SURFACES IN THE 4-DIMENSIONAL EUCLIDEAN
SPACE ISOMETRIC TO A SPHERE

By ToMiNOSUKE OTSUKI

In [3], the author introduced some kinds of curvatures and torsion form for
surfaces in a higher dimensional Euclidean space. These curvatures are linearly
dependent on the Gaussian curvature and carry out the same roles of the curvature
and the torsion of a surve in the 3-dimensional Euclidean space with the torsion
form. In the present paper, the author will investigate the isometric immersions
of the two dimensional sphere into the 4-dimensional Euclidean space with constant
curvatures.

§1. Preliminaries.

Let M? be a 2-dimensional oriented Riemannian C*-manifold with an isometric
immersion

x: M*— E*

of M? into a 4-dimensional Euclidean space E*. Let F(M?) and F(E*) be the bundles
of orthonormal frames of M? and E* respectively. Let B be the set of elements
b=(p, e1, es, €3, es) such that (p, e;, e2)e F(M?) and (x(p), ey, €2, €5, es) e F(E*) whose
orientations is coherent with the one of E*, identifying e; with dx(e,), i=1, 2. B—M?
may be considered as a principal bundle with the fibre O(2)xSO(2). Let

&: B— F(EY

be the mapping naturally defined by Z(b)=(x(p), e1, ez, €5, es). Let B, be the set of
elements (p, ¢) such that peM*® and e is a unit normal vector to the tangent plane
dx(Tp(M?) at x(p). By—M? is the so-called normal circle bundle of M2 in E* whose
fibre at p is denoted by S Let S} be the unit 3-sphere in £* with the origin as
its center. Let

g: B— S}

be the mapping defined by ¥(p, e)=e.

We have the differential forms wi, w,, @2, @13, W14, W23, W24, wys on B derived from
the basic forms and the connection forms on F(E*) of the Euclidean space E*
through & as follows:
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4
dx=w1e1+wze2, d€A= Z WABeBR, A=1, 2, 3, 4,
B=1

(D
WpgB= —WpBA
doy=0;\ws1,  do=w1 Aoy,
4 2
(2) dwp= ) 01y /\ Oz, dwss= )} 03, \ 0y
r=3 =1
Awir=wi; \ @jr i /\ Oyr,
i,jzl, 2) Z#]v 7, t:?)y 4) vt
and
2
(3) Wir= Z Arjoj, Ary=Aui.
=1

w1, w5, w2 May be considered as the basic forms and the connection form on
F(M?) of M? and the Gaussian curvature of M? at p is given by

(4) dw= —G(f))wl/\wz
and
(5) G(P): is (AruArzz—‘AnzAnz)-

The Lipschitz-Killing curvature at (p, e)eB, is given by
(6) G(p, e)=det (As,, cos 0+ Ay, sin 6),

where e=e; cos 0-+e4sin 8, (p, e1, ez, s, e))€B.
The total curvature at peM? is given by

(7) K*(‘p)=S:"|G<p, o)ldb.

Now, for any e€S}, let mi(e) be the number of critical points of index i for the
function
ze: M*—R, (z-e)p)=x(p)e
and put

(8) mie)= z: mile).

Let us assume that M? is of genus ¢, then by virtue of the Morse’s inequalities
we have
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{ mole)=1, ma(e) —mo(e)=2g—1,
ma(e) —ma(e)+mo(e) =2(L—g)=x(M?)

for any eeS} except a set of measure 0, where x(M?) denotes the Euler chara-
cteristic of M2 Then we have

(9)

10) Sm K*p)dV= Ssgm(e)dz’s,

where dV=w,A\w, and d¥; are the volume elements of M? and SiLV

Let A(p) and u(p) be the maximum and the minimum of G(p,e) on S} res-
pectively. A(p) and p(p) are continuous on M? and differentiable on the open subset
of M* in which 2=%p. 1 and p are called the principal curvature and the secondary
curvature of M?* in E* respectively. Let (p, &) be a point of B, at which G(p, &)
=A(p). If A(p)=p(p), there exist two such points that they are two vectors at x(p)
with the opposite directions. For any (p, ei, e:)€ F(M?), the element b=(p, e, s, &, €1)
€B is uniquely determined from & and G(p, é)=u(p). b=(p, ei, ez, &, &) is called
a Frenet frame of M* in E*. Then

1D G(p, e)=A(p) cos®0--u(p) sin0,
where e=¢; cos 0+¢, sin 4, and we have
12) AD)+u(p)=G(p).

Now, let us introduce the open set of M? by
M_={peM? A(p)u(p)<0}
and the continuous function a(p) on M_ by

(13) coszaz—jiﬁ, 0<a< 7.

Then, we have
da—m)G(p)+4v —Ip  (peM.),

7|G(p)| (peM-)
Making use of (10), (9), the above equations and the Euler’s formula:

KX(p)= {

| cwav=smarm—taa-o),
M2
we get the following formulas

14) [ m@asi=—( G(p)dV—l-ZSM_{ (5 -a)G+¢m]duz>

1) Where, o, Aand w; are considered only on the subbundle of M%) whose element

(p, e, €;) has the orientation coherent with the one of Mz
2) See [3], §3.
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where M.={peM?, A(p)<0}. We will be mainly concerned with this formula (14)
in this paper.

Now, a local cross-section b=(p, e1, 2, &(p), é&«(p)) of B—F(M?), whose image
consists of Frenet frames, is called a Frenet cross-section. Making use of a dif-
ferentiable Frenet cross-section b=(p, ei, e, €, &) of B—F(M?), we have

dr= w1} wse,,
de,= W1201F 01383+ 01484,
(15) des=—wse1+ 2383+ 2484,
dés=— w1301 — w2302 + @348,
déy=— w161 — W242— D348,
(16) 013\ =AD)o1/\w,,
an 01N\ O= p(P)wr/\we,
18) W1 N\ W2+ @1 N\ 023 =0.

®34=deé;-¢; is a 1-form on the domain of the local cross-section in M? and it is
called the torsion form of M?* in E*.

§2. M? diffeomorphic to S>

Let M? be diffeomorphic to a two dimensional sphere S?, then from (9) we have
19 m@)=l,  mae)=l,  mule)=mile)+male)—2
for e€S:, except a set of measure 0. Hence
(20) m(e) =2(mo(e)+male)—1)=2
and the equality holds only when mo(e)=m.(e)=1. If the equality holds for® almost
eeS;, from (9) we get

|, KHpav—2c
M2

and so M? is a convex surface imbedded in a hyperplane by virtue of Chern-

Lashof’s theorem [1], where c¢; denotes the volume of the unit 3-sphere S? and is
equal to 2z2. Hence we have

TueOREM 1. Let M? be a two-dimensional Riemannian manifold diffeomorphic
to a sphere and admitting an isometric immersion x: M?*—E*'. If there exists no
hyperplane containing x(M?), then the measure of the set of e€S; such that m(e)=4

is positive.

THEOREM 2. Let M* be a two-dimensional Riemannian manifold with non-

3) In the following, we use simply “almost” in place of “except a set of measure 0 ”.
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negative Gaussian curvature, diffeomorphic to a sphere and admitting an isometric
immersion x: M?*—E*. If there exists no hyperplane comtaining x(M?), then the
secondary curvature 1 is negative at a point.

Proof. If =0 everywhere, it must be M_=¢. It may be put M;=¢ since
G(p)=0 everywhere. From (14), we get

Ssgml(e)d23=0,
which follows m.(e) =m.(e)+m:(e)—2=0, hence m(e)=2 for almost points e€S;. By
Theorem 1, there exists a hyperplane containing x(M?). This contradicts the as-
sumptions.

THEOREM 3. Let M? be a two dimensional Riemannian manifold with constant
positive Gaussian curvature 1/a?, diffeomorphic to a sphere and admitting an isometric
immersion x: M?—E*. If there exists no hyperplane containing x(M?), the principal
curvature 2 is constani and m(e)=4 for almost e€S;, then Aa*=t is a constant such
that

@1 sina/tt—1)= EIZT ,  Ls<i<2.

Proof. By (12) and Theorem 2, the secondary curvature p of z: M?*—E' isa
negative constant and Ae®=¢>1. Accordingly, « is also constant on M_=M?2 By
the assumption, m(e)+m2(e)=3 and mi(e)=1. Hence from (14) we have

c3=2n2=2SM2{J@_(% —a>-;—2]dv

e (5 )

hence

37 .
(22) -4 —o= Nt —1).

On the other hand, from (13) we get
1

cos 2a= — 21

hence
. — . (3z 1
sin 2,/ #7—1) —-sm(—z— —2a> =—C0s 2a= =1
and
T <a< T
4 2
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From (22), it must be

+J16 1 =143 <t<—+J4 g =214

There exists a unique value in this interval that satisfies (21) and furthermore we
can easily see that 1.5<#<2.

§3. Two examples of analytic isometric immersions and imbeddings of S? in E*.

In this section, we shall give two examples of isometric immersions and im-
beddings of a sphere S? into E* such that the immersion or the imbedding z: S*—F*
is analytic and the image x(S?) is not contained in any hyperplane of E*

As in the ordinary method, we represent S? by

(23) r1=aSin%cosv, x:=asinusiny, I3=aCcosu 0=u=sn, 0=v<2r
in E® Its line element is
(24) ds?=a?du®-+a? sin® u dv®.

ExampLE 1. Let z: S*—FE* be given by

[ I = %sin2 % Ccos 2u = —%—(—-1—[—2 C0s 21t—cos 4u),

25 a . . a . .
25 Lo = —2—51112 u Sin 2u = ?( 2 sin 2u—sin 4u),
3 =a sin % cos v, r4=a Sin # Sin v.

We get easily
4
= ) dzadrs=a*du?+a? sin? u dv?,
A=1
hence (25) is isometric. Except the north pole (0, 0, 1) and the south pole (0, 0, —1),

the mapping z: S?—FE* is one-to-one and the two poles are mapped to the origin
0,0,0,0) of £+ Hence x is an analytic isometric immersion of S? into £* Putting

« 1 Oz —sin 2u-+sin du  cos 2u—cos 4u .
gf=— — = , , COS % COSv, cOsSusinv),
a ou 2 2
1 ox
" .
e 0,0, —sin v, cos v
T asinu ov =( ’ ),

e¥=(—sin 3u, cos 3u, 0, 0),

" (__ cos 2u-cos 4u sin 2% -+sin 4u

D= 5 , — 2 , Sin # cos v, Sinusinv),

(D, e, ef, ef, e¥)eB and dr=cfo¥+tefo¥, of=adu, of=asinudv. Putting
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defi= Z ¥ zek, o= Z Afij"’j‘:,
B J
we have

3sinu 0 L

a a
(A= ) (A¥)=
0 0 0 - 1
a

For e=e¢¥ cos 0+-¢f sin 0, the Lipschitz-Killing curvature is given by
G(p, e)=det (A%, cos 0+ Ak, sin 0)

1 L
=57 (1—cos 203 sin % sin 20),

hence
1

57 (1—A/T+9 sin® u),

(26) P = oy L4/ TFISE D), ()~

#=0 and p=0 only at the poles.
Putting é.=¢e¥*, i=1, 2, é&s=e¥ cos O,-+¢f sin Oy, .= —e¥ sin 0,4 cos 0, where

3 a _ 3sinu T
=72 COSm= A genta O =g
then (p, €, &, &, ;) is a Frenet frame, from which the torsion form of z: S>—FE'is
— 9 cos # (146 sin? #)
— * ==
@7 Bsa=wH+db, 2119 sin® )

Since we can not choose ¢ so that
A¥, cos 04 A, sin =0,
there exists no hyperplane containing z(S%.

ExampLE 2. Let z: S®2—E* be given by

_4a L u _a 3u u
wl——é—cos _Z——T(COS 5 +3cos~—2—>,

(28) _4a.su_a<_.3u .U
xz—-——g sin 5 =3 sm?+351n7),

Zy =@ Sin # COSv, xs=a Sin# sinv.

This is an analytic isometric imbedding of S? into £*. Putting

« 1 0z . u . . u .
e¥=-— — = —sinu cos—, sin# sin —, cosu cosv, cos#sinv]|,
a ou 2 2
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1 ox
. _ .
ef = — —=(0, 0, —sin », cos v
2 aS]n% av () b ’ ))
¥ = cosucosT, —cos usin —-, sin# cosv, sinu sin v),

u
e;“:(sm 5 COS—— 2 , 0, 0),

(p, e¥, e, e¥, ef)eB and dx=cfwf+efof¥, w¥=a du, wf=asin u dv. Putting

= Z w§3e§! wzr Z ATLJw] ’
B

we have

of=cosu dv, w¥=—du, o¥= % sinu du, wk=—sinu dv,
wk=0,

_ _1_ 0 sin % 0

a 2a
(Afp= ) (A%)=
0 — 1 0 0
a

For e=e¥ cos 6+e¢f sin 0, the Lipschitz-Killing curvature is given by

G(p, &)= <1+c 20— 2% sin 20),
hence

@ iD= (1IN, = g (1414 T ).

Putting é;=e}, i=1, 2, &;=¢&¥ cos Oy+¢f sin 0,, é,=—e¥ sin 0+ cos 6,, where

@ T
0o=77—70, Cosao—*x/l_]_smg ™y 0§ao<'2—;

then (p, é, é, &, &) is a Frenet frame, from which the torsion form of this im-
bedding is
(30) Bou= kot dly= ‘%%‘r%@
Since we can not choose 6 so that

Ak, cos 0+ A, sin =0,
there exists no hyperplane containing x(S?).

Now, for the two isometric mappings we have
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1 1 1 I
A(p)= W(1+¢1+h2 sinfw)z—,  pHD)= S (1—A/147% sin? %) =0,
where £=3 or 1/2, hence (14) becomes

mi(e)ds= —(n—Za)Lz—I-ZN/—_l/u‘dV
5 e a

2Pz
.—_—_S S (—Sin 1 Cos™! Vﬁ%——si? +h sin? u)du dv

0 Jo n?u
1 i = costu
— -1 - _— O —
—Zn{[cosuCos 17 sin? %]0 hgo Tt u du
7 .
0
Accordingly, we have
S () dSs 11;26_“1_0 =0779  (h=3),
5 221
Cs - 2h B

1 - 1
24— — /50014 (h— 5 )
This shows that for the isometric mappings (25) and (28), mo(e)=m.(e)=1 and m(e)
=0 hold good for e€S}, at least about 22.1% and 98.6% of the point of S} respectively.

§4. An example of isometric imbedding of S? in E* with constant curvatures.

The two examples in §3 are constructed by the method that taking the plane
curves:
= % sin?u cos 2u, x.= % sin? % sin 2u

and
da . u da . , u .
Ty = 3 cos 5 xz—Tsm -5 (asteroid)
corresponding to the segment in E?® joining the two poles of S? the parallel circles
of S? are transformed to the circles in £* with their centers on these curves that
the planes containing these circles are parallel to the mzsxs-coordinate plane. By

means of the same method, let z: S?*—FE* be given by
31) ri=af(u), z:=ag(u), xs=asinucosv, =xs=a sinusinv,

where f(#) and ¢g(x) are indetermined functions. In order that =z is isometric, it
must be

(32) [t 4-g¢"*=sin? u.
Putting
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1 oz .
ef = — —— =(f"(u), ¢’(w), cos u cosv, cos u sin v),
a Ou
1 ox
* = _—= —si (0}
" en o n 0, 0, —sin », cos v),

dr=ctwt+efof, of=adu, vf=asinudv. Let e=(&,;, &, pcosv, psinv) be a normal
unit vector at x(p), then

E+&+0*=1, & f &g +pcosu=0,
from which putting

CoSs %

g’(#), sin u cos v, sin % sin v),

1
% _ ’ — ’
64 "“( Sinu g (u)7 lnu f(u); 0 0) 0<%<TL’,
(D), e¥, ef, e¥, ef)e F(E*). Assuming (p, ef, ef, e¥, ef)eB and putting

= 2 w¥pe}, of= 2] A%j0f,
B J

we have
I/ ’ /4
wt=cosudv, of=—du, ok= —f—ﬁ{—‘i du,
wi=—sinu dv, 0%=0,
_ —1— 0 _f_‘//gl_f/g// 0
a \ asinu
(A¥%)= . }» (Afp=
0o —— 0 0
a

For e=e¥ cos 0+eF sin 4, the Lipschitz-Killing curvature is given by

f// I_f/ 1
G, &)= (1-{-00520 T9T0 gin 20)
hence
_ 1 (Fg"—fg")?
Up)= e (L4 1L LT,
(33 O<u<m).

w(p)= 2a2< \/1+ f”gsmzf' ”)2)

Therefore, in order that the principal curvature 2 is constant, it must be
(39) f'9'—f'g"=csinu, c=constant.

By means of (32), we have
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e(sin u cos u—f"f")

A/sin? u—f'

o' =¢A/sin® u—rr, g’ =
and, putting these into (34), we get

(35) S sin u—f" cos u=eca/sin® u— 7%,

f'=sin« is a special solution of (35) which gives an isometric imbedding equivalent
to S2cFE® Now, putting f/=¢sinu, |p|=1, we get from (35) the equation with
respect to ¢

e

NI—¢*  sinu’

from which we have
go=sin<ec log tan% -l-cl>, 0<u<m,
where ¢; is a constant. Accordingly, we have

f'=sinu sin(ec log tan% —I—cl),

g'=¢sin u

cos(ec log tan —g- —l—cl)

Making use of the continuity of f” and ¢’ and changing suitably the constants ¢
and ¢;, we may put

f'=sinu sin<c log tan % +c;>,

g'=sin u cos(c log tan—zu— +c1>, 0<u<lm,

which satisfy clearly (34) and (p, ef, ef, e¥, e¥)e B, since
lima.o det (e* ef eF ef)=1.
Accordingly, we have
¥, . u
f(u)=g sin # sin (c log tan 5 —|—c1>du—]—c2,
0
(36)
", u .
g(u)zg sin % cos(c log tan 5 -]—(;1>du+cs,
0
where ¢, and ¢; are constants. f and ¢ are analytic in the interval 0<u <=, of
class C! but not of class C? on the interval 0=u=<n. Let (p, &, &, &, &), é:=¢ef, &,

=e¥, ¢;=e¥ cos 0,+¢f sin ,, .= —e¥ sin 0y+ef cos by, be a Frenet frame, then 0, is a
constant by means of (34). And so, the torsion form of z: S*—E* is
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cCosSu

- du, (0<u<n),
sinu

&')34=w§§= —e;k'de:k:—

hence the torsion form is singular at the poles.
Essentially we may put c;=c.=¢;=0, but regarding the constant ¢ we have

(=lat= 5 (LT,
hence
c=2+/1(t—1).
Thus we see that by this method we can not construct an isometric imbedding

x: S’—FE* of class C* with constant curvatures and x(S®) is not contained in any
hyperplane in E*.

§5. Tubular isometric immersions of S? in E* with constant curvatures.

We say a mapping z of S? into E* is a tubular isometric immersion, if z is an
isometric immersion, the parallel circles of S? are transformed to circles in E* and
the locus of the centers of these circles is orthogonal to the planes containing
thern.

Let z: S?’—FE* be a tubular isometric immersion and y: [0, z]—E* be the map-
ping which represents the locus of the centers of the image circles of the parallel
circles of S%. Put

37 y=af, f=(f1, /2, f3, fa)

and let (y, wi, us, us, us) be its Frenet frame, that is

dy=u, do,
du,= uq.kido,
(38) dus=—ukido+ usk.do,
dus= —uskodo +usksdo,
duy= —usksdo,
where ¢ denotes its arclength,
(39) do=ax/ - du

and ki, k., ks are its curvatures. Corresponding to v=0 and v=mr/2, let us introduce
two orthogonal unit vectors

M.»

Upqs
2

1l

4
p= ) uspy, q=
=} 4

such that
(40) pp=q-q=1, p-q

|
e
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Then, xz can be written as
(41) x=2x(u, v)=yu)+pa sin u cos v-+qa sin » sin v.
Since

drx=udo+ pa (cos u cos v du—sin % sin v dv)

~+qa (cos u sin v du-sin u cos v dv)
d . di . .

+ —p—asmucosvdu—l— —qumusmvdu,
du du

the line element of z: S?>—E* can be written as

dsz=az{(f’ -f)+cos? u—2a(f’ - )k, sin u(p. cos v+-¢. sin v)

. dp dp dq dq .
2, ( 22 2 . 2 e s 2
—+sin’ u( T dw COoS v+ T sin v+2 T COS v Sin v) du

+2a* sin® u(q~ %)du dv+a® sin® u dv®.

Hence, it must be

dp
(42) - =0,

- —2a(f"- )k, sin u (p, cOs v-Fq; sin v)

43)
2
+sin? % l——cosv—l—i‘lsmv =sin? u.
From (43), it must be
Pe=g2=0 or ki =0.
Case: k;=0. (43) becomes
2
s {2 o ) |2 |
dp dq\ . s
—|—<~d—u— Tn )sm 22)]—sm u,
which is equivalent to
_| <) ap . dq
@ " _l du du  du =0,
. dp |
7 A — 2 | =
(45) f.f'=sin u(l ” L )

In this case, we may consider wui, u,, us, u, being constant unit vectors and
=(f(w), 0,0,0). If pis constant, then q is also constant. If dp/du=0, then dq/du
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has the same direction as ¢ by (40), (42) and (44). Hence ¢ is a constant unit
vector, hence p must be a constant vector by (44), this contradicts the assump-
tion. Hence, in the case, p and ¢ are constant vectors and from (45) we have
f(u)=+ cos u, thus the mapping x is equivalent to S*—S*cC E®.

Case: p.=¢.=0. We rewrite (41) as

(46) r=x(u, V)=y+Us SIn % COS T+ Sinu sin v, v=v—¢, ©=0(u).
Then we have
dr={u;+(—uks+usks) a sin u cos v —uzak; sin u sin ¥}do

~+usa(cos # cos ¥ du—sin u sin ¥ db)

+u.a(cos # sin ¥ du-+sin « cos 7 db),
from which

ds?=(14a?k,* sin® u cos® D)do®+a® cos® u du?-+a? sin® u(dv+ ksdo)?.
In order that x is an isometric immersion, it must be
“n o= Su ks o du+c, c=constant
0 du
and
{1+4a?k,? sin® u cos*(v—) }(F' - ') =sin® u.

Since # and v are independent variables, it must be k,=0. Hence, the curve
y: [0, z]—FE* is a plane curve. Furthermore,

u; cos ¥4u, sin = (u; cos p—u, sin @) cos v+ (uz sin @--u4 cos ) sin v
and from (38) and (47)
d(us cos o—uy sin ¢)=d(us sin ¢-1-uq cos ¢)=0.

Therefore, if # is not the trivial imbedding S*—S*c E?, then x must be equivalent
to the one given in §4. Thus we get

THEOREM 4. Amny tubular isometric immersion of S* into E* with constant cur-
vatures which is not equivalent to S*—S*C E?, is equivalent to the isometric immersion

x1=a8 sin # sin (c log tan %)da,

0

u
x2=a8 sin # cos (c log tan —g—)du,
0

r3=a sin ¥ cosv, xy=asinusinwv, a, ¢cx0, constants,

and it is of class C* and not of class C* on S* but analytic on the subset ex-
cluded the two poles from S
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