of Ω, running within Ω and tending to a. We can choose
such a defining sequence {Δn} the relative boundary of Δn intersects every γ3

precisely once. Let {Ωn} be an exaustion of Ω in the direction to a. Let us
denote by pψ the intersection of y3 with the relative boundary of Ωn. We may
assume that the sequence {/>J°}$=i are arranged in the positive direction with re-
spect to Ωn. Then we say the curves y3 mark vertices on α. The end parts of
curves γ0 after pf> divide the complementary domain Ω—Ωn into four subdomains,
say Sg°, Sg°, S3

(Γ and S%\ where the suffix numbers of S w ' s mean those of the
corresponding subarcs of the curves γ3 as their boundary. We call the sequence
{Sip} & defining sequence of an edge a12 determined by jι and γ2. The equivalence
of two defining sequences of an edge is defined as in no. 5. The other three edges
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are defined similarly. A curve tending to an edge is also defined by its defining
sequence.

Put Tn= Ωn —S2?
}USίι\ {Tn} makes an exaustion of Ω, called an exaustion of

Ω in the direction to edges a2Z and a41. An exhaustion of Ω in the direction to a12

and α34 can be constructed similarly by means of SίJ0 and S£\ Taking a replica of
Tn we can construct a double fn of Tn with respect to the relative boundaries of
Tn which are two piecewise analytic Jordan arcs. Tn has two boundary components
which are the union of a12 and its counterpart ά12, say Qn\ and the union of α34

and α34 say Cin\ If the family of curves joining CίW) and Cf) has finite extremal
length, there exists a unique minimal radially slit annulus mapping function fn(z)
except linear transformations with fixed points at zero and at infinity [7]. We
state some properties of fn:

i) The images of Cf5 and C|W) under fn are two circles with center zero
having possible radial incisions emanating from them, whose directions make a set
of linear measure zero, and the images of the boundary components other than CίW)

and C£W) are a quasi-minimal set of radial slits whose compact subset is minimal.

ii) The two relative boundaries of Tn are mapped into a straight line through
the origin by fn and the images of Tn and its counterpart under fn are symmetric
with respect to it.

iii) Let Γn be the family of curves joining C[n:> and C^ in Tn and let Γn be the
subfamily of f n whose member joins them in Tn. Then we have mod tn—2 mod Γn

and the metric \fή/(fn log (rilr2))\ is the extremal metric for the both module problems,
where n and r2 are the radii of the images of Qn) and Qn) (n>f 2).

iv) Let Ax be the family of curves joining a12 and a compact neighborhood K
of a point of Tn and having the property lim^i \fn(z(t)) \ Q i , where z = z(t) is a
representation of a curve tending to a12 as t-+l. Let Λ2 be a similar family of curves
tending to α34 and satisfying ΠrnV>i \fn(z(t))\>r2. Then the modules of A1 and A2 both
vanish.

The statement i) is found in [7]. The statement ii) is shown by the uniqueness
of the mapping function. In fact Tn has a self anti-conformal mapping onto itself,
denoted by τ(p) and fn(τ(p)) is also a minimal radially slit annulus mapping. We
have fn(τ(p))=eίθfn(p). Since p=τ(p) on the relative boundaries of Tn, we can
deduce the images of the relative boundaries lie on the line argw=θ/2. The ex-
tremal metric in the minimal radially slit annulus was given in [7]. Since the
mapping τ(p) fixes the curve family Γn, the uniqueness of the extremal metric
shows the invariance of the extremal metric under τ(p). On the other hand the
extremal metric for the curve family Γn is extended to the replica of Tn symmetri-
cally and the extended metric is admissible for tny which implies the coincidence
of the both extremal metrics in Tn.

The property iv) for the domain fn and Op's is easily verified by the same
method as in [9] which is originally due to Ohtsuka [5] and the statement is evident
because they are subfamilies of the above family.

From these statements we can construct a function φn(z) which maps Tn onto
% horizontally slit rectangle with the normalization that the relative boundary of
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Tn containing subarcs of γ2 and γs is mapped into the bottom line [0,1] in this
order. Indeed A\ogfn{z)-\-B with suitable constants is the desired function. The
relative boundaries of Tn are mapped into two horizontal sides and the edges a12

and aM are mapped onto two vertical sides with possible horizontal incisions with
total area zero. The image of the other boundary components is a quasi-minimal
set of horizontal slits [8].

6. We state

THEOREM 1. Let φn(z) be the mapping function constructed above which maps
Tn onto a horizontally slit rectangle with bottom line [0,1]. If the heights of the
image rectangles of Tn under φn is bounded then φn(z) tends to a function <po(z) in
the sense that \\φ'n—φ!>\\2τn-^0> The image of a under <p0 is a rectangle with possible
horizontal incisions of 2-dimensional measwe zero emanating from vertical sides.
The images of other boundary components than a are a quasi-minimal set of hori-
zontal slits. The module of the family of curves joining the edges a12 and aM is
equal to h, where h is the height of the image rectangle. The module of its sub-
family of curves satisfying

lim Re φo(z(t)) -ϊί ϊn Re φo(z(t)) < 1
ί->l ί-»0

vanishes, where the curve z{t) tends to a12 and to α3 4 as t—>0 as £—>1 respectively.

Proof. From iii), the invariance of the module under a conformal mapping
implies the module of the family Γn of curves joining a12 and aM in Tn is equal
to the height of its image rectangle, denoted by hn and pn—\ψn\ is an extremal
metric. The boundedness of the sequence hn and Lemma 1 show that pn tends to
an extremal metric ^ for Γ=[jΓn strongly. Since {φή} is weakly compact in the
complex Hubert space, any subsequence of {φ'n} contains a convergent subsequence
whose limit denotes φ'o. The limit function is a strong limit from the convergence
of the norms, is analytic and univalent and satisfies Po=\φί\. Put h=\imhn. Then
the image domain of Ω under φ0 is contained in the rectangle 0<Re w<l, 0<Imw<Ch
and its area is equal to h. Then the uniqueness of the strong limit ô implies the
independence of φί on the subsequences of {φn} and hence \\φή—φΌ\\τn-*0.

Next we show the last statement which is a property of incisions. Let {Tv

n}
be an exhaustion of Tn in the direction to a12 and α34 and let {φnv} be the sequence
of normalized slit rectangle mappings. Then \\φ'nv—φή\\τ^0 as v—>oo. Hence we
can find a sequence of functions φnvW satisfying \\<pήvw—φό\\τ£n)^>0. Denoting by
Λn and Λ% the subfamilies of Γn satisfying lim^i Re <po(z(t))—\\mt->Q Re φo(z(t))<l and
<1—1/k respectively, we have modΛ£=0 and mod^n=modUA;^n=:0. In fact simi-
larly as in [9] we put ^=Re φ0 and ^ m = R e ^ m υ ( m ) in TUm) ΓΊ Tn (n^m), =0 in S^-T^
and = 1 in Sξf— Tv^m\ Then the metric pw=&|grad (u—um)\ is admissible for Λ\ and
the convergence of φ'mvW> implies mod^.=0. Since Λn=\}kΛ\, we have also
modΛw=0. The family A in the theorem is represented by U Λ and hence we
have the assertion.

We now discuss the shape of the image domain. The minimality of the image
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of the boundary components other than a follows from Lemma 5 in [8J. Put
Γ'=Γ—Λ. The metric po=\φί\ is an extremal metric for Γf and continuous, then
Lemma 1 in [8] implies

(3) inf [po\dz\=l,

where Γz is the subfamily of Γ' consisting of the curves through fixed point z in
Ω. We can deduce from (3) that the image of a under <p0 is a rectangle with
possible horizontal incisions emanating from the vertical sides. Vanishing of the
area of the incisions is obvious from the identity 11 ̂ >o112=/̂ - Thus the proof has
been completed.

7. We discuss an extremal property of the slit rectangle mapping when the
extremal distance of a12 and aM is finite. We dealt with a similar problem for
radial slit disc mappings [9] and Marden and Rodin [4] treated related problems for
circular-radial slit mappings.

Let f(z) be a univalent function in Ω. For a relatively compact open set K
let A(f, α12) be the family of curves joining K and a12 in Ω and satisfying
ϊϊm~ί->iRe/(z(O)>0 (z(f)-*a12 as t—>1) and letΛ(/, α34) be family of curves joining K
and α34 in Ω and satisfying limt-i Re/(z(ί))<l. We denote by g the family of
univalent functions / which map a onto the outer boundary and satisfy mod Λ(f, a12)
=modΛ(/, α3 4)=0 and mfz£Ωlmf(z)=0. The independence of the family §? on the
choice of K is easily verified as in [9]. It is also shown as in the proof of Theorem
1 that y>o€$. Put W)=sup*€βlm/(z).

THEOREM 2. // the extremal distance of a12 and α34 is finite, then ψQ is the
unique function which minimize the quantity H(f) among §.

Proof. Let Γ denote the family of curves joining a12 and α34 and letΛ(f)
denote subfamily of Γ satisfying limί->oRe/(z(O)>O or liπiί-,iRe/(2:(0)<l (z-*a12

as t-*0). Then the normalization of f? implies moάΛ(f)=0. In fact we take a
curve joining α23 and α41 and consider its open covering K in Ω. K can be repre-
sented by relatively compact open sets Kn in Ω in the form K= (J nKn. Denoting
by Λn(f) the subfamily of Λ(f) intersecting Kni we have modΛw(/)=0 from the
remark before this theorem, since any member of Λn(f) contains a curve of Λ(f a12)
or Λ(f,au) for Kn as a subarc. Thus mod^(/)=modU^ w (/)=0.

We define a metric p from / by

0 (elsewhere).

We show p€P*(Γ). Let γ be a curve of Γ—Λ(f). Then considering the oscillation
of Re/0), we have
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from the facts fiint->oRe/(z(O)^O and lίmt-i Re/(z(0)^l. Since modΛ(/)=0, from
the same reason in no. 3 we have p€P*(Γ). The extremality and uniqueness of
φo follow immediately from the inequality (1)

where p0 is the extremal metric \φί\ for Γ defined in Theorem 1, because the carrier
of p is contained in the closed rectangle 0 ^ R e / O ) ^ l , O^Im f(z)^H(f) in the
image plane.

We can take many other functionals for which φQ is extremal. For instance
the area of the image domain \\f\\2 is intimately connected with the extremal length
and was dealt with by Marden and Rodin [4] and by others.

8. Following the notations in no. 6, we construct an exhaustion {Tn} of Ω in
the direction to a12 and α34, where Tn=Ωn—S$:>\jS§t\ Under the assumption that
both the extremal length and the module of the family of the curves joining the
relative boundaries of fn are finite, there exists a unique normalized horizontal slit
rectangle mapping ψn(z) of fn such that the edge α23 corresponds to a subcontinuum
(or a point) of the bottom line [0,1]. We can deduce that ψn tends to a function ψ0

strongly as n-^oo, if the extremal lengths are bounded, but we have no informations
about the shape of the image domain except the minimality of the images of
boundary components other than a. However we can conclude that <fi0 coincides
with φOf if we assume the accessibility of the four curves y3 and the separability
of edges. Here the accessibility of γ3 is in the sense that there exists a point z3

whose arbitrary neighborhood in the complex sphere contains a suitable end part of γ3.

THEOREM 3. Let Tn be an exhaustion of Ω in the direction to a12 and a3i and
let Γn be the family of curves joining two relative boundaries of Tn> Suppose the
sequence of the extremal lengths λ(Γn) is positive and bounded. Then the normalized
slit rectangle mapping ψn of Tn constructed as in Theorem l υ tends to a function ψ0

in the sense that \\Φ'n-ψί\\2

Tn-*0.
// four curves γ3 defining the vertices are accessible and if the two edges <x12

and α34 have disjoint neighborhoods, then ψ0 coincides with ψ0 defined in Theorem 1.

Proof. The metric pn=\ψn\ is extremal for Γn and is contained in P(Γm) for all
m>n, where ρn is extended as zero outside of Tn. Put hn=moάΓn which is
decreasing and is bounded away from zero. Then we have from (1) \\ρn—pm\\2

^\\pn\\2—\\pm\\2=hn—hm for m>n and ρn tends to a metric p0 strongly. The same
reason as in the proof of Theorem 1 shows that ψn tends to a univalent function
ψo in the sense that \\ψk—ψl\\2-^.

Next we show the continuity of the module of Γn. Our proof is originally due
to Strebel [7], using a classical method of the proof of Phragmen—Lindelofs theo-
rem. Let p be a metric of P(Γ), where Γ is the family of curves joining a12 and
α34 in Ω. We set

1) Here we regard r^s lying partly on the boundary as the curves defining vertices.



136 NOBUYUKI SUITA

L(p,Γ)= inf [p\dz

Let Ω denote the complementary domain of a with respect to the complex sphere
containing Ω. By our assumptions, there exist four neighborhoods of the vertices
of α, denoted by V3 O"=l, 2, 3,4), such that the module of each family χ3 of curves
joining V3 and its opposite edge is less than ε/8, since a point has infinite extremal
distance from any compact disjoint set. Then we can construct metrics μi^PiXj) U
=1,2,3,4) such that | |^| |2<ε/4. We set ps=τmx1^j^(ρfμj) which is a member of
P(Γ). Then we have hmL(pet / \ ) ^ 1 . In fact, contrary to the assertion, there
exists a curve γn^fn joining two relative boundaries of Tn which satisfies

γn intersects both the relative boundaries of Tv for v^n. Let CS and ζS be two
points of the intersections of γn with the relative boundaries of Tv separating α12

and aM from fn respectively. Then the points ζ$ and CS have at least one cluster
point on each relative boundary of Tv and outside of V/s. Therefore we can con-
struct a curve β joining a12 and au such that

by StrebeΓs method [7]. We get a contradiction to the admissibility of p,.
For any k>ί, ftp, is admissible for Γn with sufficiently large n and we have

IWI2=§Pio,H2. Thus we get

Clearly po€P*(Γ) and p0 is extremal for Γ. We obtain the continuity of modules
with respect to this exhaustion.

The uniqueness of the extremal metric p0 implies ψo=φo.
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