
SURFACES IN THE 4-DIMENSIONAL EUCLIDEAN

SPACE ISOMETRIC TO A SPHERE

BY TOMINOSUKE

In [3], the author introduced some kinds of curvatures and torsion form for
surfaces in a highejr dimensional Euclidean space. These curvatures are linearly
dependent on the Gaussian curvature and carry out the same roles of the curvature
and the torsion of aVurve in the 3-dimensional Euclidean space with the torsion
form. In the present Jpaper, the author will investigate the isometric immersions
of the two dimensional sphere into the 4-dimensional Euclidean space with constant
curvatures.

§ 1. Preliminaries.

Let M2 be a 2-dimensional oriented Riemannian C°°-manifold with an isometric
immersion

of M2 into a 4-dimensional Euclidean space E*. Let F(M2) and F(E*) be the bundles
of orthonormal frames of M2 and £4 respectively. Let B be the set of elements
b=(p, 0ι, 02, 03, 04) such that (p, eίt 02)eF(M2) and (x(p), 0ι, e2, 03, e*)eE(E*) whose
orientations is coherent with the one of E*, identifying eι with dx(et\ i=l, 2. B-*M2

may be considered as a principal bundle with the fibre O(2)xSΌ(2). Let

be the mapping naturally defined by x(b) = (x(p), βi, e2, e%, 04). Let Bv be the set of
elements (p, e) such that psM2 and e is a unit normal vector to the tangent plane
dx(TP(M2)) at x(p). B^-*M2 is the so-called normal circle bundle of M2 in E* whose
fibre at p is denoted by Sp. Let So be the unit 3-sphere in E* with the origin as
its center. Let

be the mapping defined by £(/>, e)=e.
We have the differential forms ωlt α>2, ω12, ωls, ωu, ω23, ω24, ω34 on B derived from

the basic forms and the connection forms on E(E4) of the Euclidean space E*
through x as follows:
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(1)
dx= 0)161+0)262, dβA— Σ 24=1, 2, 3, 4,

(2)

d(ί)ίr = 0)ij Λ Gλ/r + Mi t Λ &>ir,

ί, j = l, 2, i>y; r, ί=3, 4,

and

2

(3) 0)ir— Σ Amjtojj Arιj = Arjί.

o)ι, o)2, ω12 may be considered as the basic forms and the connection form on
F(M2) of M2 and the Gaussian curvature of M2 at p is given by

(4)

and

(5)

2 — — G(p)ω1 Λ ω2

= Σ (Λlli4r23-Arl2Λl2).

The Lipschitz-Killing curvature at (p, e)zBv is given by

(6) G(p, 0)=det (Auj cos 0+An, sin 0),

where 0=03 cos 0+0* sin 0, (p, βi, ez, e*,
The total curvature at p€M2 is given by

(7)

Now, for any β€S0
3, let wii(e) be the number of critical points of index i for the

function

x e:

and put

(8)

Let us assume that M2 is of genus g, then by virtue of the Morse's inequalities
we have
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m2(e)-m1(e)+mQ(e)=2(l-g)=χ(M2)

for any eeSI, except a set of measure 0, where χ(M2) denotes the Euler chara-
cteristic of M2. Then we have

(10) ( K*(p)dV={ m(e)dΣt,

where dV=ω1/\ω2 and dΣB are the volume elements of M2 and SI.Ό

Let λ(p) and μ(p) be the maximum and the minimum of G(p, e) on Sp res-
pectively. λ(p) and μ(p) are continuous on Λf 2 and differentiate on the open subset
of M2 in which λ^μ. λ and μ are called the principal curvature and the secondary
curvature of M2 in E4 respectively. Let (p, e&) be a point of Bv at which G(p, es)
=λ(p). If λ(p)±?μ(p), there exist two such points that they are two vectors at x(p)
with the opposite directions. For any (p, βi, ^2)eF(M2), the element b=(p, ei, e2, es, e^
GB is uniquely determined from eΆ and G(p, e^==μ(p). b=(p, eίf e2, e3, e4) is called
a Frenet frame of M2 in £"4. Then

(11)

where ^=^3cos^+g4sin^, and we have

(12) *(P)+μ(P)

Now, let us introduce the open set of M2 by

and the continuous function a(p) on M_ by

(13) cos2α--4±^,
/ — μ

Then, we have

Making use of (10), (9), the above equations and the Euler's formula:

we get the following formulas

(14) ( nh(β)dΣt=-π( G(p)dV+2\ \-f-Z. -a]G+ „/=
Jsf jΛfa J τ J f _ l \ ^ /

1) Where, ωλ and ω2 are considered only on the subbundle of F(M2) whose element
(p, elt e2) has the orientation coherent with the one of M2.

2) See [31 §3.
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where M2={p£M2, 2(p)^Q}. We will be mainly concerned with this formula (14)
in this paper.

Now, a local cross-section b=(p, βi, e2, es(p), e4(p)) of B-*F(M2\ whose image
consists of Frenet frames, is called a Frenet cross-section. Making use of a dif-
ferentiable Frenet cross-section b=(p, e\, β2, e*, e*) of B—*F(M2), we have

' dx— 0)^1+0)262,

(15)

(16)

(17)

(18)

ω34=d^3 ^4 is a 1-form on the domain of the local cross-section in M2 and it is
called the torsion form of M2 in E*.

§2. Jf2 diffeomorphic to S2.

Let M2 be diffeomorphic to a two dimensional sphere S2, then from (9) we have

(19) w0(0)^l, w2(β)^l, mi(e)=mo(e)+m2(e)— 2

for ^eS^, except a set of measure 0. Hence

(20) m(e)=2(nh(e)+mz(e)-ϊ)^2

and the equality holds only when w0(e)=w2(0) = l. If the equality holds for3) almost
, from (9) we get

and so M2 is a convex surface imbedded in a hyperplane by virtue of Chern-
Lashofs theorem [1], where c3 denotes the volume of the unit 3-sphere S3 and is
equal to 2π2. Hence we have

THEOREM 1. Let M2 be a two-dimensional Riemannian manifold diffeomorphic
to a sphere and admitting an isometric immersion x: M2^>E*. If there exists no
hyperplane containing x(M2), then the measure of the set of esSl such that m(e)^4:
is positive.

THEOREM 2. Let M2 be a two-dimensional Riemannian manifold with non-

3) In the following, we use simply " almost" in place of " except a set of measure 0 ".
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negative Gaussian curvature, diffeomorphic to a sphere and admitting an isometric
immersion x : M2-+E*. If there exists no hyperplane containing x(M2), then the
secondary curvature μ is negative at a point.

Proof. If μ^O everywhere, it must be M-=ψ. It may be put Mz=φ since
^0 everywhere. From (14), we get

which follows mι(e)=m^(e)Jrm<ί(e}— 2=0, hence m(e)=2 for almost points eεSl By
Theorem 1, there exists a hyperplane containing x(M2). This contradicts the as-
sumptions.

THEOREM 3. Let M2 be a two dimensional Riemannian manifold with constant
positive Gaussian curvature I/a2, diffeomorphic to a sphere and admitting an isometric
immersion x : M2-*E*. If there exists no hyperplane containing x(M2), the principal
curvature λ is constant and m(e)—k for almost eζS3

Q, then λa2—t is a constant such
that

(21) s i n v / T ^ l J ^ ' 1.5<f<2.

Proof. By (12) and Theorem 2, the secondary curvature μ of x: M2—>E* is a
negative constant and λά*=t>l. Accordingly, a is also constant on M-=M2. By
the assumption, m0(e)+mz(e)=3 and mι(e) = l. Hence from (14) we have

hence

(22) J^-e

On the other hand, from (13) we get

cos 2a= — -
2t-l '

hence

s i n 2 /

and
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From (22), it must be

There exists a unique value in this interval that satisfies (21) and furthermore we
can easily see that 1.5

§ 3. Two examples of analytic isometric immersions and imbeddings of S2 in E*.

In this section, we shall give two examples of isometric immersions and im-
beddings of a sphere S2 into E4 such that the immersion or the imbedding x : S2-*E*
is analytic and the image x(S2) is not contained in any hyperplane of E\

As in the ordinary method, we represent S2 by

(23) Xι=asmucosv, x2=as'musmv, xs=acosu

in E*. Its line element is

(24) ds2=a2du2+a2 sin2 u dv2.

EXAMPLE 1. Let x : S2—^E4t be given by

(25)

We get easily

1 =-77-sin2 ^cos2w = ~5-(—1+2 cos 2u—cos 4^),

xz = ~7r- sin2 u sin 2u = -5- ( 2 sin 2u—sin
Z o

B =asmucosv, Xi=asm us'mv.

4

ds2— 2 dxAdxA=a2du2+a2 sin2 u dv2,
A=l

hence (25) is isometric. Except the north pole (0, 0, 1) and the south pole (0, 0, —1),
the mapping x: S2-^E* is one-to-one and the two poles are mapped to the origin
(0, 0, 0, 0) of E*. Hence x is an analytic isometric immersion of S2 into E4. Putting

. 1 dx I — sin 2^+sin 4z4 cos 2u— cos 4^ . \
f= -- ̂  — = - ; - , - 7; - , cos u cos v, cos usmv],

a du \ Δ Δ i

1 dx
T— =(0, 0, —sin v, cos v),— : -- T

asmu dv

e*=(— sin 3u, cos 3u, 0, 0),

, sin u cos v, smusm
\

mvi,

(P> ef, ef, ef, ef)sB and dx=e?ωf+efωf, ω?=adu, ω?=a sin u dv. Putting
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S = Σ «

we have

(A1/H

3 s i n j

0 0

For <?=<?*cos0-j-<?*sin0, the Lipschitz-Killing curvature is given by

G(ρ, e)=det (At; cos 0+A*; sin 0)

(1- cos 20-3 sin w sin 20),

hence

(26) sn 2

^0 and JM=O only at the poles.
Putting eτ=e*, i=l, 2, es=^ cos Θo+e? sin 00, ^4 = — ef sin 00+£? cos 00, where

3τr
cos α0 —

7Γ

~2~'

then (p, βι, ez, £s, £4) is a Frenet frame, from which the torsion form of x: S2—»£4 is

9cos^(l+6sin2^) ,
(27) * , j*

4 = ̂ 3*4+^00= 2(1+9 sin2 u)

Since we can not choose θ so that

Al cos 0+At/sin 0=0,

there exists no hyperplane containing x(S2).

EXAMPLE 2. Let x: S2-+E* be given by

(28)

^4=^ sin w sin .̂

This is an analytic isometric imbedding of S2 into E*. Putting

. I dx / . u . . u . \
e?=—-r— = — sin u cos—- , sin ^ sin — , cos u cos 0, cos u sin 0 ,

a ou \ £ & I
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. 1 dx /Λ .ef = — ; - —— = (0, 0, —sin v, cos v\
a sm u ov

* I u . u \
tff^lcos ^cos — , — cos&sm — , sin&cos^, smusmvL

ef = (sm-γ, cos-|-, 0, (A

(pj efy ef, e*> ef)^B and dx=e?ώ?+efωf, ωf=a du, oι*=a sin u dv. Putting

we have

* ,7 * l ' J *', (t)i3=—au, ίo?;— -77-sin u au, α>^= —sin

0 -- 0 0

For 0=e2ecos0+0f sin0, the Lipschitz-Killing curvature is given by

G(p, e)= J-^l+α^fl- ̂ - sin

hence

/oπ\(29)

Putting ei=e*, i=l, 2, 03=0f cos 00+ef sin ΘQ, e^ = —ef sin β^+ef cos ΘQ, where

«o ^ϋΛf ^ ,,^^^
2 '

Γ 4

then (p, 0ι, 02, 03, 04) is a Frenet frame, from which the torsion form of this im-
bedding is

cos u (6+sin2 u) Ί

2(4+sin2M)

Since we can not choose θ so that

there exists no hyperplane containing

Now, for the two isometric mappings we have
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sin2 u)> ~ , μ(P) = 2 r̂ (1

where Λ=3 or 1/2, hence (14) becomes

= \ \ ( — sin u Cos"1

 /τ -r-j-o-v--s— + A sin2 ^ W^ dv
J o J o V vl+" sirrw I

rr 1 T f*
=2ττ cos M Cos-1

 /———-^== -h\
[L v l + Λ 2 s ι n 2 M j o Jo

cos2 u ,
τ o . 0—αw

Accordingly, we have

\
Js

n ~ 2 1 0 . == 0.779 (A =3),

ί+-^--Λ/5=0.014

This shows that for the isometric mappings (25) and (28), m^(e)—m^(e)^\ and mι(e)
=0 hold good for <?€S0

3, at least about 22.1% and 98.6% of the point of S0
3 respectively.

§ 4. An example of isometric imbedding of S2 in E* with constant curvatures.

The two examples in §3 are constructed by the method that taking the plane
curves:

and

x\ = -~- sin2 u cos 2u, x2 — —^- sin2 u sin 2uLJ LJ

ka „ u 4# . , u , , .,.
= — cos3 — , xz = ~γ sin3 — (asteroid)

corresponding to the segment in E13 joining the two poles of S2, the parallel circles
of S2 are transformed to the circles in E4 with their centers on these curves that
the planes containing these circles are parallel to the #3#4-coordinate plane. By
means of the same method, let x: S2-^Ei be given by

(31) Xι=af(u), xz=a g(u), #3=tfsin^cosz;, # 4=<zsin^sin#,

where f(u) and g(u) are indetermined functions. In order that x is isometric, it
must be

(32) /'2+g/2=sin2^.

Putting
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1 dx
ef = -- z— =(f'(u), g'(u\ cos u cos v, cos u sin 0),

#
-z- =(0, 0, —sin v, cos 0),= — : - -z-

asmu du

dx=e?ω?+efωf, ώf=a du, ωf=a sin u dv. Let e=(f i, £2, P cos 0, /? sin v) be a normal
unit vector at x(p\ then

'+p cos «=0,

from which putting

* / COSM -., N cos^ . . . \
0* = ί --- : - f'(u\ -- : - 9 W, sm ^ cos v, sm « sin ^ J,

), «*, e?, βf, e*)eF(E*). Assuming (A ef, ef, <?3*, ef)€fi and putting

*ί = Σ
J

we have

s n ^

--1- o i /v^/v o
a \ asmu

(Λt/)=
» 0 0

For £=0f cos0+£? sin<9, the Lipschitz-Killing curvature is given by

hence

(33)

Therefore, in order that the principal curvature λ is constant, it must be

(34) f"g'—fg"=c$mu, ^-constant.

By means of (32), we have
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and, putting these into (34), we get

(35) f" sin u -f cos u = εc\/sm2u-f'2.

//=sin u is a special solution of (35) which gives an isometric imbedding equivalent
to S2dEs. Now, putting f'=φsmu, M^l, we get from (35) the equation with
respect to φ

φf _ εc
\/l—φ2 sinu '

from which we have

£>=sinί εc log tan— +cΛ9 Q<u<π,

where d is a constant. Accordingly, we have

//=sin u sinί εc log tan— +cι j,

g'^εsin^ cos! εc log tan — +cΛ \.

Making use of the continuity of f and gf and changing suitably the constants c
and Ci, we may put

/'—sin u sinί c log tan — +cι j,

g'=sin u costc log tan— +cl 1,

which satisfy clearly (34) and (p, ef, ef, ef, ef)$B, since

limw_>o det (e\ ef ef ef) = l.

Accordingly, we have

S
u I u \

sin u s in lc log tan — +Cι]du+c2,

(36)

S U I u \

sin u cosf c log tan — +c\ }du+c3,o \ A J

where c2 and c3 are constants. / and g are analytic in the interval Q<u<π, of
class C1 but not of class C2 on the interval Q^u^π. Let (p, eΊ, e2, es, £4), βι=ef, e2

=ef, e%=ef cos θQ-\-ef sin <90, e4=—ef sin #o+£* cos ^0, be a Frenet frame, then 00 is a
constant by means of (34). And so, the torsion form of x: S2-»£4 is
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— 4 «t Ί •*? C COS l/l

sin u

_

du,

hence the torsion form is singular at the poles.
Essentially we may put Cι=c2=c3=0, but regarding the constant c we have

hence

Thus we see that by this method we can not construct an isometric imbedding
x : S2-*E* of class C2 with constant curvatures and x(S2) is not contained in any
hyperplane in E*.

§5. Tubular isometric immersions of S2 in E* with constant curvatures.

We say a mapping x of S2 into E* is a tubular isometric immersion, if x is an
isometric immersion, the parallel circles of S2 are transformed to circles in E* and
the locus of the centers of these circles is orthogonal to the planes containing
them.

Let x : S2— ̂ E14 be a tubular isometric immersion and y : [0, π]-^E* be the map-
ping which represents the locus of the centers of the image circles of the parallel
circles of S2. Put

(37) y=af, f=(/ι,/8,Λ,Λ)

and let (y, ui, u2, us, u*) be its Frenet frame, that is

U2k1dσ)

(38)

where σ denotes its arclength,

(39) dσ=a*/ f' F du

and ki, k2, k% are its curvatures. Corresponding to v=Q and v=π/2, let us introduce
two orthogonal unit vectors

4

= Σ
β=2

such that

(40)
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Then, x can be written as

(41) x = x(u, v) = y(u) -\-pa sin u cos v + qa sin u sin v.

Since

dx=Uιdσ-\-pa (cos u cos v du—sin u sin v dv)

+qa (cos u sin v du-\-sin u cos v dv)

t dp . Ί dq . .
H — — a sm u cos v du + -7- # sin ^ sm # < ,̂

rf« rf«

the line element of x : S2-*E4 can be written as

ds2 = a2 (f Γ) + cos2 u - 2a(f Γ)*ι sin w(/>2 cos 0 + q2 sin 0)

, . „ / dp dp 9 , dq dq . . , _ φ Jo
+sιn2^ — --- -r-cos2^+-:r- ~7-sιn2 v+2 -j- --- ~~

\ du du du du du du

-\-2a2 sin2 u( q- --7- \du dv+a2 sin2 u dv2.

Hence, it must be

fr f — 2a(ff f')kι sin ^ (p2 cos ^ + ̂ 2 sin v )

(43)

•— sin
II au au \\

From (43), it must be

Case: kι=Q. (43) becomes

~2

which is equivalent to

(44)
du

<«> -•"— -
In this case, we may consider Ui, u2, us, w4 being constant unit vectors and
f=(f(u), 0, 0, 0). If p is constant, then q is also constant. If dp/du^Q, then dq/du
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has the same direction as q by (40), (42) and (44). Hence q is a constant unit
vector, hence p must be a constant vector by (44), this contradicts the assump-
tion. Hence, in the case, p and q are constant vectors and from (45) we have
/(«) = + cos 24, thus the mapping x is equivalent to S2-+S2dE3.

Case: jί>2=#2=0. We rewrite (41) as

(46) x=x(u, v)=y+uza sin u cos v+Uta sin u sin v, v=v—φ, ψ=ψ(u).

Then we have

dx= {MI+(— M2 # sin « cos v — u3ak3 sin ^ sin #} Jσ

+M3#(cos w cos # <#«— sin u sin zJ 6©)

-f M4#(cos u sin 0 fi?#+sin w cos v dv),

from which

ds2=(l+a2k2

2 sin2 M cos2 #)J<72+#2 cos2 u du2+a2 sin2 u(dv+k 3dσ)2.

In order that # is an isometric immersion, it must be

and

S
u fiσ

kz -τ—
o du

du+c, c= constant

22 sin2 u cos2(^-0}(Γ Γ)-sin2 u.

Since u and v are independent variables, it must be £2=0. Hence, the curve
V '• [0, π]— >E4 is a plane curve. Furthermore,

M3 cosv+Ui smv = (u ό cos ^— M4 sin φ) cos 0+(α3 sin ^+^4 cos ψ) sin y

and from (38) and (47)

d(us cos φ—Ui sin φ)=d(u3 sin ^j-M4 cos 0=0.

Therefore, if x is not the trivial imbedding S2-^S2c£'3, then Λ? must be equivalent
to the one given in §4. Thus we get

THEOREM 4. Any tubular isometric immersion of S2 into E* with constant cur-
vatures which is not equivalent to S2^S2c:E3, is equivalent to the isometric immersion

α?ι=tf\ sin u s inίc log tan — \du,

S u / u \

sin u cos ( c log tan-τr- }du,
o \ ^ /

a, , constants,

and it is of class C1 and not of class C2 on S2 but analytic on the subset ex-
cluded the two poles from S2.
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