ON CONTINUOUS-TIME MARKOV PROCESSES WITH REWARDS, II

By Hirohisa Hatori and Toshio Mori

1. Let $X_t, t \ge 0$ be a continuous-time Markov process with the state space $S = \{1, 2, \dots, N\}$. The quantity a_{jk} is defined as follows: in a short time interval dt, the process that is now in state $j \in S$ will make a transition to state $k \in S$ with probability $a_{jk}dt + o(dt), (j \ne k)$. The probability of two or more transitions is o(dt). Then this Markov process is described by the transition-rate matrix $A = (a_{jk})$, where the diagonal elements of A are defined by $a_{jj} = -\sum_{k \ne j} a_{jk}, (j=1, 2, \dots, N)$. Now, let us suppose that the system earns a reward at the rate of r_{jj} dollars per unit time during all the time it occupies state j. Suppose further that when the system makes a transition from state j to state k $(j \ne k)$, it receives a reward of r_{jk} dollars. In the previous paper, we have given a limiting property of the total reward R(t) that the system will earn in a time t, by assuming that the multiplicity of every root of det(sI-A)=0 is 1. In this paper, we shall prove this property in the case where the roots of the equation det(sI-A)=0 are not necessarily simple.

2. Let $\varphi_{jt}(\theta) \stackrel{\text{def}}{=} E\{e^{i\theta R(t)} | X_0 = j\}$ be the characteristic function of R(t) given that $X_0 = j$ and put

(1)
$$\Phi_j(\theta, s) = \int_0^\infty \varphi_{jt}(\theta) e^{-st} dt \qquad (j=1, 2, \dots, N),$$

where s is a positive-valued variable. Introducing the $N \times N$ matrix

$$A(\theta) \stackrel{\text{def}}{=} \begin{pmatrix} a_{11} + i\theta r_{11} & a_{12}e^{i\theta r_{12}} & \cdots & a_{1N}e^{i\theta r_{1N}} \\ a_{21}e^{i\theta r_{21}} & a_{22} + i\theta r_{22} & \cdots & a_{2N}e^{i\theta r_{2N}} \\ \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots \\ a_{N1}e^{i\theta r_{N1}} & a_{N2}e^{i\theta r_{N2}} & \cdots & a_{NN} + i\theta r_{NN} \end{pmatrix}$$

and the vectors

$$\boldsymbol{\varPhi}(\theta, s) \stackrel{\text{def}}{=} \begin{bmatrix} \boldsymbol{\varPhi}_1(\theta, s) \\ \vdots \\ \boldsymbol{\varPhi}_N(\theta, s) \end{bmatrix} \quad \text{and} \quad \boldsymbol{e} \stackrel{\text{def}}{=} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix},$$

Received March 17, 1966.

we have the following lemma the proof of which has been shown in section 3 of [1].

LEMMA. We have that

(2)
$$\boldsymbol{\Phi}(\theta, s) = (sI - A(\theta))^{-1}\boldsymbol{e},$$

where I is the $N \times N$ identity matrix.

We shall now prove the following

THEOREM. If A is indecomposable, then the distribution function of the random variable $[R(t)-gt]/\sqrt{t}$ converges as $t\to\infty$ to a normal law, where g is a constant.

Proof. Let $\alpha_0 = 0$, $\alpha_1, \dots, \alpha_{N-1}$ be the roots of the equation $\det(sI - A) = 0$ which need not all be distinct. It has been proved in Remark 1 of [1] that $\alpha_0 = 0$ is a simple root and $\Re(\alpha_j) < 0$ $(j=1, 2, \dots, N-1)$. Let $\zeta_0(\theta), \zeta_1(\theta), \dots, \zeta_{N-1}(\theta)$ be the roots of det $(sI - A(\theta)) = 0$ such that

$$\zeta_0(\theta) \rightarrow 0, \quad \zeta_1(\theta) \rightarrow \alpha_1, \quad \cdots, \quad \zeta_{N-1}(\theta) \rightarrow \alpha_{N-1} \quad \text{as } \theta \rightarrow 0.$$

Then there exist positive constants ε and θ_0 such that $\zeta_0(\theta)$ is analytic in θ for $|\theta| < \theta_0$, and

$$(3) \qquad -\varepsilon \leq \Re(\zeta_0(\theta)), \qquad \Re(\zeta_l(\theta)) < -2\varepsilon \qquad (l=1, 2, \cdots, N-1) \text{ for } |\theta| < \theta_0.$$

From Lemma, the following expression for $\boldsymbol{\Phi}(\theta, s)$ is obtained:

(4)
$$\boldsymbol{\Phi}(\theta, s) = \frac{\boldsymbol{\sigma}(\theta)}{s - \zeta_0(\theta)} + \frac{\boldsymbol{g}(s, \theta)}{(s - \zeta_1(\theta))(s - \zeta_2(\theta))\cdots(s - \zeta_{N-1}(\theta))},$$

where $\sigma(\theta)$ is an N-dimensional vector-valued function which is continuous at $\theta=0$, and

(5)
$$\boldsymbol{g}(s,\theta) = \boldsymbol{g}_0(\theta)s^{N-2} + \boldsymbol{g}_1(\theta)s^{N-3} + \dots + \boldsymbol{g}_{N-2}(\theta)$$

is a polynomial whose degree is at most N-2 and whose coefficients $g_0(\theta)$, $g_1(\theta), \dots, g_{N-2}(\theta)$ are vector-valued function of θ which are continuous at $\theta=0$. It is easy to see that the polynomial (5) may be written as follows:

(6)
$$\boldsymbol{g}(s,\theta) = \boldsymbol{\tau}_{1}(\theta) \cdot (s - \zeta_{2}(\theta)) (s - \zeta_{3}(\theta)) \cdots (s - \zeta_{N-1}(\theta))$$
$$+ \boldsymbol{\tau}_{2}(\theta) \cdot (s - \zeta_{3}(\theta)) \cdots (s - \zeta_{N-1}(\theta))$$
$$+ \cdots + \boldsymbol{\tau}_{N-2}(\theta) \cdot (s - \zeta_{N-1}(\theta)) + \boldsymbol{\tau}_{N-1}(\theta),$$

where the vector-valued functions $\boldsymbol{\tau}_1(\theta)$, $\boldsymbol{\tau}_2(\theta)$, \cdots , $\boldsymbol{\tau}_{N-1}(\theta)$ are continuous functions of $\boldsymbol{g}_0, \cdots, \boldsymbol{g}_{N-2}$ and $\zeta_1, \cdots, \zeta_{N-1}$. It follows from the continuity of \boldsymbol{g} 's and ζ 's that $\boldsymbol{\tau}_j(\theta)$ is continuous at $\theta=0$ $(j=1, 2, \cdots, N-1)$, and therefore there exists a constant $K < +\infty$ such that

CONTINUOUS-TIME MARKOV PROCESSES

(7)
$$|\tau_{jk}(\theta)| \leq K$$
 for $|\theta| < \theta_0$ $(j=1, 2, ..., N-1; k=1, 2, ..., N),$

where $\tau_{jk}(\theta)$ is the k-th component of $\tau_j(\theta)$. From (4) and (6), we have

(8)
$$\boldsymbol{\varPhi}(\theta, s) = \frac{\boldsymbol{\sigma}(\theta)}{s - \zeta_0(\theta)} + \frac{\boldsymbol{\tau}_1(\theta)}{s - \zeta_1(\theta)} + \frac{\boldsymbol{\tau}_2(\theta)}{(s - \zeta_1(\theta))(s - \zeta_2(\theta))}$$

$$+\cdots+\frac{\boldsymbol{\tau}_{N-1}(\theta)}{(s-\zeta_1(\theta))(s-\zeta_2(\theta))\cdots(s-\zeta_{N-1}(\theta))}$$

If we define $\gamma_k(t, \theta) (k=1, \dots, N-1; t \ge 0; |\theta| < \theta_0)$ to be

$$\gamma_1(t, \theta) = e^{\zeta_1(\theta)t}$$

and

$$\gamma_k(t,\theta) = \int_0^t e^{\zeta_k(\theta)u} \gamma_{k-1}(t-u,\theta) du \qquad (k \ge 2),$$

then we have from (8) that

(9)
$$\boldsymbol{\varphi}_{t}(\boldsymbol{\theta}) = \begin{bmatrix} \varphi_{1t}(\boldsymbol{\theta}) \\ \vdots \\ \varphi_{Nt}(\boldsymbol{\theta}) \end{bmatrix} = e^{\boldsymbol{\zeta}_{0}(\boldsymbol{\theta}) \boldsymbol{t}} \boldsymbol{\sigma}(\boldsymbol{\theta}) + \gamma_{1}(t, \boldsymbol{\theta})\boldsymbol{\tau}_{1}(\boldsymbol{\theta}) + \gamma_{2}(t, \boldsymbol{\theta})\boldsymbol{\tau}_{2}(\boldsymbol{\theta}) + \cdots + \gamma_{N-1}(t, \boldsymbol{\theta})\boldsymbol{\tau}_{N-1}(\boldsymbol{\theta}).$$

Since $\Re(\zeta_l(\theta)) < -2\varepsilon$ for $|\theta| < \theta_0$ and $l \neq 0$, it is easily verified by induction that

(10)
$$|\gamma_k(t,\theta)| \leq \frac{t^{k-1}}{(k-1)!} e^{-2\varepsilon t} \quad (k=1, 2, \cdots, N-1).$$

It follows from (7), (9) and (10) that

(11)
$$|\varphi_{jt}(\theta) - e^{t_{\mathfrak{o}}(\theta)t} \sigma_{j}(\theta)| \leq K e^{-2\epsilon t} \left(1 + t + \dots + \frac{t^{N-2}}{(N-2)!} \right) \quad (j=1, \dots, N; \ |\theta| < \theta_{0}),$$

where $\sigma_j(\theta)$ is the *j*-th component of $\sigma(\theta)$. Since $\varphi_t(0) = e$, we have $\sigma(0) = e$. From (11), we have for every θ and sufficiently large t

$$\left|\varphi_{jt}\left(\frac{\theta}{t}\right) - e^{\zeta_{\bullet}(\theta/t)t}\sigma_{j}\left(\frac{\theta}{t}\right)\right| \leq Ke^{-2\varepsilon t} \left(1 + t + \dots + \frac{t^{N-2}}{(N-2)!}\right).$$

This shows that the characteristic function $\varphi_{jt}(\theta/t)$ converges as $t \to \infty$ for all θ to the continuous function $e^{t'_0(0)\theta}$, because $\zeta_0(0)=0$ and so $\zeta_0(\theta/t) \cdot t$ converges to $\zeta'_0(0) \cdot \theta$ as $t \to \infty$. It follows that $e^{t'_0(0)\theta}$ must be a characteristic function, and therefore that $\zeta'_0(0)$ is a pure imaginary. Now define the real number $g^{\text{def}}_{=} -i\zeta'_0(0)$ and consider the family $\{[R(t)-gt]/\sqrt{t}\}_{t>0}$ of random variables. The characteristic function of the conditional distribution of the random variable $[R(t)-gt]/\sqrt{t}$ given that $X_0=j$ is

(12)
$$\phi_{jl}(\theta) \stackrel{\text{def}}{=} E\{e^{i\theta[R(t)-gt]/\sqrt{t}} | X_0 = j\} = e^{-ig\sqrt{t}}\theta\varphi_{jl}\left(\frac{\theta}{\sqrt{t}}\right).$$

From (11) and (12), we have for every θ

(13)
$$\left| \phi_{jt}(\boldsymbol{\theta}) - e^{-\iota g \sqrt{t} \theta} e^{\zeta_0(\theta/\sqrt{t})t} \sigma_j\left(\frac{\theta}{\sqrt{t}}\right) \right| = O(t^{N-2}e^{-2\varepsilon t})$$

as $t \rightarrow \infty$. On the other hand, we have for every θ

(14)

$$e^{-\iota g \sqrt{t} \theta} e^{\zeta_0(\theta/\sqrt{t})t} \sigma_j \left(\frac{\theta}{\sqrt{t}}\right)$$

$$= e^{-\iota g \sqrt{t} \theta + \zeta_0'(0) \sqrt{t} \theta + \zeta_0'(0) \theta^2/2 + O(1/\sqrt{t})} \cdot \sigma_j \left(\frac{\theta}{\sqrt{t}}\right)$$

$$\rightarrow e^{\zeta_0'(0) \theta^2/2}$$

as $t \rightarrow \infty$, because $\zeta_0(0) = 0$ and $g = -i\zeta_0'(0)$. It follows from (13) and (14) that

$$\psi_{jt}(\theta) \rightarrow e^{\zeta_0''(0)\theta^2/2}$$
 as $t \rightarrow \infty$,

and, by the argument similar to the one used to show that $\zeta_0'(0)$ is pure imaginary, we know that $\zeta_0''(0) \leq 0$. Therefore we have

$$\psi_{t}(\theta) \stackrel{\text{def}}{=} E\{e^{i\theta[R(t)-gt]/\sqrt{t}}\} = \sum_{j=1}^{N} \psi_{jt}(\theta) \cdot P\{X_{0}=j\}$$
$$\rightarrow e^{\zeta_{0}''(0)\theta^{2}/2} \qquad \text{as} \quad t \to \infty.$$

This shows that $[R(t)-gt]/\sqrt{t}$ converges in distribution to the normal distribution $N(0, -\zeta_0''(0))$.

Reference

 HATORI, H., On continuous-time Markov processes with rawards, I. Kōdai Math. Sem. Rep. 18 (1966), 212-218.

> Tokyo College of Science, and Chūbu Institute of Technology.