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ASYMPTOTICALLY MOST INFORMATIVE PROCEDURE
IN THE CASE OF EXPONENTIAL FAMILIES

BY KAZUTOMO KAWAMURA

§ 1. Introduction.

Recently we showed the following fact in our paper [2]. We considered in [2]
two binomial trials Ely E2 having unknown means plf p2 respectively. And we have
introduced the notion of costs such that we must pay costs clf c2 to the observation
of a result given by the trials Eu E2 respectively. In each step we are admitted to
select one of the two trials Ely E2. Be continued the selections by some way we
denoted the sequence of trials till n-th step as Ea\ •••, Ew and the sequence of
costs till n-th step as C c υ , •••, C ( W ). Of course we may select at i-th step EiO

from the two trials Elf E2 depending previous i—1 data Xlf •••, Xz-i given by
Ea\ •••, Ea~Ό. A procedure <£ was given in [2] such that the sum of information
given by two dimensional likelihood ratio relative to the sum of costs till n-th step
to discriminate p{>p2 or pi<p2 is asymptotically maximized. In [2] we assumed
the unknown true two dimensional parameter (pu p2) did not exist on the boundary
P\=p2. In our another paper [3] we considered analogous model having two kinds
of trials Ely E2 which are obeyed normal distributions with unknown means mu m2

and known same variance σ2 and costs clf c2 respectively. Then analogous procedure
£ is asymptotically optimal in the same sense described above. In [3] we noted
that our procedure £ reduced to a policy which does not depending on previous n
data X1} -", Xn but only on sample sizes nλ of Elt n2 of E2 till n-th step. We have
omitted the proof of the problem in [3] because we can easily get analogous proof.

In this paper we generalize these problems to k trials Elf •••, Ejc having ex-
ponential distributions with one dimensional unknown parameter θly •••, θk respec-
tively. That is, an observation X of E3 has a probability density function of ex-
ponential type in Kullback's sense [4] with one dimensional unknown parameter
θj(j=l> ••, k) respectively. And we introduced the boundary π: μ-θ=p(θ=(θ1, •••, θk))
as a hyperplane in k dimensional euclidean space where μ=(μi, •••, μk) is any fixed
k dimensional unit vector having all non-zero components and p is any fixed non-
negative number and μ-θ is the inner product of two vectors μ and θ. Moreover
we use the notion of costs introduced by Kunisawa [6], as we used the notion in
[2], [3], then we can get some information of θ3 by paying of cost cj(j=l, •••, k)
respectively. Then we shall show analogously that under the generalized procedure
3£* given in the following Section 3 the sum of information relative to the sum of
costs payed till n-th step to discriminate μ-θ larger than p or not is asymptotically

Received June 30, 1966.

61



62 KAZUTOMO KAWAMURA

maximized. Additionally we show in this paper that under the original procedure
<£ given in [2], [3] the ratio is also asymptotically maximized in the sense of the
generalized procedure 2*. Moreover the problem given in [3] will be shown in
special example of case k—2 in Section 5. Finally note that in this paper we need
not to assume that our unknown true parameter Θ is not an element of our hyper-
plane π.

§ 2. Notations, definitions and some lemmas.

Definition of the exponential family introduced by S. Kullback. Suppose that
f(x, θ0) and f(x, θx) are generalized densities of a dominated set of probability
measures on the measurable space (36, Φ) so that

(2. 1) Vi(E)=[ f(x, θi)dx E$Φ, (ι = 0, 1).
JE

For a given fix, θ0) we seek the member of the dominated set of probability
measures that is "nearest" to or most closely resembles the probability measure v0

in the sense of smallest directed divergence

(2. 2) I(θl9 0O)= [ fix, *i) log f.(.X' θl) dx.

as a restriction of fix, ΘJ we shall require fix, θi) minimizing Iiθu θ0) subject to

Tix)fix, Θ1)dx=θ1

where θλ is any fixed constant and Y=Tix) a measurable statistic. Then the

minimum value of Iiθu θ0) is given if and only if

(2. 3) f(x, θ^e^^fix,

where

We remark that

fix, β)=fix, 6o)e«

is said to generate an exponential family of distributions, the family of exponential
type determined by fix, θ), as θ ranges over its values satisfying M(τ(0))<oo.

β= jL\ogMiτiθ)) and vo(x: T(x)

then r(0) is a strictly increasing function of θ. Using this fact if fix, 0x) and
fix, θ2) are the members of common exponential family generated by fix, θ0) then
for any fixed θ in the interval [θu Θ2\iθ1<θ2)
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M(τ(θ))= [ f(x, θ0
JR

*9^*)dx<oo

so that the exponential family is defined on connected interval or full line
R=(—oo, oo). Next we consider n independent observations xu •••, xn from true
density function fix, θ) in the exponential family generated by f(x> ΘQ). Then
logarithm of the likelihood function Πj=1/(#ι, θ) is expressed as follows.

log flAxt, θ)=logf[f(xi9 θo)+τ(θ) Σ T(xi)~n \ogM{τ{θ))
l l

The maximum value of Π"=1f(xi, θ) is given if and only if θ=θn as follows

~logf\f(xiyθ)=0,

% J Σ T{xi)-n^ logM(r(0))|=O

where dτ/dθyO is satisfied.

(2. 4) θn= j^ log M{τ{θ))= Σ ^ M .

In the following line we suppose that the true parameter θ is finite, then by the
strong law of large numbers θn-*θ as n-*oo is satisfied with probability 1.

Definition of parameter space Θ. Our k exponential families with one dimen-
sional parameter Θj(j—1, •••, k) are defined on one dimensional open intervals Θ3 of
Θj respectively. Then our unknown parameter θ=(Θu •••, θk) is an element of k
dimensional parameter space

which is a product space of k open intervals Θlf ••-, Θk. Next we divide the space
Θ by our hyperplane μ-θ=p as follows. Of course we assume the hyperplane
acrosses our parameter space θ.

#!={#: μ θ>ρ, ΘGΘ}, H2={θ:

π={θ: μ θ=ρ,θeΘ}.

Then Θ=H1-\-H2-\-π is satisfied. Next let ECί:> be i-th trial which is one of k ele-
ments Elf '•-, Ejc and define Xt to be i-th random variable which is given by trial
gen randόmizedly.

Calculation of likelihood function of θ. Given the first n trials in some way,
we define the number of E3 in Ea\ •••, E^ as n3. In the following line we
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suppose fij^l (y=l, •••, k) then all n3 observations X% from the trial Ej in the first
n trials ECΌ, •••, £ ( W ) is considered as ^ independent observations from the trial
Ej. Therefore the likelihood function of the parameter θ3 is expressed by

Π /(*,, θ, Ej)
{ί: E(.Ό=Ej]

where {i: ECΌ=E3] is a set of n3 elements of i in 1, •••, n satisfying Ea:>=Ej for
any fixed j(j=h —> k). Then for given Ea\ •••, E™ the likelihood function of θ
is expressed by the product as following

(2.5) Π f(xif θ, £«>) = Π f(xt, θ, E1y- Π f(xu θy EM)
*=1 {i: ^(0=^} {i: E(ϊ)=Ek)

Of course, for any fixed EJf the probability density function f(x, θ, Ej) of the trial
Ej for every θ=(βu ~-,θk) in Θ is considered as a function of θ3 only and in-
dependent of θi(i*?j).

Definition of θn and unique existence of the value. We denote as θn the
maximum likelihood estimate of θ. The j-th component of θn will maximize the
y-th likelihood function

Π f(xif θ, Ej)
{i: ECΌ=EJ}

with respect to θ3. We denote the value of θ3 which maximizes the 7-th likelihood
function as θnj. Then θnj given by the n3 trials of E3 is uniquely expressed as
followings from the discussion of exponential family

(2.6) §n]=Σ
n3

where Tj(x) is a statistic of trial E3 satisfying

f T3{x)f(x, θ, Ej)dx=θ3 (j=l, - , *)
JR

as in (2.4). Hence our θn is expressed as following, if nf^X (j=l, •••, k) is
satisfied,

(2.7) δn={δnl,-JnM}.

And the uniqueness of θn is reduced to that of θnj. So that we get the following
lemma as to be proved.

L E M M A 1. Under any sequence Ea\ •••, £ ( W ) if n3^l ( ; = 1 , •••, k) is satisfied
then there exists θn uniquely on our parameter space Θ.

Definition of θn. Next we shall denote by θn the maximum likelihood estimate
of θ on the subspace aφn) over the first n trials where a{θ) is defined as follows:

a(θ)=θ-Hi if θeHz ( ί=l , 2),
(2.8)

= θ if 0€τr.
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Definition of sum of information. Now we define the sum of information to
discriminate μ-θyp or not using our θn and θn as follows

(2.9)
Π , 0, E(ί))

9, £«>) '

Definition of mean discrimination. As a measure of discrimination between
two probability density functions f(x, θ, Ej\ f(x, φ, Ej) we can use by Kullback [4]

θ, φ, Ej)=[ flogψd>EUΛ f { p B, θy Ej)dx(2.10)

where θ=(θu •••, θk\ <p=(φlt •••, ψk)^ and / = 1 , - i * . 1 )

Existence and uniqueness of dn. To find #w, we must minimize Sw(^w, φ) with
respect to ^ in a(θn) from the definition of θn. Since /(Λ?, ^, E3) belongs to the
exponential family defined in E3 we have

, Π{ :̂ E(.Ό=Ej}f(Xj, On, Ej) , a „ .

E)
so that

Then we must find θn on aφn) which minimizes Σx%ι^jlΦny <p, E3 ) with respect to
ψ. First we shall show the fact that θn£π for all n. But this fact will be given
evidently from the property of θn minimizing

Σ njlφn, <p, Ej)

on aφn) with respect to ψ, and the convexity of lφn, ψ, Ej) with respect to
ψj (j=l, ~ , k) where <p=(<pi, m~> ψk). Therefore we can search θn on π as to
minimizing Snφn, φ) with respect to φ. Put

dSnΦn, <P)=0,

then

(2.ID έ 1^Ψ)_ dsjhφi. #=o*>

and we have from <pGπ: μ-φ=p

(2.12) ^ φ = 0 . 3 )

1) In this paper we assumed as a restriction of density function of Ej(j=l, •••, k)

t h a t continuity of d2l(θ, φ, Ej)/dφj2 wi th respect to ψ3 for any fixed θ3 in the interval

θj(j=l, ••-, k) respectively.

2) dSnφn, φ)/dψ'dφ is the innerproduct of two vectors dSn( n, φ)/dφ=(dSn( w, φ)/dφl9

-", dSn(-'n, ψ)jdφk) and dφ=(dφ1, •••, ί/̂ ?*).

3) μ ίfy is also the innerproduct of the vectors μ=(μv •••, //A;) and dφ=(dφ1, •••, ίfy>*)
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Therefore we get from (2.11), (2.12)

(2.13) — n . n' φ = Constant μ.
dφ

Or equivalently

(2 14) n i d I ^ n > φ> El>} =^,= nk d I ^ n > φ> Ek)

μi dψi μic dψh

Hence from the relation (2.14) and the convexity of lφnf <p, E3) with respect to
ψj, that is, dlφny <p, E3)/dφ3 is strictly increasing function of ^ (7=1, ••-, k), we can
find Sn on π uniquely for any fixed n. Therefore if θn is uniquely given for any
fixed n then from (2.14) and μ-φ=p we can find θn uniquely on π as to be proved.

L E M M A 2. Under any sequence Ea\ •••, Ecn\ if n3^l ( 7 = 1 , •••, k) is satisfied

then there exists θn uniquely on our hyperplane π.

Behavior of θn under any sequence £ α ) , £ ( 2 ) , •••. Now we shall show the
probability equals to zero that θn does not converge for any sequence ECO, EC2:>

} •••.
The event that θn does not converge is included in the event θnj does not converge
for some j . But this event would not occur from the strong law of large numbers.
Hence θn converges with probability 1 for any sequence Zsα), E™,

L E M M A 3. Under any sequence ECΌ, £ C 2 ) , •••, our θn converges with probability 1.

In the following line we put the limit point as θ0 tentatively. Next under
any sequence JE

1(1),is1(2), •••, we shall prove the probability equals to zero that there
exists some integer N such that θn€π is satisfied for all n^N. For any sequence
ECΌ, EC2:>, •••, there exists some integer j in 1, •••, k satisfying n3—»oo as n-+vo. And
evidently the event that θn£π for all n^N reduced to the event ΘN=ΘN+1 = ~ , that
is, the event that θNj=θN+l3 = '- for all 7=1, •••, k. But for some j satisfying
nj^oo as n^oo the event that the maximum likelihood estimate θnj gives an
identical value for sufficiently large n occurs with probability zero by the zero one
law. Hence the event that there exists some integer N such that θnςπ is satisfied
for all n^N would not occur at all. So that θn does not exist on π frequently n
for any sequence ECΌ, EC2\ ••• with probability 1 as to be proved. This property
of θn will play an important part in following section.

§ 3. The optimal procedure 2*.

Definition of sequence {2n}. In this section, at first we shall define k dimen-
sional ratio vector λn in each step n. For fixed θny we define θn* on π in subspace
of θ

Rx

 S1^n κφn)®--®RkSlgn μkΦn)

where Rj-φn)=(—oo, θnj] and Rj+φn) = [dnj, +°°) such that following equality is
satisfied
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K6nf θn*, E1) I0n, θn*, Ek)

Unique existence of θn* for fixed θn is given by the convexity of I(θn, φf Ej) with
respect to φ3 for all j. If Sn-i$π then $w_i^0w_i*. Using this θn-i and #n-i* we
shall define k dimensional vector Xn=(^nu *> ^n*) having & positive components
uniquely by the two conditions λnl-\ \-λnk=\ and

(3 2)
λn

l Γ
i L

And if ^_i€τr then # n - i=0«-i* so we can not find ΛTO uniquely. In this case, we
put λn=λn-u moreover we put i i = (l, 0, •••, 0), •••, ^ = ( 0 , •••, 0,1). In this way we
can get λn uniquely for all n. Hence λu λ2, ••• is uniquely defined for any sequence
Ea\ EC2\ •••. In the following line we shall call a vector having all positive
components positive vector and denote a positive vector V as F > 0 .

Behavior of λn under any sequence ECΌ, EC2\ •••. Next we shall investigate
the behavior of the sequence λn> If the limit point θ0 of θn did not exist on our
plane π then λn converges to a positive vector Jlo=(^oi, •••, Λo*;)5) satisfying Σ?=i^o^=l
and the next equality analogously as we defined λn uniquely by θn

(3.3) r
2 ΓΛ0& I , φy Ek)

where #0* is uniquely defined by θ0 on π in subspace

E> sign μι(β }(Q)

satisfying that

(3.4) *?.,»»*, £ i ) = . .

So then, under any sequence Ea\ E™, •••, if 0o=limn->Oo^w does not exist on π,

then limw_*oo>ίw=>ίo>0 with probability 1.

Otherwise, if 0o=limn-̂ oo<9w exists on π, we shall show >lw has a positive limit
vector with probability 1, as follows. From the assumption limw-oo$n=#o€7r we get
limrj_ocA*=0o with probability 1 so we have lim^Oo^n=limn-+oo^»* and limw-*oo^w=0o
with probability 1. By Taylor's expansion

2! L dφf \Ψ=on

Γ ΛTίδ ,
(3.6)

4) If On-i$π then we can define Xn uniquely by (3.2), where θn-i* in (3.2) is defined
uniquely by θn-ι from (3.1). Hence we can consider χn as a function of ϋn-ι: λn=λn0n-i)

5) Where jίo is uniquely given as a function of the limit point θ0: X0=XQ(Θ0).
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where pj( ) is a projection of the vector in ( ) to i-th coordinate, and θn, Sn exists
on the intervals

0 <Pj0n-θn) <Pj0n ~ θn*), 0 <p0n ~ §n) <Pj{L ~ 0»*),

respectively, for any fixed j . Then θn and θn converge to θ0 with probability 1.
Therefore

(3.7) ii

(3.8)

So by the definition of λn+i (3. 2)

u τ _ r ^ TΓ diφn, Ψ, E,) Ύ /Γ diφn, Ψ, E
n+u\ L ^ J L dφ, lφ=βn*/ L #i

^ " ~ g " * ) 2 Γ ̂ 2/lA, y, gy) Ί 2 /Γ d*I0n, φ, Ej) T

t(δn-θn*y L rfp,* i = v L ^ i a X-J. '
And by the definition of θn* (3.1)

/(^, 0n*, Eι) I0n, θn*, Ej)

Then we have

n, φ, E>) Ί /Γ J2/(gw, p, Ej) 1

Therefore from (3. 8)

Ύ Γ d^n, φ, E,) I /Γ d2I0n, φ,Γ 4 + . . T Γ in T c, Γ
L 4+u J L ft J Cj L dφ/

/r <p^., y> g» γ
? y L dΨ? χ^n

So that

Since the right hand limit value is positive, our sequence λn has a positive limit
vector with probability 1, we put the vector as 20 tentatively. As a conclusion we
get in any sequence £ l ( 1 ), EC2\ ••• there exists a positive vector λ0 such that
limn-,cx,^w=^o>O is satisfied with probability 1.

L E M M A 4. Under any sequence Ea\ EC2\ •••, λn converges to a positive vector

as n-^oo with probability 1.

The optimal procedure 2*. Using the sequence λn («^1) defined above, we
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consider £ ( n ) in^X) as a sequence of random variables which take values Elf •••, Ek

in each step n and have probabilities as follows, for each n^X

(3.12) Prob {E™=Ej}=λnj.

In the following line we call this randomized policy procedure £*.

Proprety of our procedure 2*. By Lemma 4 we observed the fact that in any
sequence Ea\ E(2\ ••• there exists a positive vector λ0 such that λn converges to
λo. Using this fact we get under our procedure <£* nj/n converges to y-th com-
ponent Λo/>0) of the limit vector λo by the strong law of large numbers. Hence
under our procedure <£* %—>oo as n-*oo for any / = 1 , •••, k is satisfied so that θn

converges to the unknown true parameter θ as to be proved.

THEOREM 1. Under our procedure <£*, θn converges to the unknown true para-
meter θ as n-*oo with probability 1.

Next we suppose the unknown true parameter θ is not an element of π. Then
there exists a positive vector λ uniquely given by 0, as we defined λn uniquely by
θn-i and λo uniquely by θ0, such that limn->ooλn—λ is satisfied with probability 1.
This fact is shown as discussion of Lemma 4. Where the vector λ={λu •••, λk) is
defined satisfying Σ?=Λ=1 and analogousely as (3. 3)

(3 13) λl VdmφfE1)Ί = λk ΓdI(θ,φ,Ek)
μι L dφx Jψ=θ* μk L dφk

where θ* is uniquely defined by θ on π in subspace

Rλ sign μi(^)(g).. .(g)|?fc sign μk^

satisfying that analogously as (3. 4)

to ΛΛΛ W> θ*> E^ W θ* E k )

CCi Ck

Otherwise if the unknown true parameter θ is an element of π, then under our
procedure <£*, from the result of Lemma 4, λn converges to a positive vector with
probability 1. Hence under our procedure 2* if θ$π then nj/n converges to
χj (7=1, ..., k) with probability 1, and if θsπ then njln converges to a positive value
with probability 1 as to be proved.

COROLLARY 1. Under our procedure 2*, if the true unknown parameter β is
not an element of π then (njn, •••, nk\ή) converges to our vector λ(>0), defined in
(3.13), is satisfied with probability 1, and otherwise if the true unknown parameter
θ is an element of π then (nx\n, •••, nk/n) converges to a positive vector is satisfied
with probability 1.

Optimal condition and optimal ratio vector. As a conclusion of Corollary 1, we
have shown under our procedure £ * that if θ$π, then njln-*λj with probability 1,
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and otherwise if θzπ, then nj/n converges to a positive value ( i = l , •••, k) with
probability 1. In the following line we call this proposition as optimal condition
and the vector λ denned in (3.13) as optimal ratio vector. The meaning of
optimality will be given in following main theorems of next section.

§ 4. Main theorems and the proofs.

Under the optimal condition given in the preceding section, if the true unknown
parameter θ is not an element of π, then we get limw-»oo$»=0* with probability 1,
from the two equalities (2.14), (3.13)

(2 14V
μι L dφx ]ψ=θn μu L dψk

(3.13)' -~-\dm2'El)-] = = ^ L [ -
μi L aψi Jψ=θ* μ/c L

So we get

7i->oo Cj

with probability 1, where I*(θ) is the value of (3.14)

(3.14/

And from the definitions of Sn(θn, θn) and Σ?=iCα )

, , s Sn0n,θn) nj(θn, 6
(4.1) τ i . ^ ( < ) •=

Hence the sum of information relative to the sum of costs for the first n trials to
discriminate μ θ>p or not

Sn0n, ffn)

converges to the value I*(θ) with probability 1 as to be proved. And otherwise if
the true unknown parameter θ is an element of TΓ, then we get \\mn^ooθn=^Θ with
probability 1. So we get

lim = 0

with probability 1. Hence our
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converges to zero with probability 1 as to be proved.

THEOREM 2. Under our optimal condition if the true unknown parameter Θ is
not an element of π then we get

( 4 2 ) lim τ n r w •

with probability 1, and otherwise if the true unknown parameter θ is an element of
π then we get

Sn0n, θn)

converges to zero with probability 1.

By Corollary 1 we have shown that our procedure 2 * has a property of optimal
condition. Therefore we have next corollary.

COROLLARY 2. Under our procedure 2 * we get the same result as given in
Theorem 2.

Meaning of optimality. In the following line we consider a class of proce-
dure satisfying min/%)~*oo as n—»oo, and (fii/n, •••, n%\n) converges to vector
λ'=W9 •••> h') where Σjί«iV=l. I*1 this class of procedure we shall show that
our procedure S£* is asymptotically most informative one relative to the sum of
costs to discriminate μ θ<Cp or not. That is, under another procedure <£** having
the limit ratio λ' different from our ratio λ we can get asymptotically less in-
formation relative to the sum of costs to discriminate μ-θyp or not than we get
using our procedure 2*. Under the procedure £**, fixed by the limit ratio λ'
different from our ratio λ, how much information to discriminate μ-θyp or not
we can get asymptotically relative to the sum of costs? From the first condition
that min/w/)—*oo as n-^oo we get limw_»oo<?n=^ with probability 1. If we assume
the true parameter θ does not exist on π then for a given ratio in the second con-
dition: (tii/n, ~-,njclή) converges to ratio λ'=Wy •••, λk') as n-*co {λf^X), we can

define #** uniquely as an element of π and satisfying

(4 3) VΓdiφ,φ,E1)-\ = __ λk'ΓdI(θ,φ,Ek)Ί
μi L dψi jΨ=:θ** μuL dφk JΨ=Θ**'

From the equality (2.14/ defining θn uniquely on our hyperplane π we can verify
limw-oo^n=^** with probability 1. Therefore

(4. 4) lim τ-iW ^ m =

is satisfied with probability 1. So we denote the limit value under the procedure
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£** as /**(#) in the following line. From the inequality λ'^λ in the second con-
dition we have θ**^θ* so we get the next inequality

(4. 5) λx\θ, θ**, E1)+-+λk'I(θ, θ**, Ek)<Λi'W, θ*, Eύ+ -'+λu'iφ, θ*, Ek).

Therefore we have

(4.6) /**(#)</*(0)

Otherwise if the true parameter θ is an element of π then we have limΛ->oo0TO=0
with probability 1. So that

Sn(βnj θn)

converges to zero with probability 1 as to be proved.

THEOREM 3. Under any procedure £**, satisfying min/%)—>oo as n-+oo and
(ni/n, •••, fik/ή) converges to λ'=W, •••, 4 0 as n—>oo (χ'^χ)y if the true unknown
parameter θ is not an element of π then we get

(4.7) lim Sfn

n'βi =I**(Θ)<I*(Θ)

is satisfied with probability 1. And otherwise if the true unknown parameter 0 is
an element of π then

Sn0n, Θn)

converges to zero with probability 1.

Having expected the meaning of Theorem 3 we have called the property of
our procedure £ * as optimal condition or having optimal ratio vector.

§ 5 . Original procedure <£ in the case A:=2.

Original procedure <£. We consider two exponential trials Eu E2 and use the
procedure 2 given in [2], [3] that is ECO=EUE™=E2 and for n^2 we define
successively

(5.1) E^n+1^\E: which maximizes / (^> e* Ei)

 ( ί = 1 > 2 ) 1 .

I c% J
Under this procedure 2 we shall show the optimal condition. Following to Lemma
3, under any sequence we have θn converges with probability 1. By Lemma 4 λn

converges to a positive ratio vector with probability 1. And also the procedure 2
has a property njln—λnj converges to zero as n-+oo with probability 1 as the proof
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given in our paper [2]. Therefore n3 \n converges to a positive value with pro-
bability 1. So that under the procedure <£ we have min(»i, n2)-^oo as n—>oo with
probability 1. Hence under the procedure 2 we have όn-+θ as »-κ» with pro-
bability 1. If the true parameter θ is not an element of π then λn converges to A
with probability 1. Then n3\n converges to λ3 with probability 1. And otherwise
nj/n converges to a positive value with probability 1 (.7=1, 2) respectively. There-
fore we can verify the procedure *£ also have the optimal condition as to be proved.
Then by Theorem 2 we get the limit equality (4. 2) with probability 1. Hence
this procedure <£ also has the optimal property, that is, most informative relative
to the sum of costs than any other procedure having the two conditions n3-*oo as
n-*oo, (njn, n2/n) converges to λ'=W, λ2') as n->co (A'*? A).

Example of the case k=2. We consider two trials Eu E2 depending normal
distributions with unknown means and known variances respectively. Then the
density functions of Eu E2 are expressed as follows

(5.2) fix, θfE3)=-74=—exp (- K^fλ (i=l, 2)

where θ=(mu m2) is the pair of unknown means, then we get

(5.3) W, φ, Ej)= - ( m ^ * ) 2 ( i = l f 2)

where θ=(mu m2), φ=(m1*, m2*). And the subspaces Hu H2 and π are given by
μ={μu μ2) and pf that is

Hx = {θ\ μιmi+μ2tn2>p}, H2={θ: μΰn1+μ2m2<p},
(5.4)

π={θ\

And lim,»-oo#n=0* is given uniquely by the equality (3.14) and θ*zπ.

(wi.—/yyi^Λ2 (win — ψyi.J^λ2

(5.5) -

where θ=(πιum2) is the true parameter and ^ = ( w i * , w2*) is the limit point of
Bn. And the limit value of (4. 2) I*(θ) is given as the value of (5. 5). Moreover
we put μ1=l/\Λ2f μ2=—l/\/~2 and p=0 then our subspaces become as following

Hi={{mlfm2): mi>fn2}, H2={i.mly m2):
(5.6)

π={(mhm2): m1=m2}.

In this case we can get the optimal ratio λ as following by (3.13)

Therefore from the two relations (5. 5), (5. 7) we get the optimal ratio λ as next
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value uniformly on Θ.6)

(5.8) λ=
σ2

^i ^2 + V £2 0"i \ /

Here we additionally suppose σ1

2=σ2

2, then the optimal ratio X becomes

(5.9)
\vc1 Ci V Cι + V (

We can see this result in our paper [3], that is, this result of Section 5 is a

generalization of papers [2], [3] as to be proved.
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6) Generally X is a function of θ on Θ (θ$π) but, in this special example of trials
Elt E2 with normal distributions of the case k=2, X does not depending on 0, that is, X
equals to a constant value uniformly on θ (θ$π).

This is the reason why, in this case of special example, the optimal procedure ζ£ does
not depending on previous observations till now but only on sample sizes till now as we
showed in the note in [3].




