SURFACES OF CURVATURES $\lambda=\mu=0$ IN \boldsymbol{E}^{4}

By Katsuhiro Shiohama

Introduction. A complete surface of Gaussian curvature $G=0$ in Euclidean space E^{3} of dimension 3 is a cylinder. This fact was proved by W. S. Massey. The purpose of this paper is to prove the following theorem:

Theorem. A complete surface M^{2} in Euclidean space E^{4} of dimension 4 with the curvatures $\lambda=\mu=0$ is a cylinder.

The definition of a cylinder in an Euclidean space is given by the following: Through each point of a curve on it, there passes a straight line which has the constant direction and the curve is not equal to one of these straight lines. The method of the proof is due to the idea of the Frenet-frames given by Professor Ötsuki. In $\S 1$, we study the local properties of M^{2} in E^{4} without completeness. A global study of complete surfaces of the curvatures $\lambda=\mu=0$ is given in $\S 2$ with the aid of the universal covering space. The above theorem will be proved in this section. The author expresses his deep gratitude to Professor Ōtsuki who encouraged him and gave him a lot of useful suggestions.
§ 1. In the following we consider 2 dimensional, connected, oriented and class C^{4} Riemannian manifold M^{2} immersed in E^{4} with the principal and secondary curvatures $\lambda=\mu=0$. By the definition of the Frenet-frame ($p, e_{1}, e_{2}, e_{3}, e_{4}$) for any surface M^{2} in E^{4}, we have the following:

$$
\begin{equation*}
d p=e_{1} \omega_{1}+e_{2} \omega_{2}, \quad d e_{A}=\Sigma \omega_{A j} e_{j}+\omega_{A B} e_{3}+\omega_{A 4} e_{4}, \quad A=1,2,3,4, \quad j=1,2, \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
\omega_{13} \wedge \omega_{24}+\omega_{14} \wedge \omega_{23}=0, \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
\omega_{13} \wedge \omega_{23}=\lambda \omega_{1} \wedge \omega_{2}, \quad \omega_{14} \wedge \omega_{24}=\mu \omega_{1} \wedge \omega_{2} \tag{1.3}
\end{equation*}
$$

(1.4)

$$
\lambda+\mu=G, \quad \lambda \geqq \mu,
$$

where ω_{1}, ω_{2} and $\omega_{12}=-\omega_{21}$ are the basic forms and the connection form of M^{2} respectively, λ and μ are the principal and secondary curvatures of the surface respectively, and G is the Gaussian curvature of M^{2}. In our case we cannot define the uniquely determined Frenet-frame, but we suitably take such a frame ($p, e_{1}, e_{2}, e_{3}, e_{4}$) from the first. Putting $\omega_{i r}=\Sigma A_{r i j} \omega_{j}$ where $i, j=1,2, r=3,4$ and $A_{r i \jmath}=A_{r j i}$ we get by the hypothesis

$$
\begin{equation*}
\operatorname{rank}\left(A_{3 i j}\right) \leqq 1, \quad \operatorname{rank}\left(A_{4 i j}\right) \leqq 1 . \tag{1.5}
\end{equation*}
$$

Then we could define the two sets:
Received June 30, 1966.

$$
\begin{equation*}
M_{0}=\left\{p \in M^{2}: \operatorname{rank}\left(A_{3 i j}(p)\right)=\operatorname{rank}\left(A_{4 i j}(p)\right)=0\right\}, \tag{1.6}
\end{equation*}
$$

It is clear that M_{0} is closed and M_{1} is open.
Now suppose that $M_{1} \neq \phi$, and $p \in M_{1}$ and $\operatorname{rank}\left(A_{4 i j}(p)\right)=1$. Any tangent vector v is written as $v=\Sigma v^{2} e_{i}$. Then we can define the unique direction at p as follows: $\Sigma A_{4 i j} v^{2} v^{v}=0$. This direction is called the asymptotic direction with respect to e_{4}. The asymptotic lines with respect to e_{4} are defined by the integral curves of the field of unit vectors with this directions. Let e_{1} be one of the unit tangent vectors at p with the asymptotic direction with respect to e_{4}, and we select the unit tangent vector e_{2} at p orthogonal to e_{1} so that the orientation of (e_{1}, e_{2}) is coherent with the one of M^{2}. Then we can define a field of such frames in a neighborhood U_{p} of p. According to the definition of the frame, we have

$$
\left(A_{4 i j}\right)=\left(\begin{array}{ll}
0 & 0 \tag{1.8}\\
0 & \alpha
\end{array}\right), \quad \text { or } \quad \omega_{14}=0, \quad \omega_{24}=\alpha \omega_{2},
$$

where α is a continuous everywhere non-zero function defined in U_{p}. By (1.1) and $\lambda=0$, we get

$$
\begin{equation*}
\omega_{13}=0, \quad \omega_{23}=\beta \omega_{2}, \tag{1.9}
\end{equation*}
$$

where β is a continuous function defined in U_{p}. Since the second fundamental form with respect to any unit normal vector $e=e_{3} \cos \theta+e_{4} \sin \theta$ at p is given as

$$
\begin{equation*}
d^{2} p \cdot e=(\beta \cos \theta+\alpha \sin \theta) \omega_{2} \omega_{2}, \tag{1.10}
\end{equation*}
$$

the asymptotic direction at p is independent of the choice of the unit normal vector at p.

By using (1.8), (1.9) and structure equations we have the following:

$$
\begin{equation*}
\omega_{12}=\gamma \omega_{2}, \quad \omega_{1}=d u, \quad \omega_{34}=d f, \tag{1.11}
\end{equation*}
$$

where γ, u, f are continuous functions defined in U_{p}. Putting $e_{3}^{*}=e_{3} \cos \varphi+e_{4} \sin \varphi$, $e_{4}^{*}=-e_{3} \sin \varphi+e_{4} \cos \varphi$, we get $\omega_{34}^{*}=\left\langle d e_{3}^{*}, e_{4}^{*}\right\rangle=d(f+\varphi)$. By selecting e_{3}, e_{4} such that

$$
\begin{equation*}
\varphi=-f+\text { const. } \tag{1.12}
\end{equation*}
$$

we have the torsion form $\omega_{34}=0$. Using only such e_{3}, e_{4} we get the following:

$$
\left\{\begin{array}{l}
d p=e_{1} d u+e_{2} \omega_{2} \tag{1.13}\\
d e_{1}=\quad \gamma e_{2} \omega_{2} \\
d e_{2}=\left(-\gamma e_{1} \quad+\beta e_{3}+\alpha e_{4}\right) \omega_{2} \\
d e_{3}=-\beta e_{2} \omega_{2} \\
d e_{4}=-\alpha e_{2} \omega_{2}
\end{array}\right.
$$

The above equation shows that any asymptotic line is a straight line or its segment and all the tangent planes are constant along it.

Lemma 1. Suppase that $M_{1} \neq \phi$, then any asymptotic line extends to infinitely or to the boundary of M^{2} in E^{4}.

Proof. By virtue of the structure equations, (1.8), (1.9) and (1.11), we have along an asymptotic line as follows:

$$
\begin{align*}
& \alpha(s)=\frac{\alpha(0)}{\gamma(0) s+1}, \tag{1.14}\\
& \beta(s)=\frac{\beta(0)}{\gamma(0) s+1} \\
& \gamma(s)=\frac{\gamma(0)}{\gamma(0) s+1}
\end{align*}
$$

where $\alpha(0), \beta(0), \gamma(0)$, are the values of α, β, γ, at $p \in M_{1}(u=0)$ respectively. Since we can consider that U_{p} is a convex neighborhood we can define the Frenet-frames in a neighborhood of an asymptotic line with vanishing torsion by virtue of (1.12). Now let l be the asymptotic line through p and be written as $x=x(s), s=u+$ const., and $0 \leqq s<s_{0}, x(0)=p$. Suppose that $\lim _{s \uparrow s_{0}} x(s) \in M^{2}$, we get at once $\lim _{s \uparrow s_{0}} x(s) \in M_{1}$ by (1.14). This implies a contradiction.

For any set A, \AA means the largest open set contained in A.
Lemma 2. If $\dot{M}_{0} \neq \phi$, then each connected component of \dot{M}_{0} is a piece of plane.
Because we can select e_{3} and e_{4} such that $\omega_{34}=0, e_{3}$ and e_{4} are constant vectors. This fact implies the lemma.
\S 2. In this section M^{2} is supposed to be complete. A point of a cylinder is called proper if there does not exist any neighborhood of the point which is contained in the plane. A cylinder is called proper if all the points of it are proper. The completeness and Lemma 1, implies that each asymptotic line is a full straight line. Then (1.16) hold for $-\infty<s<\infty$, but since γ is continuous we must have $\gamma \equiv 0$, i.e., $d e_{1}=0$. On the other hand we have $d e_{2}=\left(\beta e_{3}+\alpha e_{4}\right) \omega_{2} \neq 0$. Then we have the following lemma:

Lemma 3. If $M_{1} \neq \phi$, then M_{1} consists of proper cylinders.
Let us denote by M_{1}^{\prime} the set of all boundary points of M_{1} in M^{2}. Since M^{2} is complete and $G=0$, the universal covering space of M^{2} is a Euclidean plane E^{2}, and the covering map is written as π. A connected open set contained in the plane is called stripe if for each point of the set, there exists a straight line which has the constant direction and is contained entirely in the set.

Lemma 4. If $\stackrel{\circ}{M}_{0} \neq \phi$, then $\stackrel{\circ}{M}_{0}$ consists of stripes in E^{4}.
Proof. If $M_{1} \neq \phi$, then M^{2} is a plane in E^{4}. Suppose that $M_{1} \neq \phi$. Since $\pi^{-1}\left(M_{1}\right)$ consists of parallel stripes in $E^{2}, \widehat{E^{2}-\pi^{-1}\left(M_{1}\right)}$ also consists of parallel stripes in E^{2}. On the other hand we have by the property of covering map,

$$
\begin{equation*}
\widehat{E^{2}-\pi^{-1}\left(M_{1}\right)}=\widehat{\pi^{-1}\left(M_{0}\right)}=\pi^{-1}\left(\stackrel{\circ}{M}_{0}\right) . \tag{21}
\end{equation*}
$$

Let V be a connected component of M_{0}. Since $\pi^{-1}(V)$ consists of parallel stripes in E^{2}, V must be a stripe in E^{4} by Lemma 2.

Lemma 5. If $M_{1}^{\prime} \neq \phi$, then for each point of M_{1}^{\prime} there exists a unique straight line contained entirely in M_{1}^{\prime}.

Proof. Because π is local isometry, we get the following;

$$
\begin{equation*}
\pi^{-1}\left(M_{1}^{\prime}\right)=\left(\pi^{-1}\left(M_{1}\right)\right)^{\prime} \tag{2.2}
\end{equation*}
$$

Let q be any fixed point of M_{1}^{\prime}, then there exists a sequence $\left\{q_{n}\right\}_{n}$ in M_{1} such that $\lim q_{n}=q$. Let \tilde{q} be a point in E^{2} such that $\pi(\tilde{q})=q$, and \tilde{q}_{n} be a point of E^{2} such that $\lim \tilde{q}_{n}=\tilde{q}, \pi(\tilde{q})=q_{n}$. There exists a unique straight line \tilde{l}_{n} through each q_{n} in $\pi^{-1}\left(M_{1}\right)$ with the fixed direction such that $\pi\left(\tilde{l}_{n}\right)$ is the asymptotic line of M^{2} through q_{n}. Now let \tilde{l} be a straight line through \tilde{q} in E^{2} which is parallel to \tilde{l}_{n}, then we have the following:

$$
\begin{equation*}
\tilde{l} \subset\left(\pi^{-1}\left(M_{1}\right)\right)^{\prime} . \tag{2.3}
\end{equation*}
$$

Because π is local isometry $\pi(\tilde{l})$ is a geodesic in M^{2} and the above discussion shows that the arclength of $\pi(\tilde{l})$ between q and $r \in \pi(\tilde{l})$ is equal to the distance between q and r in E^{4}, i.e., $\pi(\tilde{l})$ is a straight line in E^{4}.

Let us prove the theorem. We have proved that for each point of M^{2} there exists a unique straight line contained in M^{2}. We can take a coordinate system (x, y) in E^{2} such that all the images of $y=$ const. under π are these straight lines in M^{2}. We can define a unit tangent vector field \bar{e}_{1} over M^{2} such that

$$
\begin{equation*}
\bar{e}_{1}=d \pi\left(\frac{\partial}{\partial x}\right) \tag{2.4}
\end{equation*}
$$

where $d \pi$ is the differential map of π. Then we get by Lemma 3 ,

$$
\begin{equation*}
d\left(\bar{e}_{1 \mid M_{1}}\right)=d\left(e_{1}\right)=0, \tag{2.5}
\end{equation*}
$$

because $\bar{e}_{1}= \pm e_{1}$. By virtue of Lemma 4, we get

$$
\begin{equation*}
\alpha\left(\bar{e}_{1 \mid M_{0}}\right)=0 . \tag{2.6}
\end{equation*}
$$

Therefore we have $d\left(\bar{e}_{1}\right)=0$ in M^{2}.

References

[1] Chern, S., and R. Lashof, On the total curvature of immersed manifolds. Amer. Journ. Math. 79 (1957), 306-318.
[2] Massey, W. S., Surfaces of Gaussian curvature zero in Euclidean 3-space. Tōhoku Math. Journ. 14 (1962), 73-79.
[3] Öтsuki, T., On the total curvature of surfaces in Euclidean spaces. Japanese Journ. of Math. 36 (1966), 61-71.
[4] Ōtsuki, T., Surfaces in the 4 -dimensional Euclidean space isometric to a sphere. Kōdai Math. Sem. Rep. 18 (1966), 101-115.
[5] Singer, I., Differential Geometry. Massachusetts Inst. Technology (1962). (Mimeographed)

Department of Mathematics, Tokyo Institute of Technology.

