ON A MATCHING METHOD FOR A LINEAR ORDINARY
DIFFERENTIAL EQUATION CONTAINING A
PARAMETER, II

By TosHiHiko NISHIMOTO

§1. Introduction.

In this paper, we consider the asymptotic behavior of the solution of a linear
ordinary differential equation of the form

d
1.1 en-d% = Alz, &)y

as the parameter ¢ tends to zero. Here we suppose that

1) £ is a positive integer;

2) z and e are a complex variable and a complex parameter respectively;

3) v is an n-dimensional column vector;

4) A(zx,¢) is an n-by-z matrix function holomorphic and bounded in the domain
of the z, ¢ space defined by the inequalities,

1. 2) |z| =20<1, 0<]e] =&, larg e| =do;
5 when ¢ tends to zero in the domain
1.3) 0<le| =6, |arg e[ =dq,

A(z, €) admits for |z|=z, a uniform asymptotic expansion in powers of e:
1.4 Az, )= 3, AP (z)e,
V=0

where the coefficients A®(z) are #-by-z matrices whose components are functions
holomorphic and bounded for |z|=x;
6) the matrix A(z,¢) has the form

An(z, €)
(1.5) A(z, e)=] Aa(x, €) Ass(z, 5). 0 ,
Ap(x,e) - App(x» €)

where Aj(x,¢) are n;-by-mx matrices (7, k=1, -, p);
7) in particular, each of the matrices A(x,¢) has the form
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o 1
(1. 6) Az, €)= o )
Qing  Qang-1 **° Qiz 0

where au(x,¢) are the functions such that

au(x, &)= Zoo ax®(x)er (=1, -, p; I=n, ni—1, -+, 2),
v=0
a.7

o
au® @)= 2 a@.ar,  a@mp=0,
)

u=mg®
with 72,;,?=1, for some index (i, 1)
a9 (z)=x0;

8) let Wz, ) be the (4, k) elements of the matrix A(x,¢) which is not the
elements of Aj(z,¢), and let

1. 8) Wiz, &)= 3, Wp(@)er

V=Rjk

be the asymptotic expansion in powers of ¢ with holomorphic coefficients:
W ()= 2} AG} pact,
©=0
and assume without loss of generality that

1.9 via—q(G+1—=R)m>0  for j>k, v=N,

where a=mh/(m~+q), m and q are some positive integers defined in 9).
Under these conditions, the characteristic equation of the matrix A®(z) in 2
S
[ li—=*a@() - —a@,@)] =0
=1
has only one #n-ple root =0 for =0 and at least two distinct roots for x=:0.
Therefore =0 is a turning point of the system (1. 1).

About this equations, Iwano [1] developed his method to construct the charac-
teristic polygon for the system (1.1) and to divide the domain (1.2) into a finite
number of subdomains so that the solution behaves quite differently as e tends to
zero in each of these subdomains. But to know about the asymptotic character of
the solution of (1. 1), it is necessary for us to prove the existence of fundamental
solution and find out the asymptotic expression of it in each of these subdomains
and to determine the connection formula between two different asymptotic expres-
sions. The purpose of this paper is to solve these problems by means of a matching
method which is originally due to Wasow [7], [8].

To do this, we need a fundamental assumption concerning the characteristic
polygon I for the system (1.1). We consider a plane whose points are represented
by the coordinates (X, Y), and plot the points
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Pu"")=<-i-’ m,;;(») >, I=ns, n;—1, -, 2
/ i=1,2,--,p i
R:(h) -"1) ”:O, 1’“.

(1. 10)

where . are defined in (1.7), then /I is a polygonal line, convex downward,
such that its vertices are some of the points (1. 10) and none of the points (1. 10)
is located below II (for details, see Iwano [1]). Here we assume that

9) I consists of only a line connecting the point R and some point P, on Y-
axis whose coordinate can be written (0, g/m), or what is the same thing, for (1.7),

I=no mi—1, -, 2

lq i:l’-..’p

1.11 2 4>

(1. 11) ’ —tp——-=0 pZma®
v=0,1,

In the author’s previous paper [4], we treated the same problem with p=1 and
with a further assumption;

I=n,n—1,-,2
(1. 11%) 2ty | zmee
a m
]J=1’ 2’ “ee

In this paper, it will be removed the assumption (1. 11’) and will be generalized to
any positive integer of .

In Sections 2 and 3, we calculate the two types of formal solutions, in Sections
4 and 5, it will be proved that there exist fundamental solutions whose asymptotic
expansions coincide with the formal solutions in several subdomains which overlap
the full neighborhood of the turning point.

§2. Formal solution for x=:0.

The linear transformation originally due to Iwano [1]

2.1 y=2z)u,
where

1 0
@.2) o= 1

0 - fatn=1/m

changes the equation (1. 1) into
@.3) oo 2 — B,(0, 1+ Bul, I

where
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o 10 7
o 1 0
2. 4) By, =| Woim o b O 0 .0
Bk 0 1
L bony -+ bpz 01
with
bulz, &) =(@¥™)tau(x, ¢ =1, .-
@. 5 { l o) ( ? )
%ﬂﬂ(‘x! s):(xq/m)_(j+l—k)sl[jk(x; E) (]>k); l:ni) ni—ly ) 2
and
0 0
©. 6) By(z, )=[z"Veer| 1
0 n-1

From (1. 7), (1. 9) and (2. 5), we have

o S
bule, 9= 3, 3 afua et e/ ma e,
v=0 F=m§vl

2.7
Bju(z €)=~ Z Z %‘(ﬁc),,‘xula+;x—q(j+1—k)/m[x—l/a,e]u.
v=m1k =0
Remembering the assumptions (1. 9) and (1. 11), we can write the equation (2. 3) as
©.8) [z-ee]n Z—: =Bz, o),

where B(x, ) has an asymptotic expansion in powers of (z~/%) in the domain (1. 2)
such that

B(x, &)~ i} BO(z)[z~Vae]

with
10 1 0 7
0o 1 0
2.9 BO@)=| Lot - 01 0 1 oy FB@.
0 0 1
L @Sy 0] ]

Here we notice that {9 ,, are some constants and there exists at least one non-
zero element, and for such element we must have w=g//m. The matrices B{”(x)
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and B®(x) (v=1) are holomorphic in x*™*, and B;®(0)=0.
The characteristic equation of the matrix B®(0) is

»
~2,(0) O —
zH1 [Ami—2m72aR) =+ — AR i) =0

Let 2, .-+, 2, be the roots of the above equation, and we must assume that
2. 10 ik, jxk,  j, k=1 n.
If we put
x=tmh,

then the equation (2. 8) becomes
2. 11) [z"("““l)e]hr@— =(C(z, &)u,
dc

where C(z, ¢) is holomorphic in = and ¢ for
7| =70, 0< el =, larg e[ =0y,

and has an asymptotic expansion when ¢ tends to zero:
Clz, &)= 3] CO(o)[c=mt0e],
v=0
The matrices C®(r) are holomorphic for |z]=7, and
CO@R) =mhB®(a).

The characteristic roots of the matrix C®(0) are all distinct with each other, and
then we can prove the following lemma.

LeMmMmA 2. 1. Under the condition (2.10), theve exists a linear transformation
2. 12) u=2P(z, ¢)z.
which changes the equation (2.11) into

2.13) [r“""f‘”e]"t%j— =D(z, ¢)z,

with the following properties:

a) D(z,¢) is holomorphic in v and ¢ for
2. 14) |zl =74, larg 7| = ay, 0< Je| =e, larg €| =y, 0L o= mDe| < gy,
for sufficiently small positive numbers t, and pq, and arbitrary o;

b) as |c-™P¢| tends to zero, we have

@. 15) D(c &)= i DO [~ mie]

uniformly in (2. 14);
C) the matrices D™ (z) are diagonal and holomorphic for |t|=t, and
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3
0

o " J
n

DOO0)=mh

d) the matrix P(c,¢) is holomorphic in t and ¢ for (2. 14) and has an uniformly
asymptotic expansion as |t~ ™ 0e|—0:

(2. 16) P(c, )= i PO ) [r-miDe]r,

where P (z) are holomorphic and P(z) is nonsingular for |t|=t,.

Proof. We give here only a brief proof, and the details are for example in [3].
At first, from the assumption (2. 10), there exists a nonsingular matrix P©(z) such
that P™(z)-'1C®(c)P () is diagonal. Thus the transformation

=P ()z®

changes the equation (2. 11) into

dZ(O)
@.17) [emmiPe]te —— =Du(z, )2,
where
(2. 18) Do(f, 5): i Do(”)(‘[)[f_(m'l q)e]v
v=0

with D,®(zr) diagonal. Next, by the usual method, we can construct the matrix
QW (r) (k=1) such that the transformation

20 = {I+Q(k)(f)[f_ (m+q)€]k}z(k)y

where [ is unit matrix, takes the equation (2. 17) into

)
=Dz, )z,

&
[z-—(1n~l q)e]hz. dZt
where
Dz, &)= i D (D)o~ mroe)
v=0

with the matrix Dy®(zr) diagonal. Then we get a formal transformation
u~P (z, €)z,

where

8

[ {[_’_Q(/c)(r)lz-—(mlq)ejk},

=1

ﬁ(z‘, &)~ ()
k

such that

[z"(m*q)s]hz'%f_— Nb(t, &)z,
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where
D(z, &)~ i DA(v)(T)[T—(m+q)s]u
v=0

with ﬁ‘”)(r) holomorphic for |¢|=7, and diagonal. The analytical meaning follows
from a Borel-Ritt theorem.

Since all the matrices D®(z) of (2.15) are diagonal, we can easily calculate a
formal series solution of the differential equation (2. 13) and get a following theorem.

THEOREM 2. 1. The differential equation (2.11) possesses a formal matrix so-
lution of the form

N h

2.19) s~ Y, eu(z) exp[Z e (z‘)]
v=0 V=0

with the following properties;

(2. 20) u(t) =7~ IO (),

where 1Y (r) are polynomials of degree v, at most, in logc, whose coefficients are
holomorphic in |t| =7y, and bounded in the domain (2. 14);

@.21) Fo(r)= SD(V)(T)T(m-q) =) -1(¢ (v=0),

if in this integral the determination of the integral is chosen such that the series
expansion has no constant term, F *(r) can be written

FO(r)=¢-m+o =R (7) w=h—1),

FO )= log T+T—(m+q)(u—h)ﬁ‘(v)(z-) v=h),

where B (c) are holomorbhic for |t| =z, and f* are constant matvices.

(2. 22)

§3. Formal solution in the neighborhood of x-=0.

We transform the equation (1.1) by the stretching and shearing transformation
of the form (see Iwano [1]),

3.1 T=¢%s,

3.2 y=02(c"),

where (%) is defined by (2.2) with < instead of £, and then becomes
dv .

3.3 = =B(s, ),

where

Bi(s, ¢) ' 0
3.4) B(s, ¢)= -
Bpi(s, €) +++ Bpy(s, ¢)
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with
0 1 0
@3.5) Bu=| ¢ A
bini; bini—ly "ty bil 0
I=nsy mi—1, -+, 2
(3.6) buls, ) =¢aule®s, o <z=;1¢n 2 )

Here we denote the number ag/m by y. If Bu(s,e) is a (j-k) element of the
matrix B(s,¢) which does not belong to the matrix Bii(s,¢) (i=1,--,p), we can
write

3.7 Bju(se)=e =P (e%s,6)  (F>k).
From (1.7) and (1. 8), we have formally

had o
(3. 8) bi[(s, E)N Z Z(”) ag"l)'#spsv-l—alu—ﬂ’
V=0 p=msy
©o oo )
3.9 Bju(s, )~ 2, 2o AR srevtanr=rGrl-p,
V=Rjg #=0

Here we put e=p™*? with p>0 for ¢>0 and rearrange the formal series (3. 8)
and (3.9) by the series of ascending power of e. Remembering the assumptions
(1.9) and (1.11), we can write the equation (3. 3) as

o _

(3.10) s H(s, p)v,

where the matrix H(s, p) is holomorphic in s and p for (1. 2), and formally,
3.11 H(s, o)~ EOH ©(s)p”

with

[HP©0) 0

[0 1 0
. ’ Hg,oz)(s) = 0 - * 1 ’
0 Hps) A ORHO)

3. 12) H®(s)=

B | 0
G.19) H®(s)= : H(s)= :
[ DfR(s)  Hip [ /12(8) -+ 1P (s) O

All of the elements of the matrices H®(s) are polynomials of s and can be
written
I=mni, n;i—1, -, 2
3. 14) h§(s)=st/me/mife(s) | i=1,2, -, p :
v=0,1, -
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) . i>k
3. 15) I )
y=0, 1’ vee
where A%(s) and $$(s) are bounded at s=oo, and in particular,
=My Mim1y *+*y 2
(3. 16) M =amsit )
i:l 2’ -."p

where @}, are constants and not zero for which ap=yl, and --- denotes a poly-
nomial of s of lower degree which comes from the indices of (v, ) such that
vtap —ri=0 (v=1).

Now we consider the analytic meaning of (3.11). We denote by D(Js|=s;) the
domain such that s and p are contained in (1. 2) and |s| <s;, and denote by D(|s|>s;)
the domain of s and p contained in (1. 2) and |s|>s;. Then clearly for arbitrary
s1, we have uniformly asymptotic expansion

G.17) Hs, p)= 5, HO @0

in D(|s|=s:). Next we must consider the asymptotic property of H(s, p) in D(|s]>sy).
Let H®(s)y** be a matrix defined by

HO(sy*=Q(s) " HY()2s)  (vz1),
where £(s) is defined by (2.2). From (3. 14) and (3. 15) we have
H O (s)kk = gv/mhra/m [f ()%,
where H®(s)* is bounded at s=o0, and then H®(s) can be written
(3. 18) HO(s)=smutamQ() O (sy*Qs™)  (w=1).
Now we can prove the following lemma.

LEMMA 3. 1. For every v=0, there exists a matrix Fr..(s) bounded in D(|s|>s,)
such that

(3.19) H(s, p)— é}oH O($)p* =31 Ersa(s, p)A(s™H) s ™ 0]

Proof. To prove this Lemma, it is sufficient for us to state that for every
r=0, there exists a bounded function e,+:(s, p) in D(|s|>s;) such that

r
bu(s’ 5)__ vz-:ohéli)(s)pu:slq/m+(r+1)/mher+1(s’ p)pr+1,

7
Biuls, )= T, D50 = saH D/ w5, ),
y=

But this is easily derived by considering the order of magnitude of the remainder
terms.
Let
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v~ 2, 09(s)p*
v=0

be a formal series solution of (3.10). Then »%(s) must satisfy the following
equations:

dv® = ©® ()
(3. 20) 75 —HOE®,
av® Y
(3.21) =HO(s)o® + 3 H@ ()= w=1.
=1

The asymptotic solution of (3. 20) in the neighborhood of s=o0 can be obtained
using a theorem of Hukuhara [2]. At first, it is convenient for us to transform
the equation (3. 20) by

3. 22) p=mY M+ gt/m (mY @D >(),
(3. 23) O =2(s)w®,

then we have

d 0>
(3. 24) e LIOS COITES
where
K11(7]) 0 0 1 . 0
(3. 25) K@= . Kiitp)= 0 o1
0 Kpp() ko j(7]) -, kja()

with

I=ny,ni—1, -, 2
(3. 26) ku(rj)Zm‘ll’('”q)?y‘q“’”" m—lh%ol)(s) ( )’

i=1,2,-,p
and

0
3.27) Kp=—a7| °l
n—1

If we substitute the equations (3. 16) into (3. 26) and rearrange them in powers
of », we have

dw(O)
dy

where B®@(0) is a constant matrix calculated from (2.9) whose characteristic roots
are 2, and L, --- are matrices of lower order. From the assumption (2. 10), we can
calculate the asymptotic solutions of the equation (3.28) in the neighborhood of
p=oco, It is easy to see that the equation (3.28) has a formal matrix solution of
the form

(3. 28) = {72 m=1BO(0) 4 ya+m=2L, ...},
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3. 29 w<°>~{ % wu%-v} 7 exp [0,

where w,” are constant matrices and w,(0) is nonsingular, é(p) is a diagonal matrix
such that

. @) 0
(3. 30) Q= :
0 ()
where
N A .
(3. 31) QI(7)= m—jf-q ﬂm+q+CIj277m+q_1+"‘+q_7m+q7]y

and 17 is a constant diagonal matrix such that

NER
3.32) o= e |
0

Now let us apply the theory of Hukuhara [2] to the equation (3. 28) and (3. 29).
At first we define the singular direction arg »=~0 (1, k=1, ---,%) in the y-plane for
which

(3. 33) cos {(m+qg)0x+arg (A;— )} =0.

For each fixed j (=1, 2, ---,n), there corresponds a formal solution of the equ-
ation (3. 20) of the form

3. 30) w&‘;z(n)fv{ z w;-m-v}nﬂf explim] k=12, ),

where w(, are constant n-dim. vectors. Let b , be sector in the »-planc
(3. 35) 3 0p=arg =0,

such that 2‘] contains at least one singular direction 0 (k=1,2,---,n). Clearly a
finite number of such sectors overlap the full neighborhood of y=co. Here we
divide the indices % into two groups. The first is the indices (%4, -+, &») for which

(3. 36) Re {% @-(ry)—%@k(m} =b<0

for all sufficiently large nef’ 5, and the second is the remainder indices. Then from
a theorem of Hukuhara [2, p. 155], we can conclude that the equation (3. 28) has
one and only one solution which is asymptotically developable in series (3. 34) as
y—oo in by ; such that

w%(’h)zwﬁ) (k=k1; R kn’);

where 7, is taken large cnough in 2 , and w$ are arbitrary numbers.
From this, the neighborhood of y=oo is divided into a finite number of suf-
ficiently small sectors, and in each of such sectors there exists a fundamental matrix
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solution of the equation (3.28) which can be gxpanded asymptotically in the form
(3.29). Now we pick up one of such sectors 2,

3 0. =arg p=0,,

where 6, and #: do not coincide with any singular direction, and let S be the
inverse image of 2 under the transformation (3.22). Thus we have the following
lemma.

LemMA 3. 2. The equation (3. 20) has a fundamental solution which is asymp-
totically developable for sufficiently lavge s in the sector S such that

@.37) e :Q(s){ > v,<°>s-v/m]s" exp [Q(s)],
V=0
where v, are constant matrices and v,® is nonsingular, Il is a constant diagonal
matrix
-71'1 0
H = ". )
L0 TTn
and Q(s) is a diagonal matrix
_Q1(S) 0
Q(s)= )
LO qn(S)
mA,
(3. 38) CIj(S)= S(m+q)/m+qjls(m+q—1)/m_l_...+qjk+qsl/m.
m+
Next we must solve the equation (3. 21) all of which have the form
t
3. 39 -j—s =HO®)t+F(s)

with entire coefficients. The integral
(3. 40) t(s)———S 2O (5)O () F(0)do
res)

is a solution of (3. 39) if I'(s) designates a set of paths yu(s) in o-plane ending at
s for every scalar integral contained in (3.40). The paths 7(s) will be given

later.
Define #(s), #(s) and F'(s) by the relations

H(s)=2s)E(s)s" exp [Q(s)],
3. 41) 2O ()=2(s)P(s)s” exp [Q(s)],
F(s)=R(s)B(s)s" exp [Q(s)]-
Then (3. 40) becomes

(B.42) f(S)=5‘°’(S)Sr® {exp [Q(s) —Q()]} (s/a) v (a) ™!
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F(a)(a/s)"{exp [Qo)—Q(s)]} do.
Assume for the moment that
(3. 43) F(s)s? is bounded in S(si),
where b is a positive constant and S(s;) is a domain such that
S€S, |s| >s:
for sufficiently large positive number s,;, then we have
PO (s)-1f(s)s~ is bounded in S(s.).

For simplicity, we introduce g;(s) by

(3. 44) q(8) = q1(5) — qu(s)-
Then every element of the matrix in the integrand of (3. 42) has a form
(3. 45) Dir0)a®(s[a)i~"k exp [gi{S) —gs(a)],

where pji(o) is bounded in S(s;).
To calculate this integral it is convenient to introduce the auxiliary variables

g(m+a)/m —

- m-+tq ’ m+q

s(m+q)/m.

(3. 46) ¢

Let the sector S in the o-plane correspond to the sector X in the ¢-plane and let
S(s1) correspond to 3(&;) with &= (m/(m+-q))s:™*2’™. We assume here that the central
angle of X is not larger than = (this is always possible by subdividing the sector
S if necessary). Now we determine the path of integration 7;(s) for each pair of
(j, k). First let jxk. Draw in the {-plane the sector 2 and the line arg {=a;; for
which the quantity

(3. 47) cos {aj+arg (A;—4x)}

equals to zero. Then the {-plane is divided into two half plane, in one of which
the quantity (3.47) is positive and in the other plane negative. If the sector %
and the positive half plane have a common part, we can draw the line /;; for which
the quantity (3.47) is positive. Then we can draw the line A;x(¢) such that the
line 2;x(¢) is parallel to lj, starts from & and extends to co in 2. In this case, we
can choose a positive number B;: such that

Re [(4—4)(E—O]=—Bw |§—L]

on the line 4(§) for all e€2'(&,), and for each fixed & there exist constant numbers
R and K uniformly in & such that

Re [gi(s)—gi()] =K for |§—(|=R, [§]>&1, [L]>&,
Re [gi(s)—gi(a)]=—Bi|6—L| for [E—CI>R, [§]>6&, [C]>61

Next, if the sector 3 and the positive half plane are disjoint, we can take 1;(§) as
a segment from some fixed point & to £ in X(¢;) such that the inequality (3. 48)

(3. 48)
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is also satisfied on it for some positive constant B Here we must choose the
quantities |&.| and & sufficiently large. Let the integral path 7;(s) be the inverse
image of 4x(§) under the transformation (3. 46). For the paths 7;;(s) it is sufficient
to take them as segments from some fixed point s, to s in S(s;). In order to make
sure that all points of yju(s) lie in the domain S(s;) of the ¢-plane, we must limit
s to a domain S(s,), where s, is sufficiently large. By these determinations of the
paths of integration, we can easily prove the following lemma.

Lemma 3. 3. If the differential equation (3.39) satisfies the condition (3. 43),
then it possesses a solution of the form

(3. 49) #(s) =s>*1(s)t*(s)s" exp [Q(s)]

where t*(s) is bounded as s extends to oo in S(s,).

Proof. The integral (3.45) along 7;(s) has the form in terms of { and &,
e (P (GO~ auON Fulo)Ters om0 odl, k=12,
,ij

Let us express { on 2(£) in the form
C:'S_i_a]'ka} j; k:]_’ 2y ey N,

where d;; is a constant of modulus 1 and « is a real variable, and divide the integral
into two parts of |[£—¢|=R and |é—{|>R. Then the above integral becomes

R a0 a eyt (mdb—gd/ (m+ @)

gomv-oromio 4 (" fexp [gs® — @) o) 1402 -
where @, is a certain finite constant or oo depending on 4;(£). For j=k, the ine-
quality (3. 48) assures us that the above integral is a uniformly bounded function
of & for £€e3(£,), and the integral of (3.45) is of the order O(s>~?™) as s—oo in
S(s1). For j=k, qi(s)=0, n;=n; in (3. 45), and the integral of (3. 45) along 7j;(s) is
O(s**). Thus Lemma 3. 3 follows at once from (3. 41).

Now using the above lemma, we get the asymptotic solution of the differential
equation (3. 21) for each v=1 in the neighborhood of s=oco, namely it will be proved
the following lemma.

ojrda,

LeEMMA 3. 4. The differential equation (3. 21) possesses a particular solution of
the form

(3. 50) v(s)=s(s)w(s)s" exp [Q(s)],

where w(s) is bounded in the domain S(s,) and
3. 51) =L 4 4
mh m

Proof. We prove this by induction. For v=0, the equation (3.21) becomes
the equation (3. 20) and the statements in Lemma 3. 4 is satisfied from Lemma 3. 2.
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Assume it to be true for v<7. The p-th term of the summation in (3. 21) has a
form

Hw($)0-0(s) =570 Q()H($)*w=(s)s" exp [Q(s)]
where H®(s)* is defined in (3. 18) and

fom= 7}15}; + -:7 +e(r—p).

The exponent f (7, z) is the largest for g=1, and then for v=7 we can apply Lemma
3.3 to the equation (3. 39) with b=s(r, 1).

Thus we get the following theorem.
THEOREM 3. 1. Let k(s) be a funclion such that
0, if [s|=so.
(3. 52) k(s)=
1, if |s|>se.
Then the differential equation (3.10) has a formal solution v of the form

(3_ 53) vNQ(Sk(s)) {20 w(u)(s) [slc(s)ep]v } Sk(s) n exp [Q(S)],

where w(s) are bounded in the domain (1.2) and |s|=s, if k(s)=0, and in the
domain se€S(s,), w*(s) is bounded if k(s)=1.

REMARK. In the previous papers [3], [4], the connection formula between the
solution of the equation (3. 20) in the neighborhood of s=0 and that in the neighbor-
hood of s=oco can be obtained from a theorem of Okubo [5] or a theorem of
Turrittin [6]. But in this case they are no longer applicable, then we must calcu-
late the connection formula by the method of asymptotic matching.

§4. Existence theorem (1).
Here we prove the following existence theorem.

THEOREM 4. 1. Let T be any sector of t-plane with vertex at the ovigin and
central angle less than w/(m-+q)h, and let

@ 1) s~ 37 U (2) exp [ 5 e""‘F("’(r)]
v=0 v

=0

be a formal solution of (2. 11) which is defined in Theorem 2.1. Then there exists
an actual solution of (2.11)

n
u(z, e)=1i(z, ¢) exp ), e "F¥(a),
v=0

and for every integer v, there exists a domain D, of e, t-plane defined by

4.2 e,  0<|e|=e, |arge|=d,  alfV™O=|t]|=c
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(e1, 01, ¢1 and c» are certain constants independent of ¢), in which it holds that
4. 3) i(z, &)— 2, eu®(t)=E(z, e)[c~m+2e] 1,
v=0

where E.(t,¢) is a bounded matrix function.

Proof. This can be proved by the same method as in [4], but for the com-
pleteness we will repeat it. It is sufficient for us to prove the statements in Theo-
rem 4.1 only for the equation (2. 13).

Define the matrices D (z,¢) and z“(z, &) by

r+h
D®(z, &)= Y D®(r)[r~m+Dc],
v=0

r+h
2™(t, e)=exp ), e " F V(7).
v=0

Then z(z,¢) is a fundamental solution of the equation
dz

iy Y2 Do
[z De] I D™(z, ¢)z.

By the transformation

4.4 2=z 4w,
the equation (2. 13) becomes
Adw™
4. 5) [c~(m+e]re =D(z, e)w +[D(z, e)— D (z, &)]z.

T

Define the matrices K(z, ¢), D™ (z,¢), W (z, ¢) and 2(r,¢) by

K(z, e)= }h:,' e FW(z),
y=0

h
D(h)(f, 6)= Z D(”)(T)[T_(m+q)£]”,
v=0

WO(r, )=wT(r, ) exp [~ Kz, ¢)],
27(r, e)=2T(, ¢) exp [—e"K(z, ¢)],
then the equation (4. 5) becomes

dw
T

[z-—(m+q) 6]"’1’

:D(h)(f, s)w(r)__w(r)D(h)(f’ S)‘l-[D(T, 6)—D(h)(f, e)]u")('l)

4. 6)
+[D(z, &) — D" (z, )]2.

Here we have
D(T, 6)—D(h)(‘l', €)=[‘L'_(m+q)6]h+1E(h)(T, 5)’

4.7
D(z, &) —DP(z, &) =[c~m+@e]r+h+1EM (7 ¢),
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where E™(z,¢) and E™(c,¢) are bounded in (2. 14), and from (2. 22) we can write

r+h
2n=exp Y e hFO(c)
v=h+1

4. 8)

r+h
=exp Z [T—(m+q)€]u+hﬁ‘(v)(z-)

v=h+1
with bounded matrices F*®(z). Then 2% is bounded in (2. 14).

If we write the equation (4.6) for each component of @ (z, &)=(WH(z, ¢)), it

becomes
dw§p . . s
7 :(dj_dk)wjk(‘r) _|_ [(D_D(h))w('r) +(D—‘D(T))Z(T)]]’k,
where each of d, (j=1,---,#) is the j-th diagonal element of D®X(z,¢), and this
equation can be converted by the method of variation of constants into the following
integral equation:

[c- v+ e]hr

Wi (e, 6)=6“"S [exp e~ { ptja(r) — pis(0) 1 [{ D(a, €) =DM (0, &)} (0. €)
4.9 e
- H{D(a, &) =D (3, 2 7(a, s ™ O Gy k=1, -, ),

where
:a]'k(T’ 6) = KI(T; 5) - Kk(f) E)

with diagonal elements Kjy(z,¢) of K(z,¢), and 7s is an integral path which is
described in later.

Now we prove the existence of the solution of (4.9) by the fixed point theo-
rem. Let @ be the set of all matrices W(z,3)=(w;i(z,¢)) whose components are
holomorphic in (z, ¢) for (4. 2) and satisfy the inequality

4. 10) | Wiz, )| S M|z—mroe|r

where

7= mas | 33w |
and the constant M will be chosen appropriately. Clearly & is closed, compact and
convex with respect to the topology of uniform convergence on each compact subset
of the domain (4. 2 The mapping (W) is defined by right-hand term of (4.9)
with W in place of W™ (r,¢). To apply the fixed point theorem, we must only
prove that the integral (4.9) converges uniformly and the matrices (W) satisfy
the inequality (4. 10) for all matrices W of 4.

From (4. 7) and (4. 8), there exist constants M, M, and B independent of ¢, ¢
and 7-™+2¢ such that

I D(z, &)= D" (z, &) || = Ma|z=m+2e|n+1,
H D(T, 5)_D(7)(T’ 5)” éMr]T_(m+q)8|H'h+1,

127z, 9l =B
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in the domain (2. 14). Then we have

1 (wsn)|

4.11
@1 élelms lexp e~ {pju(2) — pi(o)} | [Mn M |0~ "+ Pe| 4 M, B] | o]~ ™0 T+ D=1,

ik

Here we must determine the paths 7;(z). In doing this remark that if we put

(4.12) (@)= m’j’_q mrOR(2; — 4y),
then we have
(4.13) d" (¢, )= L0 20) > (T) [14+0(@)-+O(c=m+0¢)]

in the domain (2. 14) and for small |c~™*?¢|. Let
(4. 14) [z~ (mADe| < gy

The conditions
(4. 15) e, aldvmo =]t =c
determine a region in the z-plane which depends on e. If we introduce the aux-
iliary variables
(4 16) C=0(m+q)h, E=T(m+q)h,
then the image X of the region in the &-plane is a sector of annuli whose central
angle at the origin is less than x. Let 2*>2 be an isosceles triangle with the
same axis of symmetry as 2, with its base tangent to the larger circular arc of
the boundary of Y and its sides passing through the endpoints of the smaller
boundary of 5. Without loss of generality we may assume that, for positive e,

the base of 2* is not parallel to any rays through the origin of the é&-plane on
which the quantity

(4. 17) Re [e—n

| =

equals to zero. 0 in (4.2) is to be taken so small that (4.17) remains different
from zero for all ¢ with |arg ¢|<0,=d,. The size § of the two equal angles at the
base of 2* is to be independent of ¢ and so small that any direction from an end-
point of the base of X* into 2* is not parallel to a ray through the origin on
which (4. 17) vanishes for some ¢ with |arg ¢| <d..

Let &, &, & be the vertices of X* as in Figure 1. The radii #, 7. of the
circular arcs that bound 2 are

(4.18) 1=, MO e|h Zpp =, M DOR,

Since the shape of X* is independent of ¢, there exist positive constants %, and k.
depending only on 8 such that

(4.19) [&1] =Fury, |62| = ko,
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e )

Fig. 1

Now c¢; and ¢; in (4.15) must be chosen so that the inverse image H* of 2* in
the z-plane lies in the domain where (2. 14) is satisfied. 2* lies in the ring

(4. 20) 6] =6 =16
Hence, by (4. 18), (4.19) and (4. 20), H* lies in

kll/(m+q)hcllsll/(m+q) é ITI ékzl/(m+q)h62.

The first of these inequalities implies that

IT—(mi-q)eI ékl—l/hcl—(m rq)_

Therefore, (4. 14) can be satisfied by taking c; large enough. The condition [z]| =7,
is satisfied if ¢, is taken sufficiently small. In order to be sure |&|<|&:|, it may
be necessary to take ¢; in (4. 2) smaller than ¢ in (1. 2). Now consider the region
2* in the (-plane and let {=¢£ be some point in 3*. From the method of construc-
tion of 2*, the quantity (4.17) with { in place of & changes monotonically if ¢
moves from &, along a straight segment to £ and then to &. Hence this quantity
increases along one of the two paths &¢& or &£ For jxk, let 24(€) be the one of
these two segments along which (4. 17), with ¢ for &, increases. The inverse image
of 2;x(&) under (4. 16) will be our path 7;(z). For j=k, we may take either of these
paths as rji(z). Finally from (4.13), we can choose 7z, and p; so small that
Re [e"u;(o, €)] also increases along 7(c). Now let us consider the integral (4. 11).
From the way yu(c) was constructed, we have

l (@yjk)l é ]E[r+2MhMSIo-l—(m+q)(‘r+2)—1[do.l
+ |€[r+1MTBSlo-l—(m+q)(r+1)—llda-l.

About the integral appearing in above inequality, we prove the following lemma.

Lemma 4. 1. There exists a constant M, depending on B and y but not on
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e, 1 and Ty such that

. 21) S o]~ 0r-1|dg| < Mj|c|-mior  (r>0).
7jx()

Proof. If we write this integral in term of {, (4. 21) becomes
1 g -1
“r/h=1dL].
(m+q)h ljh(e)lCI &l

To fix the idea assume that 1,;(¢) starts at &. Let 6 denote the polar angle in the
{-plane. Designate by p, 6, the polar coordinates of the end point of the perpen-
dicular from {=0 onto the straight line on which 4,;€) is situated, and denote by
0¢ the polar angle of & Then along 4;(¢) we have

— 5 FB=0,—0< .
Let A%(€) be the part of 4;(&) where
10, —6] = ——.

If 2%(€) is not empty,

. [

Vi 1t =pr " cos 0—0)wan

HIS) Op—n/2-p
and we have |0:—0,|=n/2—p so that

p=|§| cos (0:—0,)=|¢] sin B.
Hence
/2~

4. 22) S( cr1dg] = Gsin el cosrrgan.
ljllz(e)

—n/24p

Let 2%2(¢) be the part of 2x(6) not in 25(6) and assume that it is not empty.
On this segment, |d¢|<|d|&]|]|sec B, and therefore
h
(4. 23) [ ottt = 22 e,
A r

where &% is the left end point of AR(6). If AR(E) is not empty |&[=|&*|, and if
A& is empty &* coincide with & Then &* can be replaced by ¢ in (4. 23), and
Lemma 4. 1 follows at once by adding (4. 22) and (4. 23).

From Lemma 4.1 we have

T (wix)] = [MuMp+ M, B]1 My |v~m+ 2|+
hence if g in (4. 14) is taken so small and M so large that
n[ MMy + M, BIM: < M,

then we can conclude that
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|F(W)| =M |c-mog|r+1)
and also from uniform convergence of the integral (4. 11) we have
gW)cW.

If we apply the fixed point theorem, we can prove the existence of the solution
of the equation (4.9) and hence (4. 6) of the form

WO(z, e)=[r~ M D] HE\(z, ¢),
where E.(z,¢) is bounded in (4.2). Then the function
w(z, )=w™ (g, &) +2T(z, ) exp [e " K(z, ¢)]

is a fundamental matrix solution of the differential equation (2.13). By a usual
method, we can prove that the solution w(z,¢) is independent of ». This completes
the proof of Theorem 4. 1.

§5. Existence theorem (2).

In this Section we prove the existence theorem corresponding to the formal
solution (3.53) in Theorem 3. 1.

THEOREM 5. 1. Lel S be lhe seclor in the s-plane defined in Section 3, and let

(5. 1) vNQ(Sk(s)) i w(v)(s) [Sk(s)cp]u Sk(s)“ eXp [Q(s)]
v=0
be a formal solution of (3.10) whose existence was proved in Theorem 3.1. Then,
there exists an actual solution v(s, p) of (3.10) of the form
v(s, p) =2(s¥)(s, p)st®7 exp [Q(S)],

and for every integer v, there exists a domain D. of s, p-plane defined by
(5.2) seS,  0<|pl=ps, largp|=0:, |s'0|=cs

(025 02 and c; are some constant independent of p), in which it holds that
r
ﬁ(s’ p)— Z’ w(u)(s)[sk(s)ep]v:ET(s’ p)[sk(s)ep]r-ﬂ,
v=0

where E.(s, p) is bounded.
Proof. Let

,

5. 3) (s, p)= Zov‘"’(b‘)p”

v=
be a finite sum of the series (3. 53). This satisfies a differential equation

% =I(s, p)v,  IL(s, p)=0"(s, 0)'v"(s, )",
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where v denote the derivative of v with respect to s. Clearly »‘“(s) is a non-
singular matrix and all »“(s) are entire matrices. Hence if s,>>0 is chosen arbi-
trarily, (s, p)~! exists for

(5.4 lol=ps,  |s|=so,

where p; is a sufficiently small positive number depending on s, and . On the
other hand, from Lemma 3.4 we have

(6.5 (s, )=12(s) ;0 w*(s) [sep]’}S” exp [Q(s)],

where w®(s) are bounded for |s|>s, and seS, and w‘(s) is nonsingular for s=0.
Then it follows from (5. 5) that »™(s, p)~* exists for

(5. 6) SES, |sp| = pra, |s] > so,

where p. is a sufficiently small positive number depending on s, and 7.
Define a function #7(s, p) by

6.7 Vs, p)=R(sH)B (s, p)s*®" exp [Q(S)].

Then, from the above discussions, #”(s, p) is bounded and nonsingular if s and p
satisfy the condition (5.4) or (5. 6).

If we put
5. 8) v(s, p)=v"(s, p)+27,
then the equation (3. 10) becomes
dz(r)
(5.9) 75 =H(s, )2 +1I1(s, p)o°(s, p)—0 (s, p)'.

Then any solution of the integral equation
z")=j () (o) [{H o, p)—H(0)}2 +{H(o, p)v(3, p) —0(0, p)'}]do
re)

satisfies the differential equation (5.9). Here I'(s) denotes a set of #? paths of
integration in the o-plane ending at s.
If $9(s) and 2(s, p) are defined by

v(O)(S) :Q(Sk(s))ﬁ(o) (s)sk(s)” exp [Q(S)],
Z(r)(s’ p)=Q($k(S))é(T)(S, p)sk(s)” exp [Q(S)],

then the above integral equation becomes

(5. 10)

g(r):ﬁ(i))(s)s ()sk(s)ﬂ [exp {Q(s)_Q(q)}]g-km175(0)(0)—1Q(g—k<a))
r(s;
6. 11) [{H(o, 0)— H(0)} 20" ¢+ exp [Q(0)]
+{H(a, p)p (0, p)—0T (0, p)'}]s*®" exp [—Q(s)]do.
After a short calculation, using (3. 17), (3. 18), (3. 19), (3. 50) and (5. 7) we get
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H(O', p)v(r) —I)(T)(G, p)/ =Q(0’k("))E(O', p)[ak(u)ep]r+10.—k(o)0-k(o)’7 eXp [Q(O’)],
and
H(O', P) _H(O)(U) — .Q((Tk("))E(O', p)[ak(a)c‘o]a—k(v)g(a—k(a)),

where E(g, p) is a bounded matrix in (5. 4) or (5. 6). If these relations are inserted
into (5. 11), we have

é(r)zi‘,(O)(s)S ()sk(s)ﬂ [exp {Q(s)_Q(G)}]G—k(v)”z'}(O)(g)—lE(o.’ 0)
r(s

(5.12)
{gHD =D . ZD | [gh(Dep|rHl gk} gk Tk T ey (O)(5)—Q(s) }do,

where E(o, p) is some bounded matrix.

We prove the existence of the solution of this equation by the fixed point
theorem. Let & be the set of all matrices Z=(2u(s, p)) whose elements are holo-
morphic in the domain D, for |s|<s, and [s|>s, (s3xc0) respectively and satisfy
the inequality such that

1Z]l= max 3 12x(s, )l = Mol if |s]<so,
1Sjsn k=1
(5.13) R .
IZI|=M|sp|™*", if |s]>so.
The constant M and others in (5. 2) are defined later. The mapping = (2) is
given by the right term in (5.12) with Z for 2, and with dividing the integral
into |s|<so and |s|>s,. If we write 9(Z) for each component,

(@) =D e lexp (g —qu)]
Tk(8)

(5. 14) o
AL(2)d* DD p 4 p(a, p)akemt D priig=k@) dg.

where 7, is the diagonal element of /7, L(Z) is a linear form of A-th column of
Z with bounded coefficients, p;(s, p) is a bounded matrix and gu(s) is from (3. 38)
and (3. 44),

m
m+q

(5. 15) qi(s)= (A —Ag)sm+D/M s A (G g— Gemrg) SV ™

If we transform ¢ and s into { and & by the relations (3. 46), the sector S
corresponds to the sector X, and if we insert (5. 15) into (5. 14), we have

I ) (élk)l é lplr+l . Iék(s)(zj—nk) m/(m+q) l Sz C-—k(v) (zj—rg)m/(m+@
k(&)

(5. 16) - exp {g(s)—qi(0)}| - B{M[{[F<em/m+ | p| -1}

. Iclk(v) {e(r+Dm/(m+@)—m/(m+q)} . ]Cl -¢/(m+q Idcl’
where B is some constant. Let I be the closed disk in X in which
(5.17) [em/ Mt | < g
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for eace p. From the way that X was constructed, the quantity

(5. 18) Re [(Z— )]

does not vanish on both boundary lines of X, and the cental angle of 2 does not exceed
z. For each pair (4, k) j*~k, draw a line in the ¢-plane on which (5. 18) vanishes,
and then the {-plane is divided into two half planes. If X is contained in the nega-
tive half plane, the path of integration 2;(£) is to be the segment from the origin
to & On the other hand, if X and the positive half plane have common part,
there exists one and only one point {;z on the circular arc of J such that the
quantity (5. 18) takes its maximum at the point (s Then in this case we take the
segment from {; to & in X as the path of integration 4;(£). For j=£k&, 1;;(§) is the
ray from origin to & 7u(s) is to be the inverse image in the o¢-plane of ()
under the transformation (3. 46). Here we limit ¢ to the convex polygon * in JC
whose vertices are (;x and two end points of the boundary lines. By this choice
of paths of integration, there exists a positive constant p independent of j, 2 and p
for &eJ(* and £ on Ax(&) (j=k), such that

(5. 19) Re [(2j—)(E—O]=—plE—L].
Here we choose constant numbers R and K independent of €2, j, &, p such such
Re [gu(s)—gm(o)] =K if [§—(|=R,
(5. 20)

Re [gu(s)—gu(0)]=—plE—=C] if |E=(I>R,

for £ on 4;(&). Next we estimate the integral

]C-—k(v) (nj—nk)m/(m+q)! I exp [qjk(s>__qjk(o-)][ ICIk(u)IL(T)——q/(m X2 [d;!,

. 21) fssww

where 2(r)=e(r+1)m/(m+q)—m/(m+q).
LeMMA 5. 1. There exists a constant C independent of & and p such that

(5. 22) ]§C [S—k(a) (zj—zp)m/ (m 2] I ls lk(v)c(H—l)m/(m+q)’
Sfor Eedl*.

Proof. For j=k, Lemma is obvious, and then we prove only for yxk. The
contribution of the integral / on the path of 2x(§) on which the inequality |{|=&,
is satisfied, is by virtue of (5. 20)

]1 éclslm/(m+q);

where C; and C, introduced below are some constants independent of & and p. If
|€]>&; and on the part of 2;(¢) on which |{|>&;, we have

]2~<—C2|E—("j_"k)m/(m+q)| [&'Ie(r+1)m/(m+q)—1
éczls—(x]——nk)m/(m+q| |§[e(r~!—1)m/(m+q)’
and when |§]=¢,, the contribution of the part of (&) on which || >, is

< £ —(ag—apdm/(m+| | & |er+Dm/ (mtq)
Js=Csl&17 [1&1] .
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Thus if we add /; and J;, or J; and J; we get Lemma 5.1 for jxk.
From (5. 16) and (5. 22). we have

|§I(§'J‘k)| éBC{Miskcs)ep[ +13 Isk(s)cp[r+1’

and then

G- 23) | (2| nBC{M |s+*p| +1}| s+ ¢p| 711,

Here we choose g in (6. 17), p. in (5. 2) so small, and M in (5. 13) so large that
nBC{Mps+1} =M,
nBC{Mp.+1} =M.

Let s, in (5. 4) or (5.6) be chosen such that s,>s;=[(m-+q/m)&,]™ ™o, and let
0:=ps, 05 in (5.2) be chosen so small that corresponding e satisfies the condition
(1.2). The constant ¢; in (5.2) must be chosen so small that ¢;=p, and the in-
verse image H* in the s, p-plane of J0* in the &, p-plane under the transformation
(3. 46) contains the domain (5. 2). From this choice of constants in (5.2), we can
apply the fixed point theorem to ¢ and T, and there exists a solution of the equa-
tion (5. 11) and hence of the differential equation (5.9) of the form

20(s, p)=R(sF®)2 (s, p)s* " exp [Q($)]
with
]é('r)(s’ [))I éMlsk(s)cplr 1,

Hence, u(s, p)=v"(s, 0)+2T(s, p) is a fundamental solution of (3. 10). The fact
that (s, o) is independent of » can be proved easily by an usual method. This
completes the proof of Theorem 5. 1.

As a conclusion, we remark that the two domains D; and D, are overlapped
with each other for arbitrarily small e, and this fact makes it legitimate to identify
the two types of solutions:

y=L@u(r, o),
y=52("(s, p),

where the functions #(z, ¢) and o(s, p) are defined in Theorem 4.1 and in Theorem
5.1 respectively.

When the fundamental assumption (1.11) is not satisfied, that is, when the
characteristic polygon II consists of several segments, the asymptotic nature of the
solution is quite complicated.
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