# ON THE AUTOMORPHISM RING OF DIVISION ALGEBRAS 

By Shigemoto Asano

## 1. Introduction.

Let $A$ be an (associative) ring with an identity 1 and $S$ a subring of $A$ containing 1. Suppose $S$ is Galois in $A$ in the sense that $I(H(S))=S$, where $H(S)$ is the group of all automorphisms of $A$ leaving $S$ elementwise invariant (i.e. the Galois group of $A$ over $S$ and $I(H(S))$ is the set of all elements of $A$ invariant under every automorphism of $H(S) .{ }^{1)}$ The Galois group $\mathbb{G}=H(S)$ and the set $S_{R}$ of right multiplications by elements of $S$ generate a subring $\mathfrak{R}=\mathfrak{G} S_{R}=S_{R} \mathfrak{G}$ of the ring $\mathfrak{F}$ of $S$-endomorphisms of $A$ as an $S$-left module. The ring $\mathfrak{R}$ is called the automorphism ring of $A$ over $S$.

In a series of papers [7-9], Kasch investigated the properties of $\Re$ and of $A$ as an $\Re$-module, assuming mostly that $A$ is a simple ring satisfying minimum condition for right ideals (a division ring, in particular) and that $S$ is a Galois subring of $A$ such that $[A: S]<\infty .{ }^{2)}$ The main problem he discussed was: Under what conditions $\Re$ and $A$ are isomorphic as $\Re$-modules? The problem is related to the normal basis theorem and to this he gave a quite satisfactory answer ([7]). ${ }^{3)}$ Also, he started the study of the structure of $\mathfrak{R}$ and of $A$ as an $\mathfrak{R}$-module. ${ }^{4)}$ In this direction, he obtained the following remarkable result ([9]).

Let $A=Z_{m}$ be the total matrix algebra over a commutative field $Z$ of degree $m>1$ and $(\$$ the group of all inner automorphisms of $A$ (i.e. the Galois group of $A$ over $Z$ ). Suppose that $Z$ is not the prime field of characteristic 2 and that the degree $m$ is not divisible by the characteristic of $Z$. If $\mathfrak{R}=\left(\mathscr{S} Z_{R}=\mathscr{S} Z\right.$ is the automorphism ring of $A$ over $Z$ then:
(a) $A$ is completely reducible as $\Re$-module and has a (unique) direct sum decomposition $A=Z \oplus B$, where $B=[A, A]$ is the submodule of $A$ generated by (additive) commutators $\left[a_{1}, a_{2}\right]=a_{1} a_{2}-a_{2} a_{1}, a_{1}, a_{2} \in A$.
(b) $\Re$ induces all linear transformations of $B$ over $Z$.
(c) $\Re$ is semi-simple and moreover is expressible as the direct sum of $Z$ and $Z_{m^{2}-1}$, the total matrix algebra of degree $m^{2}-1$ over $Z$; hence $[\Re: Z]=\left(m^{2}-1\right)^{2}+1$.

Recerved April 2, 1966.

1) Cf. Jacobson [5], Chapters 6-7.
2) In the case of simple $A$, we have to add some other conditions to the definition of Galois subrings. (The definition that we mentioned above is, in this case, too general.)
3) A supplementary result was obtained by Nagahara-Onodera-Tomınaga [10].
4) Concerning this problem, only preliminary results have been obtained.

In the present note we shall show that the same statements remain valid in case when $A$ is an arbitrary finite dimensional central simple algebra over $Z$.

## 2. The case of central division algebras.

Let $D$ be a division algebra over its center $Z$ such that $[D: Z]=n=s^{2}<\infty$. Then $D$ is Galois over $Z$ and the Galois group $\mathfrak{G}$ is the totality of all inner automorphisms of $D$. As in the introduction we set $\mathfrak{R}=\left(\mathbb{S} Z_{R}=\mathfrak{S} Z\right.$ (the automorphism ring of $D$ over $Z$ ) and $B=[D, D]$ (the submodule of $D$ generated by all $\left[a_{1}, a_{2}\right]$ $\left.=a_{1} a_{2}-a_{2} a_{1}, a_{1}, a_{2} \in D\right)$. Clearly $D$ is an $\mathfrak{R}$-(right) module. As usual, we shall denote the inner automorphism by a non-zero element $a$ of $D$ as $I_{a}: x I_{a}=a x a^{-1}, x \in D$. If $U$ is a submodule of $D$ then $U$ is an $\Re$-submodule if and only if $U$ is an invariant $Z$-subspace of $D$, i.e. $U Z=U$ and $U I_{a}=U$ for all non-zero $a$ of $D$. The discussion of the case $D=Z$ is trivial; so we shall assume $D$ is non-commutative.

Recently we have proved that the only invariant subspaces of $D$ are $0, Z, B$ $=[D, D]$ and $D$ ([3], Theorem 4). Moreover, $[B: Z]=n-1$ and $Z \subseteq B$ if and only if the characteristic of the base field $Z$ is a factor of $n$. Thus we have the following

Proposition 1. Let $D$ be a finite dimensional central division algebra over $Z$ and let $\mathfrak{R}$ be the automorphism ring. Then $Z$ and $B=[D, D]$ are the only nontrivial $\Re$-submodules of $D$. Moreover, $Z \nsubseteq B$ if and only if the characteristic of $Z$ does not divide [D: $Z$ ]. And, when that is so, $D$ is decomposed into a (unique) direct sum of irreducible $\Re$-submodules $Z$ and $B: D=Z \oplus B$.

Now we consider the irreducible $\mathfrak{R}$-module $B$; we wish to prove that the centralizer ${ }^{5)}$ of $B$ as an $\mathfrak{R}$-module is $Z$, namely, that every $\mathfrak{R}$-endomorphism of $B$ is realized by the (left) multiplication by a suitable element of $Z$. The proof will be carried out in several steps.
(1) Let $\sigma$ be an $\mathfrak{R}$-endomorphism of $B$; we may assume $\sigma \neq 0$. Since $Z_{R} \subseteq \mathfrak{\Re} \sigma$ is a linear transformation of $B$ over $Z$. By Schur's lemma $\sigma$ is moreover a $Z$ isomorphism of $B$ onto itself. Now let $x$ be an element of $B$; let $y$ be a non-zero element of $D$ such that $x y=y x$. Then we have $x \sigma-(x \sigma) I_{y}=x \sigma-\left(x I_{y}\right) \sigma=\left(x-x I_{y}\right) \sigma$ $=0,{ }^{6)}$ i.e. $(x \sigma) y=y(x \sigma)$. Hence $V_{D}(x) \subseteq V_{D}(x \sigma) .{ }^{7)}$ By symmetry $V_{D}(x) \supseteq V_{D}(x \sigma)$. Thus $V_{D}(x)=V_{D}(x \sigma)$. This implies in particular that $x \sigma$ commutes with $x$.
(2) Suppose $a$ is an element of $D$ such that $Z(a)$ is a separable maximal subfield of $D$. We recall that $D$ is uniquely decomposed into a direct sum $D=Z(a) \oplus B(a)$, as a $(Z(a), Z(a))$-module. $B(a)$ is contained in $B=[D, D]$ and is expressible as $B(a)=[a, D](=\{a x-x a ; x \in D\})$; furthermore, the minimal submodule of $D$ containing all such $B(a)$ coincides with $B$. ([3], Theorem 5.) We assert that $\sigma$, when contracted to $B(a)$, gives a $(Z(a), Z(a))$-endomorphism of $B(a)$ onto itself.
5) Cf. Jacobson [5], p. 24.
6) We write the image of $x$ under the mapping $\sigma$ as $x \sigma$, etc.
7) If $S$ is a subset of $D$, we denote the set $\{y \epsilon D$; $y s=s y$ for all $s \epsilon S\}$ by $V_{D}(S)$.

To see this suppose $a$ is as above and $x$ is in $B$. Then from the identity $\left(B_{2}\right)$ in [3] we have

$$
\xi^{-1}\left(x I_{a+\xi}-x I_{a}\right)=\left(x-x I_{a}\right)(a+\xi)^{-1}
$$

where $\xi$ is an arbitrary non-zero element of $Z .{ }^{8)}$ Similarly $\xi^{-1}\left((x \sigma) I_{a \mid \xi}-(x \sigma) I_{a}\right)$ $=\left(x \sigma-(x \sigma) I_{a}\right)(a+\xi)^{-1}$, so that

$$
\xi^{-1}\left(x I_{a+\xi}-x I_{a}\right) \sigma=\left(\left(x-x I_{a}\right) \sigma\right)(a+\xi)^{-1}
$$

Hence $\left(\left(x-x I_{a}\right)(a+\xi)^{-1}\right) \sigma=\left(\left(x-x I_{a}\right) \sigma\right)(a+\xi)^{-1}$. Now let $c$ be an element of $Z(a)$. As we remarked in the proof of [3], Proposition 3, we may write $c=\sum_{i=1}^{s}\left(a+\xi_{i}\right)^{-1} \gamma_{2}$ where $\gamma_{i}$ are in $Z$ and $\xi_{i}$ are $s$ distinct non-zero elements of $Z .{ }^{9}$ ) Since $\sigma$ is a linear transformation of $B$ over $Z$, this implies

$$
\left(\left(x-x I_{a}\right) c\right) \sigma=\left(\left(x-x I_{a}\right) \sigma\right) c
$$

We have noted that $B(\alpha)=[a, D]$; it is clear that $[a, D]$ is the totality of elements of the form $d-d I_{a}, d \in D$. But in view of the decomposition $D=Z(a) \oplus B(a)$ we may restrict the elements $d$ to those of $B$. Consequently, the contraction of $\sigma$ to $B(a)$ is a $Z(a)$-endomorphism of $B(a)$ as a right $Z(a)$-module. By symmetry this is also true for left-hand side operators.
(3) Next let $b$ be a non-zero element of $B(a)$. Then $(b a) \sigma=(b \sigma) a$ by what we have just seen. From (1) it follows that $(b \sigma) a$ and $b a$ are commutative: $(b \sigma) a b a$ $=b a(b \sigma) a$, hence $(b \sigma) a b=b a(b \sigma)$. This implies $b^{-1}(b \sigma) a=a(b \sigma) b^{-1}=a b^{-1}(b \sigma)$ (observe that $b \sigma$ commutes with $b^{-1}$ ), and so $b^{-1}(b \sigma) \in V_{D}(a)=Z(a)$. Also, $b^{-1}(b \sigma) \in V_{D}(b)$. Thus $b^{-1}(b \sigma)$ lies in $Z(a)_{\frown} V_{D}(b)$ for every non-zero $b \in B(a)$.
(4) It is known that there exists a conjugate $a^{\prime}$ of $a$ in $D$ (in the sense that $a^{\prime}=a I_{y}$ ) such that $D=Z\left(a, a^{\prime}\right)$. (See Jacobson [5], p. 182. Cf. also Albert [2], Kasch [6].) We decompose $a^{\prime}$ according to the decomposition $D=Z(a) \oplus B(a): a^{\prime}=a^{\prime \prime}+b$. Then clearly $b \not \ddagger Z$ and $D=Z(a, b)$. By (3) this implies that $b^{-1}(b \sigma)$ is an element $\alpha$ of $Z: b^{-1}(b \sigma)=\alpha \in Z$, i.e. $b \sigma=\alpha b$. Hence $\left(b I_{d}\right) \sigma=(b \sigma) I_{d}=\alpha\left(b I_{d}\right)$ for any non-zero $d$ of $D$. Since $B$ has a basis $\left\{b I_{d_{i}} ; d_{\imath} \in D, 1 \leqq i \leqq n-1\right\}$ over $Z$, this proves the result: $x \sigma=\alpha x$ for all $x \in B$.

From the fact we have proved above it follows that the automorphism ring $\mathfrak{R}$ induces the complete ring of linear transformations of $B$ over $Z .{ }^{10)}$ Now we assume that the characteristic of $Z$ does not divide $n$. Then by Proposition $1 D$ is decomposed as $D=Z \oplus B$ (as an $\Re$-module). We have therefore the inequalities: [ $[Z]$ $\geqq(n-1)^{2}$ and $[\Re: Z] \leqq(n-1)^{2}+1$. If $[\Re: Z]=(n-1)^{2}$, $\Re$ is simple and isomorphic to $Z_{n-1}$, the total matrix algebra of degree $n-1$ over $Z$. But $\Re$ is contained in the $Z$-endomorphism ring of $D$, which is isomorphic to $Z_{n}$. Since $Z=Z_{R} \subseteq \mathfrak{R}$ and
8) Cf. also Brauer [4].
9) Observe that $Z$ is an infinite field since we have assumed $D \neq Z$.
10) See for instance Jacobson [5], Chapter 2.
$\left((n-1)^{2}, n\right)=1$, this is a contradiction. ${ }^{11)}$ Hence we must have $[\Re: Z]=(n-1)^{2}+1$. It is now easy to see that $\Re$ is semi-simple and is isomorphic to the direct sum $Z \oplus Z_{n-1}{ }^{12)}$

## 3. The case of central simple algebras. Conclusion.

Let $A$ be a finite dimensional central simple algebra over $Z$. It is well known that $A$ is (isomorphic to) the ring of all (say) $m \times m$ matrices with coefficients taken from a central division algebra $D$ over $Z$. We set $[D: Z]=s^{2}$, so that $n=[A: Z]=m^{2} s^{2}$. The case $s=1$ and the case $m=1$ have been discussed in Kasch's [9] and in the previous section, respectively. We shall therefore assume $s>1$ and $m>1$. Let (\$) be the group of all inner automorphisms of $A=D_{m}$ by regular elements of $A$ (the Galois group of $A$ over $Z)$, and $\Re=(\mathbb{S} Z$ the automorphism ring. As before, we set $B=[A, A]$, the submodule of $A$ generated by all $\left[a_{1}, a_{2}\right]=a_{1} a_{2}-a_{2} a_{1}, a_{1}, a_{2} \in A$. Observe that $B$ is generated by the set $\left\{D d_{2 \jmath}, i \neq j ; D\left(d_{i i}-d_{j j}\right) ;\left[k_{1}, k_{2}\right] d_{i i}, k_{1}, k_{2} \in D\right\}$, where $d_{i j}(1 \leqq i, j \leqq m)$ are the matrix units of $A$.

We now state, corresponding to Proposition 1, the following
Proposition 2. Let $A=D_{m}$ be the matrix ring of degree $m>1$ over $D$, which is a central division algebra over $Z$ such that $[D: Z]=s^{2}>1$. Suppose $\Re$ be the automorphism ring of $A$ over $Z$. Then $Z$ and $B=[A, A]$ are the only non-trivial $\Re$-submodules of $A$; moreover, $Z \subseteq B$ if and only if the characteristic $p$ of $Z$ is a divisor of $n=[A: Z]=m^{2} s^{2}$. If $p$ does not divide $n$ then $A$ has a unique decomposition $A=Z \oplus B$ as an $\mathfrak{R}$-module.

Proof. We first note that a submodule $U$ of $A$ is an $\Re$-submodule if and only if it is a $Z$-subspace and invariant relative to all inner automorphisms of $A$. It follows that for every $\Re$-submodule $U$ of $A$ we have either $U=Z$ or $U \supseteq B$ (Kasch [8]). On the other hand, $B$ is maximal as $Z$-subspace, i.e. $[B: Z]=n-1$, as is easily seen. Hence $Z$ and $B$ are the only non-trivial $\Re$-submodules. To see the second assertion on the condition of $Z \subseteq B$, suppose $\Omega$ be a splitting field of $A$ over $Z$. Then $A_{\Omega}=A \otimes_{z} \Omega \cong \Omega_{m s}$. Clearly $Z \subseteq B$ if and only if $\Omega \subseteq B_{\Omega}=\left[A_{\Omega}, A_{\Omega}\right]$, which is equivalent to the condition that $p$ divides $n=m^{2} s^{2}$ by Kasch [9]. The last assertion follows immediately from what we have seen.

Next we consider the $\Re$-submodule $B$ of $A$ under the assumption that the characteristic $p$ of $Z$ does not divide $n$. Then, by virtue of our discussion in the previous section, we have the following result: $\mathfrak{R}$-induces the complete ring of linear transformations of $B$ over $Z$. The proof of this fact can be performed, as Kasch remarked, quite similarly as that of [9], Hilfssatz, although the details becomes somewhat complicated. As in the last section this implies that $\mathfrak{R}$ is semi-simple and isomorphic to $Z \oplus Z_{n-1}$.
11) See for example Albert [1], Chapter 4.
12) The arguement of these several lines is the same as in Kasch [9], p. 61.

We have thus completed the proof of the following main theorem.
Theorem. Let $A$ be a finite dimensional central simple algebra over a field $Z, n$ its dimensionality: $[A: Z]=n$, and $\mathbb{E S}$ the group of all inner automorphisms of $A$ over $Z$. Let $\Re$ be the automorphism ring of $A$ over $Z: ~ \Re=(\mathbb{O} Z$. Suppose that $Z$ is not the prime field of characteristic 2 and that the characteristic of $Z$ is not a factor of $n$. Then (a) $A$ is completely reducible as $\Re$-module and is decomposed as $A=Z \oplus B$, where $Z$ and $B=[A, A]$ are uniquely determined irreducible $\Re$-submodules; (b) $\Re$ induces the complete ring of linear transformations of $B$ over $Z$; and (c) $\mathfrak{R}$ is semi-simple and is isomorphic to the direct sum $Z \oplus Z_{n-1}$, and hence [ $\left.\Re: Z\right]$ $=(n-1)^{2}+1$.

## References

[1] Albert, A, A., Structure of algebras. Amer. Math. Soc. Coll. Publ. 24 (1939).
[2] , Two element generation of a separable algebra. Bull. Amer. Math. Soc. 50 (1944), 786-788.
[3] Asano, S., On invariant subspaces of division algebras. Kōdai Math. Sem. Rep. 18 (1966), 322-334.
[ 4 ] Brauer, R., On a theorem of H. Cartan. Bull. Amer. Math. Soc. 55 (1949) 619620.
[5] Jacobson, N., Structure of rings. Amer. Math. Soc. Coll. Publ. 37 (1956).
[6] Kasch, F., Über den Satz vom primitiven Element bei Schiefkörpern. J. reine angew. Math. 189 (1951), 150-159.
[7] , Über den Endomorphismenring eines Vektorraumes und den Satz von der Normalbasis. Math. Ann. 126 (1953), 447-463.
[8] Invariante Untermoduln des Endomorphismenrings eines Vektorraums. Arch. Math. 4 (1953), 182-190.
[9] , Über den Automorphismenring einfacher Algebren. Arch. Math. 6 (1955), 59-65.
[10] Nagahara, T., T. Onodera, and H. Tominaga, On normal basis theorem and strictly Galois extensions. Math. J. Okayama Univ. 8 (1958), 133-142.

Department of Mathematics,
Tokyo Institute of Technology.

