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Summary.

For a sequence of events in a probability space, the concept of stability was in-
troduced by Renyi in [2] and those of mixing and strongly mixing were introduced
by Sucheston in [5].

Let 51 be a von Neumann algebra of 'finite class'. Let {Sn} be a sequence of
elements in the unit sphere of 51. In this paper, we introduce the notion of ' stability'
of {Sn} with respect to (w.r.t.) a normal, positive linear functional (state) on 5ί. We
then prove in Theorem 1 that any uniformly bounded sequence of operators in 5ϊ,
contains a subsequence which is stable w.r.t. any state of 51, and that if the given
sequence {Sn} is stable w.r.t. a faithful normal trace on 51, then it is stable w.r.t.
any state of 51, and that if {Sn} is stable w.r.t. a state σ, and p any state which is
absolutely continuous w.r.t. σ, then {Sn} is stable w.r.t. p also, i.e., stability is in-
variant under absolute continuity.

Let {Pn} be any sequence of projections in 51 For {Pw}, wτe introduce the concepts
' zero-one', ' mixing' and ' strongly mixing' w.r.t. a state of 51 As another application
of Theorem 1, we show that these concepts are invariant under absolute continuity.
Using the above results and Umegaki's martingale convergence theorem, we prove
the main result of this paper (Theorem 4) which runs thus:—Let σ be any state of
5ί, whose support is central (in particular let σ be a faithful state). Then a sequence
{Pn} is zero-one w.r.t. σ, if and only if it is strongly mixing w.r.t. σ.

§ 1. Let 5ί be a countably decomposable von Neumann algebra (on some Hubert
space), which is of ' finite class' in the sense of Dixmier [1]. Let / denote the identity
operator. A positive normal linear functional m with m(I)=l is called a state of
91. A state m is said to be a normal trace, if, for any two elements S and T in 5ϊ,
m(TS)=m(ST). A normal trace m is said to be faithful, if, for any projection P,
m(P)=Q implies P=0. In what follows m will denote a faithful normal trace on 51.

DEFINITION. A uniformly bounded sequence {Sn} of operators in 5ί, is said to
be stable w.r.t. a state σ of 5ί, if, for any projection Q in 9ί, the sequences {σ(SnQ)}
and {σ(QSn)\ both converge. If there exists an operator D such that for any pro-
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jection Q in 31, σ(SnQ)^σ(DQ) and σ(QSn)-*σ(QD) then D is called the local density
of {Sn} w.r.t. σ.

The terms ' strongly dense domain', ' measurable operator',' essentially measurable
operator', ' integrable operator', ' strong-product of measurable operators' all have
the same meaning as in Segal's paper [3]. For any two measurable operators A
and B, AB and AxB will denote respectively the ordinary product and strong
product of A and B. For any integrable operator T, m(T) will denote the integral
of T. Now we shall state and prove

THEOREM 1. Any uniformly bounded sequence of operators in 3ί contains a
subsequence {Sn} with the following property—There exists a unique operator D in
31, such that for any state σ 0/31, {Sn} is stable w.r.t. σ and D is the local density
°f {Sn} w.r.t. σ. The operator D depends only on the sequence {Sn} and is in-
dependent of σ.

Before proving the theorem, we shall state three lemmas, but shall not prove
them as the proofs are quite elementary.

LEMMA 1. A uniformly bounded sequence {Sn} in 3ί is stable w.r.t. m, if and
only if, for any integrable operator A, the sequence (m(ASn)} converges.

LEMMA 2. If {Sn} is stable w.r.t. m, then there exists a unique element D in
3ί, such that for any integrable operator A,

m(AD) = lim m(ASn).
n—κχ>

LEMMA 3. Any uniformly bounded sequence in 3ί, contains a subsequence ivhich
is stable w.r.t. m.

Lemma 3 is an immediate consequence of Lemmas 1 and 2, and elementary
properties of abstract Hubert spaces.

Proof of the Theorem. By Lemma 3, the sequence given in the theorem has a
stable subsequence w.r.t. m which also will be denoted by {Sn}. Let an arbitrary
state σ of 31 be given. By the non-commutative version of the Radon-Nikodym
theorem, there exists an integrable operator R (the Radon-Nikodym derivative of
σ w.r.t. m) such that for any B in 3ί, σ(B) = m(RB). Hence for any projection Q in
31, <r(SnQ) = m(RSnQ)=m((SnQ) x R). Now the two measurable operators (SnQ) X R and
SnX(QxR) both agree with the essentially measurable operator SnQR on the domain
of R which is strongly dense. Hence by a lemma of Segal [3, Corollary 5-1, page
413], they both are identical with the closure of SnQR and hence are themselves
identical. So σ(S»Q)=m((SnQ) xR)=m(Sn X (Q x R)). Hence

lim m(Sn X (Q x R)) = m(D x (Q x R))=m(RDQ)=σ(DQ),
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i.e. σ(SnQ)—»σ(DQ). Similarly one can show that σ(QSn)—>σ(QD) as n-*oo. Hence
{Sn} is stable w.r.t. σ, and has local density D w.r.t. σ. Hence the theorem.

REMARK. From the proof of Theorem 1, we have immediately the following
proposition:—a sequence {Sn} stable w.r.t. m and having local density D w.r.t. m
is stable w.r.t. an arbitrary state σ, and has local density D w.r.t. σ.

In the following, we shall prove a more general case of the remark, in which
a state will take the place of the trace m. In what follows {Sn} will denote any
uniformly bounded sequence in 2ί.

THEOREM 2. Let σ and p be any two states of 21. Let {Sn} be stable w.r.t. σ
and have local density D w.r.t. σ. If p is absolutely continuous w.r.t. σ, then {Sn}
is stable w.r.t. p, and has local density D w.r.t. p. In other words, stability and
local density are invariant under absolute continuity.

This theorem will not follow by a straightforward application of the Radon-
Nikodym theorem, since the latter theorem has a simple form only when either
σ or both σ and p are traces. However we shall prove the theorem by applying
Theorem 1.

Proof. Case 1. Let σ be faithful. By Theorem 1, {Sn} has a subsequence
{Sή} which is stable w.r.t. m and has local density say D', w.r.t. m. Again, by
Theorem 1, {Sή} has local density D' w.r.t. a. Hence for any projection Q, σ(DQ)
=limn->oo <?(SήQ)=σ(D'Q), i.e., σ((D-D')Q)=0. As Q is arbitrary and σ is faithful, this
implies that D=D'. Hence by the assumption on the original sequence {Sn} it is
stable w.r.t. m and has local density D w.r.t. m. Since p is absolutely continuous
w.r.t. m, the desired result follows from Theorem 1.

Case 2. Let C be the maximal null projection in 2ί of σ. Set P=I—C. Then P
is the support of σ. Let /=l/(l+w(C)). For any A in 21, let σ1(A)=l(σ(A)+m(CA)).
Then <TI is also a state on 21, which is faithful. For any B in 21, l σ(SnB)=σl(PSnB).
Let Λn=PSn. Since for any projection Q, σ(SnQ)-^σ(DQ), it follows that σι(AnQ)-»
σι(PDQ). By case 1, {An} is stable w.r.t. p and has local density PD w.r.t. p. But
for any projection Q, p((An-Sn)Q)=0 and p(PDQ) = p(DQ). Hence {Sn} is stable
w.r.t. p and has local density D w.r.t. p.

% 2. Before proceeding further, we shall define a few more concepts:—

DEFINITION. A sequence {Pn} of projections in 21 is said to be mixing with
density γ (0 </•<!) w.r.t. a state σ, if σ(Pn)-^γ and for any projection Q in 2ί,
limn->oo(tf(PnQ)—σ(Pn) σ(Q))=Q. Let 23W be the von Neumann algebra generated by
the sequence {Pn+r, r=Q, 1,2, •••}. Put 23= n«=*rBΛ. {Pn} is said to be zero-one w.r.t.
σ, if, for any projection Q in 23, σ(Q)=0 or 1. {Pn} is said to be strongly mixing,
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if every sequence following {Pn} is mixing, where a sequence {Qn} of projections
is said to follow {Pn} if, for each n, Qn belongs to 23 .̂

Clearly strongly mixing implies mixing. For every sequence of projections trivial-
ly follows itself. An example of a mixing sequence will be given in Theorem 4.

THEOREM 3. The properties of mixing (and density) and strongly mixing arc
invariant under absolute continuity.

Here again, the proof is not straightforward. For, if {Pn} is mixing with density
γ w.r.t. a state σ, and p another state absolutely continuous w.r.t. σ, it is not obvious
that p(Pn)-*γ and {Pn} is mixing w.r.t. p. We shall state a lemma first.

LEMMA 4. A sequence {Pn} of projections is mixing w.r.t. a state σ, if and
only if {Pn} is stable w.r.t. σ and its local density w.r.t. σ is a scalar multiple of
the support projection Sσ of σ. This non-negative scalar will in fact be the density
of the mixing sequence.

Proof of the lemma is elementary and hence omitted.

Now to prove the theorem. Let {Pn} be mixing (with density γ) w.r.t. a state
σ. By Lemma 4 and Theorem 2 it follows that {Pn} is stable w.r.t. p and has local
density γSσ w.r.t. p. Applying Lemma 4 again, it follows that mixing is invariant
under absolute continuity.

§ 3. We now state and prove the main result of this paper:—

THEOREM 4. Let σ be any state of 3ϊ, whose support is central (i.e., a projec-
tion belonging to the center of 31). Let {Pn} be any arbitrary sequence of projec-
tions in 31, with σ(Pn)-*γ (0<f<l). Then {Pn} is zero-one w.r.t. σ, if and only if
it is strongly mixing w.r.t. σ.

Proof. Let R be the support of σ and let k=l/m(R). For any T in 3ϊ, set
τ(T) = km(RT). As R is central, it follows that τ is a normal trace on 31 with
τ(R)=l = τ(I). Since T and σ are absolutely continuous w.r.t. each other (both having
the same support) and since by Theorem 3, the properties of zero-one and strongly
mixing are invariant under absolute continuity, it suffices to prove the theorem
for τ in place of σ. Firstly, we shall state some definitions and prove some lemmas.

For any von Neumann subalgebra 23 (93c3l), let R^3= {RS: S in 23}. As R is
central easy to check that R%$ is also a von Neumann algebra acting on the range
of the projection R. Let us denote the conditional expectation of T w.r.t. 23 under
the trace τ by Er(T/?&). However as r is not faithful, this has to be defined in an
indirect way.
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For any T in % R T is an element of PSl. Since τ is faithful normal trace on
PSί, the conditional expectation (in the sense of Umegaki [6]) of RT w.r.t. PS3
(under the trace τ) is well-defined and unique. Let it be denoted by S, i.e.,
ET(RT/R8S)=S. And, by the definition of Rϋ, there exists at least one (there may
exist more than one) element S in 53 with RS=S. If Si is another element of S3
such that RSι=S, then easy to verify that for any projection Q in Si, r((S— Sι)Q)=0,
i.e., S is unique to within the support of τ. We define Eτ(T/%$)=S.

We shall now justify our definition of conditional expectation.
Note that for any A in S3, τ((RT)Λ)=τ(SΛ) (by definition of S). For any B in S3,

= τ((RT) (RB))=τ(RTB)=τ(TB).

Also S is an element of S3. Hence we are justified in writing ET(T/^S)=S.
Let T be any element of St. \T\ will denote (Γ*Γ)1/2 and \\T\\ will denote

the operator-norm of Γ. The Li-norm of T under r is the number r(|Γ|), and is
denoted by ||Γ||ι. The L2-norm of T is the number (r(T*T))1/2 and is denoted by
||T||2. A sequence {Tn} in Sϊ converges to an element T in SI m /A0 Lp-mean, if
I I Γn— T||p— »0,/>=1, 2, and converges to Γ m measure [4] if given any ε>0, there
exists a sequence {Rn} of projections in Si such that \\(Tn—T}Rn\\^ε for all w and
τ(jR»)— >1. Convergence in the Lp-mean implies convergence in measure. We shall
prove this for p=2. The proof for p=l is similar. Let Sn=(Tn-T)*(Tn-T)
= \Tn—T\z. Let Pn be the spectral projection of \Tn— T\ corresponding to the
interval (ε, oo) and Rn=I-Pn. Then r(Sn)-r(SwPn)-f-r(SrlA)^r(SwPw)^ε2.r(Pn).
Hence τ(Pn)<(l/ε2) τ(Sn)->0 as n-*oo. Hence τ(Pn)->l and \\(Tn—T)Rn\\^ε for all w
which proves that {Tw} converges in measure to T.

In what follows, we shall prove several lemmas.

LEMMA 5. If {Pn} is a sequence of projections with τ(Pn)—>γ (0<^<1), then
the following conditions are equivalent:

1. The sequence {Pn} is mixing w.r.t. τ with density γ.
2. Let Sin be the von Neumann subalgebra generated by the single projection

Pn. For each projection Q in Si, the sequence {£Γ(Q/SU)J converges in measure to
τ(Q)L

Proof. As r(Pn)— >;-, without loss of generality, one can assume that 0<τ(Pπ)<l
for all n. Firstly, we shall show condition 1 implies condition 2. Easy to see
that one version of conditional expectation of Q w.r.t. SU can be taken to be
(r(QPn)/r(Pn))P7l+(τ(QpJ-)/r(Pw

1))Pw

J-, where P±=I-Pn. In fact in this case the
conditional expectation is even unique. Then condition 1 is equivalent to saying
that τ(QPn)/τ(Pn)->r(Q), whence it also follows that r(QP^)/r(P^)-»r(Q). Therefore,
putting
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-r(Q) and bn=(τ

the condition 1 is equivalent to saying that an— >0 whence it also follows that bn-^Q
Hence \\ET(Q/yίn)—τ(Q)I\\^an\ + \bn\-»Q and {£XQ/SU)} converges in measure to

For the converse, let an and bn be the same as above for a fixed Q. Then
Eτ(Q/^ίn)—τ(Q)I=anPn+bnPn We shall now show that given any ε>0, one can
find an integer N>Q such that for any n^N, \an\<ε and \bn\<ε so that the
sequences {an} and {bn} both converge to zero. Let Sn=anPnJrbnPn Since by our
assumption {Sn} converges in measure to zero, there exists a sequence {Rn} of
projections with \\SnRn\\<ε for all n and τ(Rn)— >1. By assumption τ(Pn)—*γ and
r(Pj{ )— >1— 7-. Let <5— minCf, 1— 7-). We may assume ε<<5. Hence one can find
integers Ni and N2 (both>0) such that r(Pn)><5-e/2 and τ(P^)><5-ε/2 for all
n^Ni and τ(#n)>l-<5-ε/4 for all »^ΛΓ2. Let TV- max (NlfNz). Then for any
T^TV, Pnf\Rn and P^ /\Rn are non-null. Let #n be any unit vector in Pn/\Rn.
\\SnRn\\<ε implies \\SnRnXn\\ = \\SnXn\\ = \\anXn\\ = \an\<ε. Similarly for any n^N,
\bn\<£. Hence the sequences {an} and {bn} both converge to zero, i.e., (τ(QPn)
— r(Q) r(Pn))— »0 as ?2— »oo, which shows that {Pn} is mixing. Hence the lemma.

LEMMA 6. Let 33 and (£ &£ ^o^ Neumann subalgebras with

Proof. If τ is faithful, the required inequality is known by Umegaki [6]. If τ is
not faithful, then the support R of τ belongs to the center of Si, and R\T\ = \RT\
for any T in Si. Hence,

and

Since τ is faithful regarded as a trace on PSί, the inequality follows immediately
from that.

LEMMA 7. If a sequence {Pn} of projections is zero-one w.r.t. τ then it is
mixing w.r.t τ.

Proof. Firstly note that for any T in Si, ||7Ί|2=||#7Ί|2, where R is the support
of τ. For ]\T\\l=τ(T*T)=τ(RT*T)=τ((RT)*(RT))=\\RT\\i Let Q be any projec-
tion in Si. Let g* be the von Neumann algebra generated by {Pk+r, r=0, 1, 2, •••}.
Let Pffe be the von Neumann algebra consisting of elements RS where S belongs
to fa. As R$k is a subalgebra of PSί and τ a faithful normal trace on PSί, the
martingale convergence theorem of Umegaki [7] applies. By that theorem
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{Eτ(RQ/R%k)} converges in the L2-mean. Hence {Eτ(Q/$k)} converges in the L2-mean.
And since this sequence is uniformly bounded within the support of τ, convergence
in measure, and convergence in the Z^-mean, (/>=!, 2) are all equivalent. Hence
{Eτ(Q/$k)} convergences in the Li-mean also. Let the limit be denoted by Q0. As
{$k} is a decreasing sequence of von Neumann algebras, ζ)0 is measurable w.r.t.
each gΛ and being bounded, belongs to gfc for each k and hence to S=fΊ£Lιδλ>
For any projection P in §f, τ(Et(QI%k)P) = τ(QP). In view of convergence in the
L2-mean,

Thus Qo=£r(Q/S). Note that, for any projection Q, Eτ(QI%) is a scalar multiple of
R, if and only if R$ is trivial, i.e., for any projection Q in gf, τ(Q)=0 or 1. Hence,
if a sequence {Pn} satisfies the conditions of the lemma, i.e. if {Pn} is zero-one
w.r.t. τ, then Eτ(Q—τ(Q)//gw)-»0 in the Li-mean. Let 2ln be as in Lemma 5. By
Lemma 6, EXQ—r(Q)//2ln)-»0 in the Li-mean, i.e. Er(Q/^n)-^τ(Q)I in the Li-mean.
Now an application of Lemma 5 yields the desired result.

We shall now return to the proof of Theorem 4.
Let {Pn} be zero-one w.r.t. τ. Then it is mixing w.r.t. τ by Lemma 7. Let

{Qn} be any sequence of projections following {Pn}. Then obviously {Qn} is also
zero-one w.r.t. τ, and hence mixing w.r.t. τ. For the converse, let {Pn} be strongly
mixing w.r.t. τ. Let g and $n be as in Lemma 7, and P any projection in g.
Then the sequence all whose elements are P, follows the sequence {Pn} and is
hence mixing, so that (τ(P2)-τ(P) τ(P))-0, i.e., τ(P)=(τ(P))2, and hence τ(P)=0
or 1. Hence the theorem.
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