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ASYMPTOTICALLY MOST INFORMATIVE PROCEDURE
IN THE CASE OF EXPONENTIAL FAMILIES

By Kazutomo KAWAMURA

§1. Introduction.

Recently we showed the following fact in our paper [2]. We considered in [2]
two binomial trials E,, E; having unknown means p;, p, respectively. And we have
introduced the notion of costs such that we must pay costs ¢, ¢» to the observation
of a result given by the trials E;, E, respectively. In each step we are admitted to
select one of the two trials Ey, E,. Be continued the selections by some way we
denoted the sequence of trials till #-th step as E®, ..., E™ and the sequence of
costs till n-th step as C©, .-, C™. Of course we may select at i-th step E®
from the two trials E,, E. depending previous {—1 data X, ---, X,-1 given by
E®, ..., B¢ D A procedure § was given in [2] such that the sum of information
given by two dimensional likelihood ratio relative to the sum of costs till #-th step
to discriminate p,>p. or p<p. is asymptotically maximized. In [2] we assumed
the unknown true two dimensional parameter (pi, p.) did not exist on the boundary
p1=ps. In our another paper [3] we considered analogous model having two kinds
of trials E), E; which are obeyed normal distributions with unknown means #,, 7,
and known same variance ¢ and costs c¢;, ¢, respectively. Then analogous procedure
¢ is asymptotically optimal in the same sense described above. In [3] we noted
that our procedure ¢ reduced to a policy which does not depending on previous #
data X, ---, X, but only on sample sizes #; of Ei, #n. of E, till #-th step. We have
omitted the proof of the problem in [3] because we can easily get analogous proof.

In this paper we generalize these problems to & trials E, ---, E; having ex-
ponential distributions with one dimensional unknown parameter 6,, ---, 05 respec-
tively. That is, an observation X of E, has a probability density function of ex-
ponential type in Kullback’s sense [4] with one dimensional unknown parameter
0;(j=1, ---, k) respectively. And we introduced the boundary =: p-0=p @=(6,, ---, 0))
as a hyperplane in % dimensional euclidean space where p=(g, :--, tx) is any fixed
% dimensional unit vector having all non-zero components and p is any fixed non-
negative number and p-6 is the inner product of two vectors ¢ and 6. Moreover
we use the notion of costs introduced by Kunisawa [6], as we used the notion in
[2], [3], then we can get some information of ¢, by paying of cost c;(j=1, -+, k)
respectively. Then we shall show analogously that under the generalized procedure
@* given in the following Section 3 the sum of information relative to the sum of
costs payed till #-th step to discriminate p-6 larger than p or not is asymptotically
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maximized. Additionally we show in this paper that under the original procedure
@ given in [2], [3] the ratio is also asymptotically maximized in the sense of the
generalized procedure ©*. Moreover the problem given in [3] will be shown in
special example of case £=2 in Section 5. Finally note that in this paper we need
not to assume that our unknown true parameter ¢ is not an element of our hyper-
plane =.

§2. Notations, definitions and some lemmas.

Definition of the expomential family introduced by S. Kullback. Suppose that
f(z, 6o) and f(x, 0:) are generalized densities of a dominated set of probability
measures on the measurable space (¥, @) so that

@.1) ui<E>=SEf<x, bydr  Eed, (i=0,1).

For a given f(x, 0,) we seek the member of the dominated set of probability
measures that is “nearest” to or most closely resembles the probability measure v,
in the sense of smallest directed divergence

@.2) 10, 00)=SRf (z, 0 log ;—g_% o

as a restriction of f(x, 6,) we shall require f(x, ;) minimizing [(6;, 6,) subject to
S T(x)f (2, 01)dz=0,
R
where 6; is any fixed constant and Y=7T(x) a measurable statistic. Then the
minimum value of I(0,, 6,) is given if and only if
2.3) Sz, 6,)=e""T@f (z, 6,)[ M ((61))

where
M (7(01))=S £z, B) e D@y,
R

We remark that
f(z, O)=f(x, 0,) O™/ M (z(0))

is said to generate an exponential family of distributions, the family of exponential
type determined by f(z, 0), as 6 ranges over its values satisfying M(z(#))<co.

0= ‘% log M (z(6)) and vo(x: T(x)=0)=1,

then =(f) is a strictly increasing function of 6. Using this fact if f(x, 6,) and
f(x, 8,) are the members of common exponential family generated by f(x, 6,) then
for any fixed ¢ in the interval [6,, 0,] (6,<0:)
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M=\ 1z, 09 e@rds

éS F (@, 60) DT dy
T(x)20

S F (@, 00) <00 dz < 0
T(x)<0

so that the exponential family is defined on connected interval or full line
R=(—o00, ). Next we consider z independent observations =z, -+, , from true
density function f(zx, #) in the exponential family generated by f(x, 6,). Then
logarithm of the likelihood function II7.,f(x,, 0) is expressed as follows.

log ﬁlf (@, 0)=log ]if (@1, 00)+7(6) é T(x:)—n log M(z(8))

The maximum value of II”_,f(x; 6) is given if and only if 0=80, as follows

d n
70‘ lOg 1l=—[1f(xiy 0)_()!
dc K d
5 z=Zl T(xi)—ngg log M ((6))} =0

where dt/df>0 is satisfied.

5 _ d _ 2= ()
2. 4) 0= Fa log M(z(0))= =

In the following line we suppose that the true parameter 6 is finite, then by the
strong law of large numbers 6,—0 as n—oo is satisfied with probability 1.

Definition of parameter space ©. Our k exponential families with one dimen-
sional parameter 6,(j=1, -+, k) are defined on one dimensional open intervals 0, of
0, respectively. Then our unknown parameter 8=(f,, ---, 0x) is an element of %
dimensional parameter space

=60, RO

which is a product space of % open intervals @, ---, ©z. Next we divide the space
© by our hyperplane p-0=p as follows. Of course we assume the hyperplane
acrosses our parameter space 6.

Hy={0: p-0>p,0€0},  Hy={0: p-0<p, 0€6},
x={0: p-0=p, 6€6}.

Then O=H,+H;+= is satisfied. Next let £ be i-th trial which is one of & ele-
ments Ei, -+, Ex and define X, to be i-th random variable which is given by trial
E® randomizedly.

Calculation of likelihood function of 6. Given the first » trials in some way,
we define the number of £, in E®, .-, E™ as n,  In the following line we
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suppose #;=1 (j=1, ---, k) then all #n, observations X, from the trial E; in the first
n trials E®, ..., E™ is considered as %, independent observations from the trial
E,. Therefore the likelihood function of the parameter 6, is expressed by
I f(xs 0, Ep)

{i: E('D:Ej)
where {i: E®=E,} is a set of #, elements of ¢ in 1, --+, » satisfying E®=FE, for
any fixed j(j=1, ---, k). Then for given E®, ..., E™ the likelihood function of ¢
is expressed by the product as following
(2. 5) l:[lf(xzy 0! E(i)): II f(xzr 0; El)"' II f(xi, 0» Ek)

(i: E()=E,) {(i: E@=Ey}
Of course, for any fixed E,, the probability density function f(x, 8, E;) of the trial
E, for every 0=(6,, ---,0x) in O is considered as a function of €, only and in-

dependent of ¢, (i #]A').
Definition of 6, and unique existence of the value. We denote as 6, the
maximum likelihood estimate of #. The j-th component of 6, will maximize the

j-th likelihood function
II f(xly 0, E])

{i: ED=E;)

with respect to 6,. We genote the value of ¢, which maximizes the j-th likelihood
function as 0,,, Then 6,, given by the #, trials of £, is uniquely expressed as
followings from the discussion of exponential family

2.6) By = L();Eﬂ_@
J

where Ty(z) is a statistic of trial E, satisfying
L Tix)f(x, 0, Edx=0,  (j=1, -, k)

as in (2.4). Hence our 6, is expressed as following, if #n;=1 (j=1, .-+, k) is
satisfied,

@.7) On={00s, -+, Bt}
And the uniqueness of 8, is reduced to that of éw. So that we get the following
lemma as to be proved.

LemMmA 1. U;nder any sequence EW, -, E™ if n;=1 (j=1, ---, k) is satisfied
then there exists 8, uniquely on our parameter space 6.

Definition of 0,. Next we shall denote by #, the maximum likelihood estimate
of & on the subspace a(d,) over the first » trials where a(f) is defined as follows:

a(0)=6—H; if f0eH, @(i=1, 2),

2.8)
=0 if Oer.
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Definition of sum of information.A Now we define the sum of information to
discriminate p-0>p or not using our 6, and 6, as follows

A A 2 (xi) é\n; E(i))
Si(0n, 02)= §1 lOg :;(-Z’z, 0~n’ E®)

maxgeolly-. f (s, 0, E®)
maX,,ea(fn)HZ’,‘f(xi, (‘2 E(i)) ’

2.9
=lo

Definition of mean discrimination. As a measure of discrimination between
two probability density functions f(z, 8, E;), f(x, ¢, E;) we can use by Kullback [4]

f($, 0» E])
f(:l;’ b, EJ’)

where 0=(0y, -+, Ox), o=(p1, -, ¢x) and j=1, ---, BV .

Existence and uniqueness of #.. To find §,, we must minimize Sn(6,, ¢) with
respect to ¢ in a(@n) from the definition of #,. Since f(x, 8, E;) belongs to the
exponential family defined in E, we have

I E(O:Ej)f(xi, én; Ej)
Wy sw=rpf (%3 ¢, Ej)

2. 10) 10, ¢, E))= SR[log ] F(z, 0, Edw

log =n;10., ¢, Ej)

so that
A k A
Sn(en; §0)= El nj[(on) @, Ej)'
Then we must find §, on @(@,) which minimizes Z}’;=1njl(9n, o, E;) with respect to

¢. First we shall show the fact that .er for all ». But this fact will be given
evidently from the property of #, minimizing

k A
ol ¢, Ep

on a(,) with respect to ¢, and the convexity of (0., ¢, E;) v~vith respect to
¢, (7=1, -, k) where ¢=(¢pi, ---, ¢x). Therefore we can search 6, on = as to
minimizing S.(f., ¢) with respect to ¢. Put

dSn(Bn, 9)=0,

then n A
ko 8Su(8., @) 0S:(0r, ©)
2.11 dp,= - dp=0"®
( ) J§1 a% #s 390 ?
and we have from ¢er: p-p=p
2.12) p-de=0.2

1) In this paper we assumed as a restriction of density function of Ej;(j=1, ---, k)
that continuity of d2I(4, ¢, E;)/dp2 with respect to ¢, for any fixed 6, in the interval
0, (j=1, ---, k) respectively.

2) 3Sn(Bn, 9))op-dp is the innerproduct of two vectors 9Su( n, ©)/d0=(3Sn( n, ¢)/0p1
+++, 0Sn(-n, 9)/d¢x) and do=(dey, -, dpg).

3) p-dp 1s also the innerproduct of the vectors p=(u, -+, px) and do=(d¢y, -+, dex).
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Therefore we get from (2. 11), (2.12)

@.13) 95u0n ) _ constant - .
op
Or equivalently
(2. 14) ﬂ dI(om ®, El) e ﬂ dI(om ®, Ek) X
2 dey 7z dpr

Hence from the relation (2.14) and the convexity of I(@n, ¢, E;) with respect to
¢,, that is, dI(@,, ¢, Ej)lde; is strictly increasing function of ¢, (j=1, - -, k), we can
find 4, on = uniquely for any fixed n. Therefore if 6, is uniquely given for any
fixed # then from (2.14) and g-p=p we can find §, uniquely on = as to be proved.

LeMMA 2. Under amy sequence E®, .-, E™, if n;=1 (j=1, ---, k) is satisfied
then theve exists 0, uniquely on our hyperplane =.

Behavior of 6, under any sequence E® E® ... Now we shall show the
probability equals to zero that 8, does not converge for any sequence E®D E® ...
The event that 6, does not converge is included in the event #,, does not converge
for some j. But this event would not occur from the strong law of large numbers.
Hence 6, converges with probability 1 for any sequence E®, E®, ...

LemMA 3. Under any sequence E®, E®, ..., our @,, converges with probability 1.

In the following line we put the limit point as 6, tentatively. Next under
any sequence E®, E® ... we shall prove the probability equals to zero that there
exists some integer N such that f,er is satisfied for all #=N. For any sequence
E®, E®, ..., there exists some integer j in 1, ---, k satisfying n;—0c0 as n—oo. And
ev1dently the event that 0nezr for all n=N reduced to the event 0N—0N+1—- , that
is, the event that 0N]—0N+lj— -« for all j=1, .-, k. But for some j satlsfying
n;—oo as n—oo the event that the maximum likelihood estimate 9,,] gives an
identical value for sufficiently large »# occurs with probability zero by the zero one
law. Hence the event that there exists some integer N such that Gner is satisfied
for all =N would not occur at all. So that 8, does not exist on = frequentrly #
for any sequence E®, E®, ... with probability 1 as to be proved. This property
of 6, will play an important part in following section.

§3. The optimal procedure @*.

Definition of sequence {A,}. In this sectionﬂ, at first we shall define 2 dimen-
sional ratio vector 4, in each step »#. For fixed 6,, we define 6,* on = in subspace
of &

R, sn 1(8,)®---@ Ry, 180 #4(6,)

where R;(é,,):(—oo, 9,,]] and R,*(é,,):[é,,,, +o0) such that following equality is
satisfied
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I, 6% B) __ Ibn, 0s*, B
C1 - Ck )

@E.1

Unique existence of 8,* for fixed 8, is given by the convexity of I(8., ¢, E;) with
respect to ¢; for all j. If 6, ,éz then 6, ,%0, *. Using this ,_, and 6._,* we
shall define %2 dimensional vector A,=(d.i, -+, 4nx) having & positive components
uniquely by the two conditions A;+---+2x=1 and

Ans dI(én—b @, El) o Ank dl(én—ly @, Ek) 0
@2 |l o) = S ST B 20 :
dp, p=0p_1* )23 dpr p=0p_1*

1

And if 8,_,er then #,_,=0,_.* so we can not find 2, uniquely. In this case, we
put 2,=21,_:, moreover we put 4,=(1,0, ---, 0), -+, 2z=(0, ---, 0, 1). In this way we
can get A, uniquely for all . Hence A, 4,, --- is uniquely defined for any sequence
E® E® ... In the following line we shall call a vector having all positive
components positive vector and denote a positive vector V as V>0.

Behavior of A, under any sequence E®, E®, .... Next we shall investigate
the behavior of the sequence A,. If the limit point 6, of 4, did not exist on our
plane 7 then 2, converges to a positive vector 2o=(lo1, -, Aox) ® satisfying Y %_,4,,=1
and the next equality analogously as we defined A, uniquely by 6,

201 dl(ﬂo, ®, El) _ _ Zok dl(aoy @, EIC)
3.3) el e B e
" do, p=0g* j2% dor p=00*

where 6,* is uniquely defined by 6, on = in subspace
R, =80 #1(00)Q)- - Q@ Ry, si8™ #x(0,)
satisfying that

3.4 1(0,, 05*, E1) e 1(0,, 6,*, Ex) )
C1 Ck
So then, under any sequence EW, E®, ... if 0y=limaeb, does not exist on =,

then limp,—wdr=24,>0 with probability 1.

Otherwise, if 6,=lim,-.0, exists on =, we shall show 1, has a positive limit
vector with probability 1, as follows. From the assumption lim,-..6,=60.€7 we get
limy.0,*=0, with probability 1 so we have limMy-efn=1iMp-ebs* and limy-.f,=0,
with probability 1. By Taylor’s expansion

. Di(6n—0,%) [ @2L(6n, 9, E)) ]
* =
(3° 5) I(om 0” ’ Ej) 21! d§0.72 ¢=§n’
dl(bn, ¢, E)) ] . [ d*L(bx, 9, Ey) ]
3.6 [— =p(On—0,%)| —————
(. 6) do, p=0p* 24 ) do,? =0y,

4) If f,—¢n then we can define 2, uniquely by (3.2), where 6,—* in (3.2) is defined
uniquely by én_l from (3.1). Hence we can consider 1, as a function of €n—: 2n=2n(9n_1).
5) Where 2, is uniquely given as a function of the limit point 8,: 2,=2¢(0,)-
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where p,( ) is a projection of the vector in ( ) to j-th coordinate, and &, 6, exists
on the intervals

0<0i(6n—0:)<Di(Bn—0:%),  0<pjBa—0.)<Ds(0n—0.5),

respectively, for any fixed 5. Then 4, and 6 converge to 6, with probability 1.
Therefore

2 A ) 27/ A
(3' 7) 11m [il(eny 2 E]) ] — llm[ d I(any ®, Ej) :]
14 ¢=

n—00 d§012 d§012 >0.

2

=0n

=0y n—oco

So by the definition of A,.: (3.2)

[__.*nm ]=[L][ I, ¢, Ey) ] /[ dl(b, ¢, E) ]
2n+1] 122} dSD] o=0,* dgoi p=0p*
=[ i ]2 P Bn—0.%)? [ d*L(8., ¢, E)) ]2 / [ d*1(, ¢, E) ]2
Hy pz(én~6n*)2 dﬂD;z ngzz

And by the definition of 8,* (3.1)

3.8

p=0p '/’=3n

I(én; 0n*; E’L) . I(ény 0n*; E])
c, - c, ’

Then we have

@9 2O &[—'——dq(é"’ o L) | / | s Ej)]
pz(én_an*)z C, dgp.,;z p=byp, d¢]2 o=y '

Therefore from (3. 8)
[lnm ]2=[ﬂ]2 &[ & 1(bn, ¢, Ey) ] /[ &2 L(6n, ¢, Ej) ]
A1y My Cy dpi? p=bp dp,* o=0p

. [ dzI(ém ®, E]) ]2 /[ dzl(é‘m ®, EZ) ]2
dp,* ¢=0n, doi® o=0p, )
So that

. A VB[ s P ¢, [ @210, o, Ey) ©d?1(0,, ¢, )
sy am[ [0 O] SRR G
¢ mves L 2y . JZ7%8 I do,? =0y do =0y

Since the right hand limit value is positive, our sequence 4, has a positive limit
vector with probability 1, we put the vector as A, tentatively. As a conclusion we
get in any sequence E®, E®, ... there exists a positive vector 4, such that
liMpaedn=20>0 is satisfied with probability 1.

(3.10)

LemMma 4. Under any sequence EV, E®, ..., A, converges to a positive vector
as n—oo with probabilily 1.

The optimal procedure ¢*. Using the sequence A, (#=1) defined above, we
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consider £™ (n=1) as a sequence of random variables which take values Ej, ---, Ej
in each step #» and have probabilities as follows, for each n=1

3.12) Prob {E™=FE)}=2,,.
In the following line we call this randomized policy procedure P*.

Proprety of our procedure $*. By Lemma 4 we observed the fact that in any
sequence E®, E®, ... there exists a positive vector 2, such that 2, converges to
Ao. Using this fact we get under our procedure ©* n;/n converges to j-th com-
ponent 4,;,(>0) of the limit vector 2, by the strong law of large numbers. Hence
under our procedure ®* n;—oco as n—oo for any j=1, -+, k is satisfied so that 6,
converges to the unknown true parameter 6 as to be proved.

THEOREM 1. Under our procedure €*, 8, converges to the unknown true para-
meter 0 as n—oo with probability 1.

Next we suppose the unknown true parameter ¢ is not an element of =. Then
there exists a positive vector A4 uniquely given by 6, as we defined 2, uniquely by
6n_y and A, uniquely by 6, such that limy-«A,=2 is satisfied with probability 1.
This fact is shown as discussion of Lemma 4. Where the vector A=(4, -+, &) is
defined satisfying }%*.,2,=1 and analogousely as (3. 3)

I
where 0* is uniquely defined by ¢ on = in subspace

Ry & (0)Q- - Q Ry =" #4(0)
satisfying that analogously as (3. 4)

I(o’ 0*, El) e — 1(0) 0*y Ek)

C1 Ck

(3. 14)

Otherwise if the unknown true parameter 6 is an element of z, then under our
procedure @%*, from the result of Lemma 4, 2. converges to a positive vector with
probability 1. Hence under our procedure @* if #érx then m;/n converges to
A, (j=1, ---, k) with probability 1, and if fer then n;/n converges to a positive value
with probability 1 as to be proved.

COROLLARY 1. Under our procedure R*, if the true unknown pavameter 0 is
not an element of © then (nin, -+, ne/n) converges to our vector A(>0), defined in
(8. 13), is satisfied with probability 1, and otherwise if the true unknown parameter
0 is an element of w® then (min, ---, ni/n) converges to a positive vector is satisfied
with probability 1.

Optimal condition and optimal ratio vector. As a conclusion of Corollary 1, we
have shown under our procedure $* that if 6¢, then n;/n—4, with probability 1,
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and otherwise if fex, then n,/n converges to a positive value (j=1, ---, £) with
probability 1. In the following line we call this proposition as optimal condition
and the vector A defined in (3.13) as optimal ratio vector. The meaning of
optimality will be given in following main theorems of next section.

§4. Main theorems and the proofs.

Under the optimal condition given in the preceding section, if the true unknown
parameter 6 is not an element of x, then we get lim,..0,=60* with probability 1,
from the two equalities (2. 14), (3. 13)

@ 14y m [dl(én, ¢, Eo] o ﬂ[a’f(ém 2 E,a]
' [’[1 ngl ¢=in He dﬂ"k ¢=5n,
@13y A [ a1, ¢, El)_] A [ a1, ¢, B ]
’ H d§01 p=0% Hie d</7rc o=6% )
So we get
én’ Nn, j
lim L On £5) f B _ 1x0)

n—oo j
with probability 1, where I*(#) is the value of (3. 14)
16, 6% E) _ I, 0% E)

C1 Cr

3. 14y I*6)=

And from the definitions of Sy(éx, ,) and X7.,C®

Sl 0n) _ 1al(Gn, Oy B+ +1l(By G, Er)
20.C® 7161+ +NiCe )

“4.1)

Hence the sum of information relative to the sum of costs for the first » trials to
discriminate p:-60>p or not

Su(bn, G2
Z :,'=1C @

converges to the value I*(@) with probability 1 as to be proved. And otherwise if

the true unknown parameter 6 is an element of x, then we get limy..f,=0 with
probability 1. So we get
(B, G,

lim ( 0n Ej) —

n—oo J

0

with probability 1. Hence our

Sn(énv 575)
ZECP
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converges to zero with probability 1 as to be proved.

THEOREM 2. Under our optimal condition if the true unknown parameter 0 is
not an element of n then we get

. Su(bn, G
“.2 TICw

=I*0)
with probability 1, and otherwise if the true unknown parameter 0 is an element of
7 then we get

Su(Bny 02)
Z:l‘lc @)

converges to zero with probability 1.

By Corollary 1 we have shown that our procedure ©* has a property of optimal
condition. Therefore we have next corollary.

COROLLARY 2. Under our procedure R* we get the same result as given in
Theorem 2.

Meaning of optimality. In the following line we consider a class of proce-
dure satisfying min (n;—co as n—co, and (mi/n, -, nx/n) converges to vector
A=, -+, &') where }%_,2,/=1. In this class of procedure we shall show that
our procedure €* is asymptotically most informative one relative to the sum of
costs to discriminate ux-6<p or not. That is, under another procedure €** having
the limit ratio A’ different from our ratio 2 we can get asymptotically less in-
formation relative to the sum of costs to discriminate p-6>p or not than we get
using our procedure €*. Under the procedure @**, fixed by the limit ratio A’
different from our ratio 4, how much information to discriminate p-6>p or not
we can get asymptotically relative to the sum of costs? From the first condition
that min,(n;)—co as #n—oco we get limy..f,=0 with probability 1. If we assume
the true parameter 6 does not exist on = then for a given ratio in the second con-
dition: (ni/n, ---, nx/n) converges to ratio A’=(4/, ---, &’) as n—co (A’x1), we can
define 6** uniquely as an element of = and satisfying

21, d[(ﬁ, ©, El) 2}5, d1(0, 2 Ek)
“. 3) R R 2 i R == B 200 5 R )
2 des =0k 2 dox p=0™*

From the equality (2. 14)’ defining &, uniquely on our hyperplane = we can verify
limpoof,=6** with probability 1. Therefore

(4 4) lim Sn(én; 5%) — 21,[(0, 0**, E1)++2kll(0, 0**’ Ek)
' n—o Z:,LIC(D Zl’cl—f-'--—l—,?k’ck

is satisfied with probability 1. So we denote the limit value under the procedure
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@** as [**(#) in the following line. From the inequality 2’22 in the second con-
dition we have §**x:0* so we get the next inequality

(4' 5) '21/(0) ﬁ**) El)_l_ o +'2k,-[(0; 0**1 Ek) < 21/[(0, 0*, El) 4 +/zk,[(0, 0*, Ek).
Therefore we have
4. 6) T*¥(0)<I*0)

Otherwise if the true parameter 6 is an element of = then we have limpowf,=8
with probability 1. So that

Z?-lc @

converges to zero with probability 1 as to be proved.

THEOREM 3. Under any procedure R**, satisfying minjn;)—oco as n—oo and
(#1/n, -, nx/n) converges to A'=(A/, -+, &’) as n—oo (A'x2A), if the true unknown
parameter 0 is not an element of w© then we get

. Sn én; é,’n
. tim 20 5 —Pso)<140)
is satisfied with probability 1. And otherwise if the true wunknown parameter 0 is
an element of n then

Sa(Bns )
Z :t=1c @)

converges to zero with probability 1.

Having expected the meaning of Theorem 3 we have called the property of
our procedure R* as optimal condition or having optimal ratio vector.

§5. Original procedure € in the case k=2.

Original procedure €. We consider two exponential trials £y, E. and use the
procedure @ given in [2], [3] that is EP=F), E®=F, and for =2 we define
successively

MO On ) oy, 9.

5.1) E (”“l’e{E : which maximizes

Under this procedure € we shall show the optimal condition. Following to Lemma
3, under any sequence we have 6, converges with probability 1. By Lemma 4 2,
converges to a positive ratio vector with probability 1. And also the procedure ¢
has a property #;/n—2,, converges to zero as n—oo with probability 1 as the proof
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given in our paper [2}. Therefore »;/z converges to a positive value with pro-
bability 1. So that under the procedure © we have min(n,, #;)—co as #—oco with
probability 1. Hence under the procedure ¢ we have 4,—8# as n—oco with pro-
bability 1. If the true parameter ¢ is not an element of = then 2. converges to A
with probability 1. Then #,/n converges to 4, with probability 1. And otherwise
n;/n converges to a positive value with probability 1 (=1, 2) respectively. There-
fore we can verify the procedure @ also have the optimal condition as to be proved.
Then by Theorem 2 we get the limit equality (4.2) with probability 1. Hence
this procedure @ also has the optimal property, that is, most informative relative
to the sum of costs than any other procedure having the two conditions #;,—co as
n—o0, (m/n, ny/n) converges to A’=(4/, 4,’) as n—oco (’'x24).

Example of the case k=2. We consider two trials E;, E, depending normal
distributions with unknown means and known variances respectively. Then the
density functions of E,, E, are expressed as follows

.2) 75,0, Ep=—ri—exp [ L (jo1,2)
J

where 0=(m,, m,) is the pair of unknown means, then we get

(m;—m;*)*
20,*

(5' 3) [(07 @, E])= (j::]-’ 2)

where 0=0my, ms), o=0m*, my*). And the subspaces H;, H; and = are given by
ﬂ=(ﬂ1, ‘Uz) and p, that is

Hi=A{0: pym,+pm:>p}, Hy={0: ami+pam,<p},
(5.4)
a={0: pumi-+pms=p}.

And lim,.0,=0% is given uniquely by the equality (3.14) and 6*ex.

(ml— m].*)z _ (m‘z_m2*)2
2¢104° 2¢,05°

(%.5)

where 0=(m,, m,) is the true parameter and 6*=(m.*, m,*) is the limit point of
#,.. And the limit value of (4.2) I*(f) is given as the value of (5.5). Moreover
we put p=1/a"2, pa=—1/a/2 and p=0 then our subspaces become as following

Hi={(my, ms): m>ms},  Hy={(m1, mz): m,<my},
5.6
( ) 71'={(7ﬂ1, mz): m1=mz}-

In this case we can get the optimal ratio 2 as following by (3. 13)

6.7) hm—m) Ry —ms)

g, g2

Therefore from the two relations (5.5), (5.7) we get the optimal ratio 2 as next
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value uniformly on 6.9

5.9) z=( Voo - Naa >
A 1 o:+a/ ¢z 0y c1 o2+ cs 0

Here we additionally suppose ¢,>=0,%, then the optimal ratio 2 becomes

(& Ny
6.9 a=( N J‘afvc—z)

We can see this result in our paper [3], that is, this result of Section 5 is a
generalization of papers [2], [3] as to be proved.
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6) Generally 2 is a function of 8 on O (¢r) but, in this special example of trials
E,, E, with normal distributions of the case k=2, A does not depending on @, that is, 2
equals to a constant value uniformly on 6 (0¢r).

This is the reason why, in this case of special example, the optimal procedure ¢ does
not depending on previous observations till now but only on sample sizes till now as we
showed in the note in [3].





