ON THE AUTOMORPHISMS OF A CERTAIN CLASS
OF FINITE RINGS

By Mizue Moriva

The determination of the structure of finite rings is reduced to that of p-rings,”
for every finite ring is a direct sum of p,-rings where p; are different primes.

Let R be a finite p-ring whose additive group (R, +) is of type (p°%,p%, -+, p?),
e1=e;=---=Ze;. Then R can be identified with a subring of the endomorphism ring
B of (R, +). (If R does not contain an identity element, we replace (R, +) by
(R*, +), where R* is the ring obtained by adjoining an identity 1 to R; here we
may set p*1=0.) The ring B can be considered as the ring of all /x/ matrices
(a:i;) 1=4,7<]) of the form

J11 Jiz 't Gin L
gis (="

a=(a;)= pel_.ezgzl Gz Gon | aw:{ L.
. . : peJ—eigij (Z>])y

DG Gan

where ¢;, are rational integers modulo p%*, k=max {,7}. (Shoda [2], Szele [3]).

Now, let 2 be a positive integer =n=e, and let 8; be the number of 2's which
appear among the set {e;|i=1,2, ---,/}. If 5,=0 for some 2 (i.e. if 2 does not appear
in {e:;}), we insert 2 to {e;}. After this for every 4 with 8;=0, we obtain a series
of integers in which each positive integer not greater than n(=e;) appears at least
once:

Ny M, +oe, n’n_l’ .o, n_l’ ...,i’ ., i, ey ]_’ coey 1.
———— ———————— —_— ~——
243 QAp—1 o (23]

Here, a;=p; or a;=1 according as B:x0 or 8;=0, respectively. We set m=a+a,
+---+a,. Then the ring R can be imbedded in the endomorphism ring A of an
abeliar: group of type (p®, -+, p", p* Y, oo, p"° Y, -, p, -+, p). We can identify A with
the ring of all matrices of the form

All Alz Aln
PAzl A22 A Azn
C= PP Ay pAsw - s

Ay oo Ann

Received April 2, 1966.
1) A finite ring 1s called p-ring if the number of elements 1s a power of p.
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where A.; iS an @np-.+1 Xan_j41 matrix having the components of rational integers
modulo p»*+1, k=max {i,}.

The finite ring A of this type is somewhat less general than the endomorphism
ring B, which we have mentioned above. But we can still imbed an arbitrary
finite p-ring R as a subring of such an A.

The present paper may be divided into two parts. In the first part we shall
study the automorphisms of this type of finite rings. The second part is the
discussion of a particular case where a,_,.;=1 (1=i=<n); there we shall also be
concerned with the automorphisms of the radical of the ring. In any case, the
radical of the ring as above can be seen to be (in a sense) a generalization of a
total nilpotent algebra® over GF(p), whose structure (the automorphisms and ideals
in particular) is thoroughly discussed by Dubisch-Perlis [1]. In the following some
of their methods will be extended to our matrix rings.

The author wishes to express her hearty thanks to Professor H. Téyama and
Professor M. Okuzumi for their kind.advices. She is also indebted to Dr. S. Asano
for his encouragement and valuable suggestions.

1. Let A be a finite ring as in the introduction. Namely, A is the ring of
all mXm matrices of the form

All A12 A Alnw
pAZI A22 A A27L

(1) C=1 pAs pAse o A

P Apy o o Aun

where A, is an ay_.41X an—;s; matrix having the components of rational integers
modulo p*, k=min {n—i+1, n—j+1}.

We write the matrix of A, which has (s,#) component 1 or p*~/, and 0 else-
where, as es,; or pres., (1=s,t=m); here, (s,#) is one of the subscripts associated
to a block 4., (i=j) or p*~?A,, (i>]), respectively, in the expression (1). (We shall
say that e [p*7es.:] belongs to the block A., [p7Au]).

A is generated by ei G=1, -, m), e, 11 (G=1, -+, m—1), exirr (Bx2Io1 dnoain,
f=1,---,m) and per+1.x (b=X1o1 anorir, f=1, -+, m).

The radical of A is the set of all matrices whose components of diagonal
blocks Ai; (i=1, .-+, n) are divisible by p.

Let N be the radical of A. N and N¢, the powers of N, are characteristic
ideals of A. Also, there are some other kinds of characteristic ideals in A. We

2) A total nilpotent algebra of degree » over a field F'is defined to be any isomorphic
copy of the algebra of nXx» matrices over F with zeros on and above the diagonal.
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list them as follows:

(@) QY ={a|pla=0, acA}.
It is clear that Q@@ is a characteristic ideal.

(b) P@={p|bQ®P=0,beA}.

We have (bx)a=0b(za)=0, (xb)a=x(ba)=0 for zxe€A, beP® and @eQ‘®. Thus
P@ is an ideal. For every automorphism ¢ of A, ¢eQ® and beP‘®, we have
b'a’=(ba)’=0=ba. As Q@ is characteristic, @’ varies over every element of @®, and
so beP®, Thus P is also characteristic. P is the set of all matrices of A
such that all the components are divisible by p? We write P®=P. Clearly
P@=pd  The matrices of P® are of the following form:

d blocks
’_I—_\‘
 pAn o pArecanr 0 o 0
d_l..l blocks “ee s e es . ves
PPAG1
Pd+1Ad+2.1
L A e 0o - O_J
(© U@ ={g|Néac P}.

U@ jis the set of all elements of A whose components in the blocks A,
i>d, are divisible by p.

All

d blocks-

(The letter p means “ divisible by p”.)
(@) R®={glaUPCP}.

3) The arguments in this section 1s similar to that of Dubisch-Perlis [1].
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R@ js the set of all elements of A whose components of the blocks A.,, 7<d,
are divisible by p.

d—1 blocks
— e —

0 s
P

— -

In the same way as in (D), we can see that U and R are characteristic
ideals.

Lemma 1. When es,: belongs to the block A.; (i=j) [p*es,: to the block pIA,
@G>, then for every automorphism o of A we have

e €UP ~RP  [(pies,yrePrmi—Priti],

The residue class ring A/P of A with respect to the characteristic ideal P is
isomorphic to the matrix algebra over GF(p) of the following form

All AIZ Aln

(*) a= 1—422 . I‘Zl'zn
0 :

Ann

where the block A,, iS an @s—,41 X @s—yy; matrix with the components of rational
integers modulo p.

We consider, in general, a ring R of matrices of the form (*) over an arbitrary
field 7. We write the matrix of R which has (s,#) component 1 and has 0 else-
where as es;. Also we write the set of matrices of R whose components are all
zero except for components of the block Ry, (A, in (*)) as Ry j.

The radical N(R) of R is the set of all matrices whose components of R;;
(i=1,2,---,m) are all zero. We can find characteristic ideals of R in the same way
as before:
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@) U@ ={qg|N(R)¢a=0},
(b V@ ={aqlaU®=0}.

U@ is the set of all matrices whose components of the blocks R, i>d,
are zero, and V@ is the set of all matrices whose components belonging to the blocks
Ry, 7>d, are zero.

If the matrix e;. belongs to Ry,;;, then for every automorphism ¢ of R,
es,L"eU(i)/\V('j)-

THEOREM 1. Let R be the ring of all matrices of the form (¥) over a field F.
If o is an automorphism of R, then o is inner.?

Proof. (i) Let ¢ be an automorphism of R and let a@u.x be a matrix of
Rix. Then we have, as mentioned above,

k"= 2 b, 1= e, i+ 7%,
1=k
jzk

where by, j1€Rn, ;7 and 7€ N(R). Hence Ry.x is mapped in itself mod M(R) by o.

By the well known theorem of algebra, we see that there exists an inner
automorphism [,: x—a'xza (x€R) of R which has the same effect as ¢ on Ry.i
mod N(R).

Now set r=0l,~!. The automorphism r fixes the elements of Ry, (k=1, .-, %)
mod N(R). This implies that ¢ satisfies " —xeN(R) for all zeR.

(i) Let r be as above: a*—xeN(R) for all x. Let e;: be a matrix unit in
Rivoey 1=i<n—1). Since es s'es, e, i"=es,.° We have es ses.er,c=es, "(N(R)*). This
means s, =cs :6s,; (IN(R)?) with some c¢;s,.€F. Next suppose that e, , is another
matrix unit in R+ Then ew,v=euy, ses, €0, Where ey s€Rp i and e;v€Rus1, oy
From eu,» =€y ses fe;.,* We have cyo=cs,. Thus for each Rp,.+1; there exists a
(non-zero) element ¢, in F with zr=cx (V(R)?) for all x€Ru,.i1. We now set
D=FE\+cEy+cicsEs + -+ 4 cics o+ Cn1En, whers E, is the unit element of the sub-
ring Rp.,i;;. The inner automorphism Ip by D clearly satisfies a*=ciz=x70 (N(R)?)
for all xeRp, 413, and hence zr=x 0 (N(R)?) for all zeN(R). Set p=clp~Y; it is easy
to see that ze=x (N(R)) for all zeR and zr=x (N(R)?) for all xeN(R).

(iii) We proceed to show that the automorphism p is inner. Thus put e, .
=es,-+7s.;; we know that 7s,.€ N(R) always and that 7;,,€ M(R)? if e; ,eN(R). From
er '’ =ex i er. i’ We have vy x=er, .+ 761k, (IVN(R)?). Hence the components of the
matrix 7, is zero mod N(R)? except for its k-throw and k-th column. Also, from
e, f=e; e jfe, 0 we get v, ;=eq 7, 5+ 1,0, (IM(R)?), which implies that the com-
ponents of 7, ; is zero mod (N(R)?) except for its i-th row and j-th column; moreover,
the i-th row is congruent to the j-th row of #,, and the j-th column to the i-th
column of 7., (mod N(R)?. Finally, from e; e, =0 (i=j), we have rue;;+eur,;

4) When an-+; are all 1, this theorem 1s reduced to the Theorem 8 of [1].
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=0 (N(R)*. This shows that the (i, 7) components #(.,.):,;, (#5,7):,, (of 7., and 7,
respectively) satisfy (7...):,;+(;.7):,;=0 if the position (i, 7) is such that e; ;¢ N(R)>.

Now define a matrix T as follows: The i-th row of T'is that of 7;; (1=1,2, ---.m)
Then, if 77 is a matrix defined similarly by column (i.e., the j-th column of 77 is
that of 7,,;, (=1, 2, ---, m)), we have T+ T'=0 (N(R)*) by what we have seen. Clearly
T=T'=0(N(R)).

i /;‘——— —j-th column
; of Yij
|
{

T= . —i-th row T'=
of 7

~

Consider the inner automorphism [.r by 1+7. then e; /v r=(14T)"e; 1+ T)
=1—De: ;A+T)=A+T"e; ;A+T)=es, j+ T e; 4, T=ei,; + 15055+, 57,., = e,
+7.,, (N(R)?). Hence e;, »=e; ;//+7 for all e;,,, We set pu=plI}, Then z*=x (N(R)?
for all zeR.

(iv) Let es,:€Rp,ir1. From es ses e *=es ¢ and from (iii) (z#=x (MMR)?) if
x€R) one verifies easily that es,=es, (N(R)*). Hence we have zr=z (N(R)?) for all
zeN(R). By constructing a similar inner automorphism as in (iii) we see z+=x**7*
(N(R)) for all xeR, where T: is @ matrix in N(R). In the similar way we can
construct successively the inner automorphisms Iiir,, lisr,, -+, Iisr, such that
aeIin I e Tz, —ze N(R)™.  Since N(R)"=0 we must have p=TI.zr,lisr, , - Lz
this shows that p is inner and, at the same time, ¢ is an inner automorphism. This
completes the proof of Theorem 1.

Let ¢ be an automorphism of A. ¢ induces an automorphism ¢ of A/P. By
Theorem 1, ¢ is an inner automorphism of A/P: z°=z'a=a'%ad, for zcA/P.

Let @ be an element of the class @geA/P. The automorphism ¢l,~%: z"a™ =gxa!
satisfies x77e”'—zeP. By constructing matrices M, successively, similarly as in the
proof of Theorem 1, we can prove that t=¢1,~" is inner: eJu~*=1Iy, - Iyr,_,.

Thus we have the following

TuEOREM 2. All automorphisms of A are inner.
2. Now, we consider the case where e; (i=1, ---, #) are different each other. In

this case, we can imbed the ring in the ring A whose elements are the matrices
of the form
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J11 gi12 e Oin
DY J22 et Gon

a= 2
Dga Dgse U3 o Osn
P"‘lgm P""Zgnz vt Oan

where ¢;, are rational integers mod p**+!, k=max {i,j}.

The radical of A is the totality of the matrices whose diagonal components are
divisible by p. We denote it as N. N is generated by the elements e ., and
peyir,; (Bj=1,2,---,m—1). We can find characteristic ideals of N corresponding to
those of A. These are the intersections of N and those of A.

The residue class ring N/P is a total nilpotent algebra over the prime field of
characteristic 2.

The automorphisms of a total nilpotent algebra are determined explicitly by
Dubisch-Perlis [1]: The automorphism group of N/P, which we denote &=&(N/P),
has the suructure E=DM=IMD, where D is the group of diagonal automorphisms,
and M the group of monic automorphisms. Besides, MM has the structure M=N X I
where R is the group of nil automorphisms and J the group of inner automorphisms.

We wish to define the automorphisms of N corresponding to the monic, nil,
diagonal and inner automorphisms of N/P. First we observe that the inner auto-
morphisms are defined in the same way (footnote 6).

a) Automorphisms corresponding to Mt (monic automorphisms).

For every automorphism o of N, e+’ 1S Written as follows:

Ck k1= é}k Bij®eij+p, peP,
3

JZk+1

since ek 11’ N~ U® ~R%P, We can easily see that B re1® 0. When B i1 ® =1,
the set of these automorphisms correspond to the monic automorphisms of N/P.

b) Automorphisms corresponding to R (nil automorphisms).

We call the element # satisfying zueP (uxeP) for all zeN an absolute right (left)
divisor of P, corresponding to the absolute divisor of zero in N/P. The absolute
right (left) divisors of P are linear combinations of ez, e, -+, e1n (€1n, €2n, **+, €n-1.2) and

5) An automorphism p of an arbitrary ring S is called monic in case x —axcSr+l
whenever z lies in S7.
6) An inner automorphism 2 of S is defined by the formula

=x+bx+ratbra

where ¢ is an element of S such that there exists beS; a4b-+ab=a+b-+ba=0.

7) A diagonal automorphis  of a matrix algebra over F 1s an automorphism x’=dzxd-!
determined by a diagonal non-singular matrix d=7, d,ei., dicF.

8) An automorphism v of S 1s called ni/ if w»=u for every absolute right 1f xu=0
(ux=0) for every xeS.
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the elements of P. The automorphisms which satisfy #*—wuecP correspond to the

nil automorphisms of N/P.
¢) Automorphisms corresponding to ® (diagonal automorphisms).
Let d. be an unit of the ring of rational integers mod p»**!. A diagonal matrix

d= i die
=1

determines an automorphisms 6 of A: x*=d-'xd, x€A. The automorphisms of N
induced by these &’s correspond to the diagonal automorphisms of N/P.
Let 6 be such an automorphism. Then

elc,k+15—=—-ake/c.k+1(P)y

where a; are units (i.e. integers (considered mod p»*) relatively prime to p), and
for k<!

ex’=anen(P),

(4)
Q1 = Aty 1+ g1y
and
Derir ¥ = ax™ perirx (1),
For &>1
(5) Plen’=p-tanlen( P4,

Conversely, arbitrary units a; (i=1,---,z—1) mod p»* and equations (4) and (5)
determine a é defined in (c) given by

d=ey a1+ 10853+ 10 An1nn.

THEOREM 3. The group & of the automorphisms of N has the structure
G=DM=IMD where ® and WM are the groups of automorphisms defined in c) and
a), respectively.

Proof. This is proved in the same way as in [1].
THEOREM 4. All the automorphisms defined n b) are gemevated by
(7) e w1’ =er k1t tp, ar=an1=0, peF,

(8) (pex 1.6)’ =peri1.6FDreein-1+p’, p'eP.

Proof. From (7) it follows
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ein”—emeP, elj”—eleP (i=l, ceey n—l;j=2, ey %)
And, as P is characteristic, we have a@*—aeP for aeP. Hence v has the required
property.

Conversely, let v be an automorphism defined in b). By Theorem 3, v=dp,
0eD, peM. So we have

ki1 =€k, 1417 = (ko1 FDr)* = Qi ke 17 Chy

where pweP, cxeN*UP. As e, is an absolute divisor of P, we have a;=1, cieP.
For k<n, we have

€1, k41" =18k k41" = (@1t )er k1% = (ews+pi" YAtk k11 Ck)

=0e1, k1 Hewck+p =e1 ki1 t+Prr,
where po/, p’, pri€P. From above, we see arp=1 and eucweP. For jxk, 1<j we
have from O0=e;%er v eijcx€P. Therefore all the components of c¢r except the
first row are divisible by p. And for k+1=j, j<n we have from 0=ex r:1”e;»” and
ern” =€k k+1"Crr1,7”; Crem€P and crews1,,€P. So all the components of ¢, except (1, n)-
component are divisible by . We have

Ck=7Trein+Dr, DrEP.

As en—1, 2’ —en-1,2€P, We have y;=yn,-1=0. Thus we have proved (5).
As for (pex:1.x)¥, we have from (pex.1,r)*eP— P2,

n—1 n—1
(Perr1.a)’= 23 ai®pess+ 3, Bi®peir i+ ; 7.5 ®pes; (P).
=1 =1 1<J

From O=-eyu(persi.0)’ =eu(peri,r)” (P? L<lxk+1), and pew’=ew+1(peri1.r)’, We have
0 ® =B ® =y B =0 (1<I%E); au® =y, ;®=0, B®=L

Also we get a,®=0 from 0=(pei.1,1)% 1 (kx1) and (pew)’=(pex)er’ ((=2). So
we have

(pek+1,k)”EZ>€/c+1,k+lz<: r1;%pey;.

J

As 0=(per:1.0)"(er,111)” (k) and peii1,kre=(Peis1,kre)” =(Pei+1.1)(€r.x+2)”, We have
7u=0 (kxj,n=1), ru®=0 (k<n—2).

Finally, from the congruence

0=(pea1 Pen-1,n-2)’ =D°r\"75€2,1n-2 (P?)
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we get r{%3=0 (p).

It is clear that every automorphism ¢ of N induces that of N/P.

And moreover all automorphisms of N/P are induced by those of N. To see
this it suffices to prove the existence of an automorphism of N which induce each
element of ®, N or I of N/P. This is evident from the fact that the group & of
all automorphisms of N/P is decomposed into the product of these subgroups.

(i) Automorphisms inducing D. _
Suppose d of ® of N/P is given by the element d=é+aése+t--+az—.e" of

o

N/P. Then, the diagonal automorphism & of N determined by the element
d=ey+a180-+ +an_1enn, ai=a; induces § itself on N/P.

(ii) Automorphisms inducing 3.

For every inner automorphism 7 of N/P, & =z+b&+ Zd-+bZd, we take an
element ¢ of N in the class @ mod P and find b such that e¢+b+ab=a-+b+ba=0.
Then, the automorphism z, y*=y+by+ya+bya induces 7 on NJ/P.

(i) Automorphisms inducing k.

All nil automorphisms of N/P are generated by

@, k11" = h, i1+ Frlr™ 71=Fn1=0. [1]

In N we define a mapping v as follows:

Ck ki1 =€k k1T TRCIRy  TE=Th

Der ki’ =pers1, k-

It is clear that v is an automorphism of N inducing U on N/P.
THEOREM 5. The automorphisms of N which satisfy x°—xeP for xeN are inner.

Proof. We put e;.i1°—eiic1=pi, picP. From 0=e; ,:1%,,;4:1° for i+1=j, we
have

Diegi1tei s pi=0 (PP,

that is
(B)e, 5+ (Der1,361=0 (PP

Thus we know that the components of p; are divisible by p? cxcept the i-th

row and the (i41)-st column.
We construct a matrix @ in the same way as in the proofs of Theorems 1

and 2. We set
(Qi+1,5=(Da)s,; (P (for i+1=j),
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@), i+ @)iv1,041=(D1)i,041 .

The inner automorphism induced from I[i;¢: 27+e=(1—Q)z(1+Q) (P?) is the
same one as ¢ mod P2
By the method similar to the proof of Theorem 1, we know ¢ is inner.

From Theorem 5 and the facts mentioned in (i), (ii), (iii) we have

THEOREM 6. There is a natural mapping from the group of automorphisms of
N, &(N) onto the group of automorphisms of NIP, &(NIP). And all automorphisms
in the kernel of this mapping are inner.
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