KÕDAI MATH. SEM. REP. 19 (1967), 28–30

ON WIENER'S FORMULA FOR STOCHASTIC PROCESSES

By Hirohisa Hatori and Toshio Mori

1. Let $\mathcal{B}(t)$ $(-\infty < t < \infty)$ be a weakly stationary stochastic process with the spectral representation:

(1)
$$\boldsymbol{\mathcal{E}}(t) = \int_{-\infty}^{\infty} e^{it\lambda} dZ(\lambda),$$

and let

(2)
$$X(t) = f(t) + \boldsymbol{\mathcal{E}}(t),$$

where f(t) is a numerical valued function. Consider the stochastic integral

$$\int_{-\infty}^{\infty} X(t) a K(at) dt$$

with $K(t)\in L_1(-\infty,\infty)$. Kawata [1] has shown that under some conditions on K(t) and f(t) we have the following Wiener type formula:

(3)
$$\lim_{a\to 0} \int_{-\infty}^{\infty} X(t) e^{-i\varepsilon t} a K(at) dt = [M_{\varepsilon} + Z(\xi+0) - Z(\xi-0)] \int_{-\infty}^{\infty} K(t) dt,$$

where ξ is a real constant and

$$M_{\xi} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(t) e^{-i\xi t} dt.$$

The purpose of this paper is to prove the similar formula for the more general class of stochastic processes.

2. We state first the following

- LEMMA. Let $\{f_{\lambda}(\cdot)\}_{\lambda \in \Lambda}$ be a class of functions defined on $(0, \infty)$. If (i) K(x) is absolutely continuous in every finite interval,
- (ii) $|x^2K(x)| < H$, $K(x) \in L_1(0, \infty)$, H being a constant,
- (II) $|x^{T}\Lambda(x)| < \Pi$, $\Lambda(x) \in L_1(0, \infty)$, Π being a constant,
- (iii) $\frac{1}{T} \int_0^T |f_{\lambda}(t)| dt \leq G$, G being a constant independent of λ and T, and
- (iv) $\lim_{T\to\infty} \frac{1}{T} \int_0^T f_{\lambda}(t) dt = M_{\lambda}$, uniformly in $\lambda \in \Lambda$,

then

Received May 7, 1966.

$$\lim_{a\to 0}\int_0^\infty f_\lambda(t)aK(at)dt = M_\lambda \int_0^\infty K(t)dt$$

uniformly in $\lambda \in \Lambda$.

The proof of this Lemma will not be given here, since it is quite similar to the proof of well-known Wiener's formula (see [2], pp. 30–32).

- Let X(t) $(t \ge 0)$ be a stochastic process which satisfies that
- (v) $E\{|X(t)|^2\} < \infty$,
- (vi) the stochastic integral

$$\int_{b}^{a} X(t) dt$$

exists for every finite interval [a, b],

(vii) $\frac{1}{T} \int_0^T \sqrt{E\{|X(t)|^2\}} dt \leq G$, G being a constant independent of T, and (viii) there exists a random variable X_0 with $E\{|X_0|^2\} < \infty$ such that

$$\lim_{T\to\infty} E\left\{\left|\frac{1}{T}\int_0^T X(t)dt - X_0\right|^2\right\} = 0.$$

We shall now prove the following

THEOREM. Let X(t) $(t \ge 0)$ satisfy the conditions (v), (vi), (vii) and (viii). If K(t) satisfies the conditions (i) and (ii) of Lemma, then

(4)
$$\lim_{a\to 0} \int_0^\infty X(t) a K(at) dt = X_0 \int_0^\infty K(t) dt.$$

Proof. Denote by \mathfrak{H} the Hilbert space consisting of all random variables Y with $E\{|Y|^2\} < \infty$. If Ze \mathfrak{H} , then we have by (viii) that

(5)
$$\lim_{T\to\infty} E\left\{\frac{1}{T}\int_0^T X(t)dt \cdot \overline{Z}\right\} = \lim_{T\to\infty} \frac{1}{T}\int_0^T E\{X(t)\cdot \overline{Z}\}dt = E\{X_0\cdot \overline{Z}\}.$$

Therefore by Lemma we have from (5) and (vii) that for every $Z \in \mathfrak{H}$

$$\lim_{a \to 0} E\left\{\int_{0}^{\infty} X(t)aK(at)dt \cdot \overline{Z}\right\}$$

$$=\lim_{a \to 0}\int_{0}^{\infty} E\{X(t) \cdot \overline{Z}\}aK(at)dt$$

$$=E\{X_{0} \cdot \overline{Z}\}\int_{0}^{\infty} K(t)dt,$$

or

(7)
$$w-\lim_{a\to 0}\int_0^\infty X(t)aK(at)dt = X_0 \cdot \int_0^\infty K(t)dt.$$

In order to prove (4), or equivalently to prove

(8)
$$s - \lim_{a \to 0} \int_0^\infty X(t) a K(at) dt = X_0 \cdot \int_0^\infty K(t) dt,$$

it is sufficient to show in addition to (7) that

$$(9) \qquad E\left\{\int_{0}^{\infty} X(t)aK(at)dt \cdot \int_{0}^{\infty} \overline{X(s)}b\overline{K(bs)}ds\right\} \to E\left\{X_{0} \cdot \int_{0}^{\infty} K(t)dt \cdot \int_{0}^{\infty} \overline{X(s)}b \cdot \overline{K(bs)}ds\right\}$$

as $a \to 0$ uniformly in $b \in U$ where U is a neighborhood of b=0. Since $\int_0^{\infty} X(s) b K(bs) ds$ converges weakly, $E\{|\int_0^{\infty} X(s) b K(bs) ds|^2\}$ is bounded for $b \in U$. Therefore it follows from (viii) that

(10)
$$E\left\{\frac{1}{T}\int_{0}^{T}X(t)dt\cdot\int_{0}^{\infty}\overline{X(s)}b\overline{K(bs)}ds\right\} \to E\left\{X_{0}\int_{0}^{\infty}\overline{X(s)}b\overline{K(bs)}ds\right\}$$

as $T \rightarrow \infty$ uniformly in $b \in U$, that is,

(11)
$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \left(\int_0^\infty E\{X(t)\overline{X(s)}\} b\overline{K(bs)} ds \right) dt = \int_0^\infty E\{X_0 \cdot \overline{X(s)}\} b\overline{K(bs)} ds$$

uniformly in $b \in U$. And we have for $b \in U$ that

(12)
$$\frac{1}{T} \int_0^T \left| \int_0^\infty E\{X(t)\overline{X(s)}\} b\overline{K(bs)} ds \right| dt \leq G \cdot \sup_{b \in U} \sqrt{E\left\{ \left| \int_0^\infty X(s) bK(bs) ds \right|^2 \right\}}.$$

Hence by Lemma we have that

(13)
$$\lim_{a\to 0} \int_0^\infty \left(\int_0^\infty E\{X(t)\overline{X(s)}\}b\overline{K(bs)}ds \right) aK(at)dt = \int_0^\infty E\{X_0 \cdot \overline{X(s)}\}b\overline{K(bs)}ds \cdot \int_0^\infty K(t)dt$$

uniformly in $b \in U$. But (13) is equivalent to (9), and thus theorem was proved.

References

- KAWATA, T., Some convergence theorems for stationary stochastic processes. Ann. Math. Stat. 30 (1959), 1192-1214.
- [2] BOCHNER, S., Vorlesungen über Fouriersche Integrale. Leibzig (1932).

Science University of Tokyo, Chūbu Institute of Technology.