
ON A MATCHING METHOD FOR A LINEAR ORDINARY

DIFFERENTIAL EQUATION CONTAINING A
PARAMETER, II

BY TOSHIHIKO NlSHIMOTO

§ 1. Introduction.

In this paper, we consider the asymptotic behavior of the solution of a linear
ordinary differential equation of the form

(1.1) ε*^=A(x,ε)y

as the parameter ε tends to zero. Here we suppose that
1) h is a positive integer;
2) x and ε are a complex variable and a complex parameter respectively;
3) y is an ^-dimensional column vector;
4) A(x, ε) is an n-by-n matrix function holomorphic and bounded in the domain

of the x, ε space defined by the inequalities,

(1.2) M^a?o<l, 0<|ε|^ε0, |argε|rg<50;

5) when ε tends to zero in the domain

(1.3) 0<|ε|=gε0, |arg ε|rg<50,

A(x, ε) admits for \x\^x0 a uniform asymptotic expansion in powers of ε:

(1.4) A(x,ε)~ΣA^(x)e,
v=o

where the coefficients A™(x) are n-by-n matrices whose components are functions
holomorphic and bounded for |^|^^0;

6) the matrix A(x, ε) has the form

(1.5) A(x,ε)= A21(x,

_Apι(x, e) App(x, ε)_

where Ajk(x,ε) are %-by-^ matrices (j,k=l, ~,p');
7) in particular, each of the matrices Au(x, ε) has the form
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(1.6)

0 i . o

1

where au(x, ε) are the functions such that

00

au(x, ε)~ Σ fltac>0(aOetf (i = l, •••,/>; /=«*, m — l, •••, 2),
v=0

(1- 7)

with Wiico)^l, for some index (i,/)

8) let 9Γ/jfc(#, ε) be the (/, k) elements of the matrix A(x, ε) which is not the
elements of Au(x,ε\ and let

(1.8) 2U*,e)~ Σ δyt^We"
V=9ljfc

be the asymptotic expansion in powers of ε with holomorphic coefficients:

and assume without loss of generality that

(1.9) v/a-q(j+l-K)/m>0 for

where a=^mhl(m-}-q\ m and ^ are some positive integers defined in 9).
Under these conditions, the characteristic equation of the matrix Aw(x) in λ

has only one w-ple root Λ=0 for x=Q and at least two distinct roots for
Therefore #=0 is a turning point of the system (1. 1).

About this equations, Iwano [1] developed his method to construct the charac-
teristic polygon for the system (1. 1) and to divide the domain (1. 2) into a finite
number of subdomains so that the solution behaves quite differently as e tends to
zero in each of these subdomains. But to know about the asymptotic character of
the solution of (1. 1), it is necessary for us to prove the existence of fundamental
solution and find out the asymptotic expression of it in each of these subdomains
and to determine the connection formula between two different asymptotic expres-
sions. The purpose of this paper is to solve these problems by means of a matching
method which is originally due to Wasow [7], [8].

To do this, we need a fundamental assumption concerning the characteristic
polygon 77 for the system (1. 1). We consider a plane whose points are represented
by the coordinates (X, Y), and plot the points
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(i. ιo)

where mu™ are defined in (1. 7), then Π is a polygonal line, convex downward,
such that its vertices are some of the points (1.10) and none of the points (1.10)
is located below Π (for details, see Iwano [1]). Here we assume that

9) Π consists of only a line connecting the point R and some point P0 on Y
axis whose coordinate can be written (0, q/m), or what is the same thing, for (1. 7),

(1.
m

In the author's previous paper [4], we treated the same problem with p=l and
with a further assumption;

(1. HO JL
a m

, 2 '

In this paper, it will be removed the assumption (1.110 and will be generalized to
any positive integer of p.

In Sections 2 and 3, we calculate the two types of formal solutions, in Sections
4 and 5, it will be proved that there exist fundamental solutions whose asymptotic
expansions coincide with the formal solutions in several subdomains which overlap
the full neighborhood of the turning point.

§2. Formal solution for

The linear transformation originally due to Iwano [1]

(2. 1) y=Ω(x)u,

where

"1 01

(2.2) £(*) =

0

changes the equation (1.1) into

(2.3) [*-"«e]*:

where

du
a, ε)}u,
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(2.4)

with

(2.5)

and

(2.6)
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Ό 1 0'

0 ' 1

0

0

:l;Γ-ι,J
Ό Q

1

0 n-l

From (1. 7), (1. 9) and (2. 5), we have

00

v=n .

(2.7)

- Σ Σ ^,μx
v/a^-^+1-^/

Remembering the assumptions (1. 9) and (1.11), we can write the equation (2. 3) as

dx ' '

where B(x, ε) has an asymptotic expansion in powers of (x~1/aε) in the domain (1. 2)
such that

with

(2.9)

Here we notice that a$tH are some constants and there exists at least one non-
zero element, anςj for sucn element we must have μι=qί/m. The matrices B[°\x)

~ΓO 1 0"

0 ' 1

IβSU i - o j

~

0
* .

0
"0 1 OΊ

0 ' 1

βpn '" 0
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and B™(x) 0^1) are holomorphic in x1/mh, and J51

CO)(0)=0.
The characteristic equation of the matrix #(0)(0) is

P

Π Πwί — >iwί-2/7(0) _____ ^(0) Ί _ A[/ l — λ « ai2,μz

 ainitμni\—V.

τ=\

Let λι, tλn be the roots of the above equation, and we must assume that

(2.10) λj*λk, j*k, j,k=l, ,n.

If we put

then the equation (2. 8) becomes

(2. 11) [τ-^+^ε]hτ~=C(τί ε)u,
aτ

where C(r, ε) is holomorphic in τ and e for

and has an asymptotic expansion when ε tends to zero:

C(r, ε)- f; C™(τ)[τ-<m*&ε]».
v=o

The matrices C(w)(r) are holomorphic for |τ|^τ0 and

The characteristic roots of the matrix Cco)(0) are all distinct with each other, and
then we can prove the following lemma.

LEMMA 2. 1. Under the condition (2. 10), there exists a linear transformation

(2.12) u=P(τ,ε)z.

which changes the equation (2. 11) into

(2. 13) [r-<™+β>e]ftr ̂  =D(τ, έ)z,

with the following properties'.

a) D(τ, ε) is holomorphic in τ and ε for

(2.14) |τ|^ro,

for sufficiently small positive numbers τ0 and μσ, and arbitrary αr0;
b) as |r~(m+?)e| tends to zero, we have

(2. 15) D(τ e)~ f j /)<">(r)|>-<m-'*>s]''
v=o

uniformly in (2. 14);
c) the matrices DM(τ) are diagonal and holomorphic for |r|^r0 and
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.

d) ί/z0 matrix P(τ, ε) is holomorphic in τ and ε for (2. 14) and has an uniformly
asymptotic expansion as |r-(m+ |̂-*0:

(2. 16) P(τ, ε)~

where PCυ)(τ) are holomorphic and <PCO)(r) 2*5 nonsingular for |r|^τ0.

. We give here only a brief proof, and the details are for example in [3].
At first, from the assumption (2. 10), there exists a nonsingular matrix PCO)(r) such
that Pco)(τ)-1CCO)(r)P(0)(r) is diagonal. Thus the transformation

changes the equation (2. 11) into

(2. 17) [r-<~+«

where

(2. 18) A>(r,

with DQ

w(τ) diagonal. Next, by the usual method, we can construct the matrix
Qα )τ) (fel) such that the transformation

where / is unit matrix, takes the equation (2. 17) into

where

with the matrix Dk™(τ) diagonal. Then we get a formal transformation

u~ P(τ, e)^,

where

such that
x7Λ

ατ



MATCHING METHOD FOR DIFFERENTIAL EQUATION 67

where

with Z)Cl°(τ) holomorphic for |τ|^τ0 and diagonal. The analytical meaning follows
from a Borel-Ritt theorem.

Since all the matrices DM(τ) of (2. 15) are diagonal, we can easily calculate a
formal series solution of the differential equation (2. 13) and get a following theorem.

THEOREM 2. 1. The differential equation (2. 11) possesses a formal matrix so-
lution of the form

(2. 19) U~
V

with the following properties]

(2. 20) u™(T)=T-<m+0»u™(T),

where ύ^(τ) are polynomials of degree v, at most, in log τ, whose coefficients are
holomorphic in \τ ^r0, and bounded in the domain (2. 14);

(2. 21) F(υ)(r)

if in this integral the determination of the integral is chosen such that the series
expansion has no constant term, F(y)(r) can be written

(2. 22)
)=/C.O log

where P^(τ) are holomorphic for r|^r0, and f^ are constant matrices.

§3. Formal solution in the neighborhood of jc^O.

We transform the equation (1. 1) by the stretching and shearing transformation
of the form (see Iwano [1]),

(3. 1) x=ε%

(3. 2) y=Ω(ε")v,

where Ω(εa) is defined by (2. 2) with εα instead of t, and then becomes

(3.3)

where

(3.4)
Bn(s,ε) . 0 1
-

jBpi(s, ε) ••• 5j,p(s, ε)J
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with

(3.5)

(3.6)
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Ό 1

0

Ί=ni,ni—l, - ,2\l=ni,ni—l, ,2\

=1 ... ^ J

Here we denote the number aq/m by γ. If 99 (̂5, ε) is a (/-&) element of the
matrix B(s,έ) which does not belong to the matrix Bu(s,έ) (/=!,•••,/>), we can
write

From (1. 7) and (1. 8), we have formally

(3.9)

Here we put ε=io
m+« with p>Q for ε>0 and rearrange the formal series (3. 8)

and (3. 9) by the series of ascending power of ε. Remembering the assumptions
(1. 9) and (1.11), we can write the equation (3. 3) as

(3.10) —=H(s,p)v,

where the matrix H(s, p) is holomorphic in 5 and p for (1. 2), and formally,

(3. H)

with

"#S}(0) 0 Ί

0 Ή%(s)ί

H(s, ί>)~Σ
v=o

(3. 12)

(3. 13)

Γ#g'(0) O Ί ΓO 1 01
'-. , H$(s)=\ 0 ••• i ,

L 0 H%(s)] K(s-)-k%(s) OJ

Fs> o 1 Γ o 1
'.. , Hΰ(s)=\

LQ%(s) H$\ Lh^s) - Mf(s) OJ

All of the elements of the matrices HM(s) are polynomials of s and can be
written

(3.14)

/=«i, Hi—I, •••, 2

i=l,2, ;P
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(3. 15) <<o$(s)
=0, 1, •

where Ag(s) and £$(s) are bounded at 5=00, and in particular,

(3.16)
/l=Hi, Hi-!, ~',2\

\ί=12, ..,j> /

where tf^,^ are constants and not zero for which aμι=γl, and ••• denotes a poly-
nomial of s of lower degree which comes from the indices of (vy μ) such that

Now we consider the analytic meaning of (3. 11). We denote by £>(|s|^Sι) the
domain such that 5 and p are contained in (1. 2) and |s|^Sι, and denote by Z)(|s|>Sι)
the domain of s and p contained in (1.2) and |s|>Sι. Then clearly for arbitrary
Si, we have uniformly asymptotic expansion

(3.17) Ήs,p)~ΣH<»(s)r
v=o

in Z)(|s|^Sι). Next we must consider the asymptotic property of H(s, p) in
Let H™(s)** be a matrix defined by

where Ω(s) is defined by (2. 2). From (3. 14) and (3. 15) we have

ffM^W^y/mh+q/mffM^^

where HM(s)* is bounded at 5=00, and then #Cv)(s) can be written

(3. 18) /ί(l')(s)-5υ/wl/l-^/m^(5)/ίCυ)(s)*^(s-1) (y^l).

Now we can prove the following lemma.

LEMMA 3. 1. For every ri^O, there exists a matrix Fr+ι(s) bounded in Z)(|s|>Sι)
such that

(3. 19) H(s, p)-Σ HM(s)pv=s«/mΩ(s)Er+ι(s, p)Ω(s-^[s1/mhp]r+1.
v=o

Proof. To prove this Lemma, it is sufficient for us to state that for every
r^O, there exists a bounded function er+ι(s, p) in Z)(|s|>Sι) such that

But this is easily derived by considering the order of magnitude of the remainder
terms.

Let
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be a formal series solution of (3. 10).
equations:

(3. 20)

Then v™(s) must satisfy the following

(3. 21)

ds

as μ=ι

dη

The asymptotic solution of (3. 20) in the neighborhood of 5=00 can be obtained
using a theorem of Hukuhara [2]. At first, it is convenient for us to transform
the equation (3. 20) by

(3. 22) η = mvt™+<ί>s1'

(3.23) vw

then we have

(3. 24)

where

(3. 25)

with

(3. 26)

and

(3. 27)

"0 1 0^
0 '•- i

n-1.

If we substitute the equations (3.16) into (3. 26) and rearrange them in powers
) \K7f* VlQΛ7£»of 37, we have

(3. 28)
d-η

where Z?(0}(0) is a constant matrix calculated from (2. 9) whose characteristic roots
are λj and Li, ••• are matrices of lower order. From the assumption (2.10), we can
calculate the asymptotic solutions of the equation (3. 28) in the neighborhood of
37=00. It is easy to see that the equation (3. 28) has a formal matrix solution of
the form
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(3. 29) w™~ \ Σ w™η~v} rf1 exp [QOΛ],
lv=o J

where wv^ are constant matrices and WQ(U) is nonsingular, Q(ή) is a diagonal matrix
such that

(3. 30)

where

(3. 31) 4/0?) =—T—ηm+qJrqjϊηm+q~ l-\ h&m+g^,

and // is a constant diagonal matrix such that

~*ι O Ί
(3.32) /?= '.;'iL .

_ 0 πn]

Now let us apply the theory of Hukuhara [2] to the equation (3. 28) and (3. 29).
At first we define the singular direction argj?=0# (/, k=l, ~ ,ri) in the ^-plane for
which

(3. 33) cos {(m+q)θjk+arg (λj-λύ] =0.

For each fixed j (j=l, 2, ••-,»), there corresponds a formal solution of the equ-
ation (3. 20) of the form

where M;̂  are constant n-dim. vectors. Let Σ3 be sector in the ^-plane

(3.35) Σ3\ 0jι^ar

such that Σj contains at least one singular direction θjk (&=1, 2, •••, n). Clearly a
finite number of such sectors overlap the full neighborhood of 57=00. Here we
divide the indices k into two groups. The first is the indices (ki, •• ,&W') for which

(3. 36) Re $X9)-

for all suίϊiciently large 376^, and the second is the remainder indices. Then from
a theorem of Hukuhara [2, p. 155], we can conclude that the equation (3. 28) has
one and only one solution which is asymptotically developable in series (3. 34) as
^— >oo in Σj such that

««(?!) = «$ (* = *!, -,*»'),

where ηι is taken large enough in Σj and uffί are arbitrary numbers.
From this, the neighborhood of η = oo is divided into a finite number of suf-

ficiently small sectors, and in each of such sectors there exists a fundamental matrix
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solution of the equation (3. 28) which can be expanded asymptotically in the form
(3. 29). Now we pick up one of such sectors Σ,

Σ: 0ι^argj?^02,

where θι and Θ2 do not coincide with any singular direction, and let S be the
inverse image of Σ under the transformation (3. 22). Thus we have the following
lemma.

LEMMA 3. 2. The equation (3. 20) has a fundamental solution which is asymp-
totically developable for sufficiently large s in the sector S such that

(3. 37)

where
matrix

are constant matrices and

π=

is nonsingular, Π is a constant diagonal

01

and Q(s) is a diagonal matrix

(3.38)

Next we must solve the equation (3. 21) all of which have the form

(3.39) ^=H™(s)t+F(s)

with entire coefficients. The integral

(3. 40) t(s) = ( v^(s)v^(σ)-1F(σ)dσ
Jroo

is a solution of (3. 39) if Γ(s) designates a set of paths γjk(s) in σ-plane ending at
5 for every scalar integral contained in (3. 40). The paths ?jk(s) will be given
later.

Define f(s), ί(0)(s) and P(s) by the relations

(3. 41) vw(s')

F(s)=Ω(s)P(s)sπ

Then (3. 40) becomes

(3. 42) t(s)=vw(s)( {exp [Q(s)-Q(σ)]}(slσ)πv^(σ)-1

JΓ(s)
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P(σ)(σ/s)π{exp [Q(σ )-Q(s)}}dσ.

Assume for the moment that

(3. 43) P(s)s-» is bounded in 5(50,

where b is a positive constant and S(sO is a domain such that

5€S, |s|>Sι

for sufficiently large positive number Si, then we have

$co>(5)-ι£φs-6 is bounded in S(sι).

For simplicity, we introduce ##(s) by

(3. 44) qjjc(s)=qj(s)-qk(s).

Then every element of the matrix in the integrand of (3. 42) has a form

(3. 45) pjύσ)o*(slσγr** exp [qjk(s)-qjk(σ)]y

where pjk(σ) is bounded in S(Sι).
To calculate this integral it is convenient to introduce the auxiliary variables

(3. 46) ζ =

Let the sector S in the σ-plane correspond to the sector Σ in the C-plane and let
S(sι) correspond to Σ(ξJ with ίι=(ra/(w-f-#))sιCm+Q)/m. We assume here that the central
angle of Σ is not larger than π (this is always possible by subdividing the sector
S if necessary). Now we determine the path of integration τv*(s) for each pair of
(j,k). First let j^k. Draw in the C-plane the sector Σ and the line argζ=ajk for
which the quantity

(3. 47) cos {α/fc+arg (λj-2k)}

equals to zero. Then the C-plane is divided into two half plane, in one of which
the quantity (3. 47) is positive and in the other plane negative. If the sector Σ
and the positive half plane have a common part, we can draw the line ljk for which
the quantity (3. 47) is positive. Then we can draw the line λjk(ξ) such that the
line λjk(ζ) is parallel to /#, starts from ξ and extends to oo in Σ. In this case, we
can choose a positive number βjk such that

on the line λjk(ζ) for all ζ^Σ(ξ1)ί and for each fixed ξ there exist constant numbers
R and K uniformly in ζ such that

qJk(σ)]^K for \ξ-ζ\^R, \ξ\>ξl9

(3. 48)
^(σ)]^-^|f-ζ| for \ξ-ζ\>R, \ξ\>ξl9 |C|>fι.

Next, if the sector Σ and the positive half plane are disjoint, we can take 2Jk(ξ) as
a segment from some fixed point ξz to ξ in Σ(ξl) such that the inequality (3. 48)
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is also satisfied on it for some positive constant βjk. Here we must choose the
quantities |£2| and & sufficiently large. Let the integral path γjk(s) be the inverse
image of λjk(ξ) under the transformation (3. 46). For the paths γjj(s) it is sufficient
to take them as segments from some fixed point 52 to 5 in S(sι). In order to make
sure that all points of 7- (̂5) lie in the domain S(sι) of the σ-plane, we must limit
s to a domain S(s0), where s0 is sufficiently large. By these determinations of the
paths of integration, we can easily prove the following lemma.

LEMMA 3. 3. If the differential equation (3. 39) satisfies the condition (3. 43),
then it possesses a solution of the form

(3. 49) t(s) =sb+1Ω(s)t*(s)sπ exp [0(5)]

where ί*(s) is bounded as s extends to oo in S(s0).

Proof. The integral (3. 45) along 7- (̂5) has the form in terms of ζ and ξ,

{exp [qJk(ξ)-qjk(Q}}pjkW*-«i ζ<**-*>'<»+«>rfC, ;', *=1, 2, -, n.

Let us express ζ on λjk(ξ) in the form

where δjk is a constant of modulus 1 and a is a real variable, and divide the integral
into two parts of |f— ζ\^R and \ξ—ζ\>R. Then the above integral becomes

S R (»αo

Q + ̂  {exp [qjk(ξ}-

where «0 is a certain finite constant or oo depending on λjk(ξ). For j^k, the ine-
quality (3. 48) assures us that the above integral is a uniformly bounded function
of ξ for felXfi), and the integral of (3. 45) is of the order O(sb~q/m) as 5-̂ 00 in
S(sι). For j=k, qjk(s)=Q, πj=πk in (3. 45), and the integral of (3. 45) along 7- (̂5) is
O(sδ+1). Thus Lemma 3. 3 follows at once from (3. 41).

Now using the above lemma, we get the asymptotic solution of the differential
equation (3.21) for each v^l in the neighborhood of 5=00, namely it will be proved
the following lemma.

LEMMA 3. 4. The differential equation (3. 21) possesses a particular solution of
the form

(3. 50) v^(s)=s«vΩ(s)w^(s)sΠ exp [Q(s)L

where w^(s) is bounded in the domain S(s0) and

(3.51) 0=_1 +JL+1.
mh m

Proof. We prove this by induction. For y=0, the equation (3. 21) becomes
the equation (3. 20) and the statements in Lemma 3. 4 is satisfied from Lemma 3. 2.
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Assume it to be true for v<r. The μ-th term of the summation in (3. 21) has a
form

sπ exp [Q(s

where HM(s)* is defined in (3. 18) and

The exponent f(r, μ) is the largest for μ=l, and then for ^=r we can apply Lemma
3. 3 to the equation (3. 39) with b=f(r, 1).

Thus we get the following theorem.

THEOREM 3. 1. Let k(s) be a function such that

fO, if |5|^50.
(3. 52) k(s)=

U, if |5|>s0.

the differential equation (3. 10) has a formal solution v of the form

(3. 53) v~ Ω(sk^)\ Σ wM(s)[skMepγ\sk^π exp [Q(s)]9

where w^(s) are bounded in the domain (1.2) am/ |5|^50 (/" &(s)=0, and in the
domain s€S(s0), w^(s) is bounded if k(s)=l.

REMARK. In the previous papers [3], [4], the connection formula between the
solution of the equation (3. 20) in the neighborhood of 5=0 and that in the neighbor-
hood of 5=00 can be obtained from a theorem of Okubo [5] or a theorem of
Turrittin [6]. But in this case they are no longer applicable, then we must calcu-
late the connection formula by the method of asymptotic matching.

§ 4. Existence theorem (1).

Here we prove the following existence theorem.

THEOREM 4. 1. Let T be any sector of τ -plane with vertex at the origin and
central angle less than π/(m+q)h, and let

(4. 1) u~ Σ ε Ίί^W exp

be a formal solution of (2. 11) which is defined in Theorem 2. 1. Then there exists
an actual solution of (2. 11)

«(r, e) = ί(τ, β) exp Σ e"-ΛF<">(r),
V = 0

and for every integer r, there exists a domain Di of e, τ -plane defined by

(4.2)
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(εi, <5ι, ci and c2 are certain constants independent of ε), in which it holds that

(4. 3) ύ(τ, ε)- 2 e"«<">(r)=£r(r, e)[r-<TO+«>e]''+1,
v=o

where Er(τ, ε) is # bounded matrix function.

Proof. This can be proved by the same method as in [4], but for the com-
pleteness we will repeat it. It is sufficient for us to prove the statements in Theo-
rem 4. 1 only for the equation (2. 13).

Define the matrices D(r)(τ, ε) and 2Cr)(τ, e) by

r+h
D™(τ, ε)- 2 D™(τ)[τ-<m+*h]»,

v=o

r+h

zCr>(r,e)=expΣε-ΛFCl°(r).
v=o

Then 2Cr)(τ, ε) is a fundamental solution of the equation

[Γ-C»+«)e]ΛΓ^=JDCr)(τ e)^
αr

By the transformation

(4.4)

the equation (2. 13) becomes

(4. 5) [τ-(m+ς)ε
dτ

Define the matrices K(τ, ε), jD<w(r, ε), ίί;Cr)(τ, ε) and ^Cr)(r, ε) by

^(r,ε)-έε^^(τ),
v=o

D™(τ, ε)= 2 D^(r)[r-CTO+^e]-,
v=o

22;Cr)(τ) e)==ί(;Cr)(Γ> e) eχp [_ε-^(τ, e)],

£Cr)(Γ> e)=2(r)(Γ> e) exp [-e-ft/JΓ(r, ε)],

then the equation (4. 5) becomes

(4. 6)

D™(τ, ε) + [D(τ, ε)-

Here we have

£>(τ, e)— DCΛ)(r, e) = [r-(m+β^]Λ+1£(A)(r, ε),
(4.7)

h+1E™(τ, ε),
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where £α)(r, ε) and E^(τ,έ) are bounded in (2. 14), and from (2. 22) we can write

(4. 8) V=Λ+1

r+Λ.

-exp Σ [τ-(w+^ε]υ+/lFCy)(τ)
V = Λ+1

with bounded matrices P^(τ). Then £(r; is bounded in (2. 14).
If we write the equation (4.6) for each component of w(r)(r, «)=($$ (r,ε)), it

becomes

-̂̂

where each of J, (j=l,- ,n) is the -th diagonal element of Da\τ, ε), and this
equation can be converted by the method of variation of constants into the following
integral equation:

[exp

(4 9)

 r

where

) = j?ί}(r, ε)—Kk(τ, e)

with diagonal elements Kj(τ,ε) of A'(r, ε), and ^ is an integral path which is
described in later.

Now we prove the existence of the solution of (4. 9) by the fixed point theo-
rem. Let 2 be the set of all matrices W(τ, 3}=(u)jk(τ, ε)) whose components are
holomorphic in (τ, ε) for (4. 2) and satisfy the inequality

(4. 10) \\ W(τ, ε)\\^M\τ-^^ε\^-\

where

and the constant M will be chosen appropriately. Clearly 2 is closed, compact and
convex with respect to the topology of uniform convergence on each compact subset
of the domain (4.2)* The mapping ^(W) is defined by right-hand term of (4.9)
with W in place of $Cr)(τ, ε). To apply the fixed point theorem, we must only
prove that the integral (4.9) converges uniformly and the matrices 3"(FT) satisfy
the inequality (4.10) for all matrices W of 2.

From (4. 7) and (4. 8), there exist constants Mh, Mr and B independent of ε, τ
and r-(m+^ε such that

\\D(τ, ε)-Da\τ

|| D(τ, e)-DCr)(r
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in the domain (2. 14). Then we have

(4.11)
* ' '»+"£|+M,,B]|σ]-<m+«)Cr+υ-Wc7.

Here we must determine the paths ^(τ). In doing this remark that if we put

Wl
(4. 12) #/*(0)to

then we have

(4. 13) 4-(τ, ε)=

in the domain (2. 14) and for small |τ-Cm+^ε|. Let

(4.14) |r-(TO+«>e|^ι.

The conditions

(4.15) reT, έΓι|ε|1/(m+«>^|r|

determine a region in the τ-plane which depends on ε. If we introduce the aux-
iliary variables

(4 16) £=<7Cw+«>Λ, ς=τ<m+q)ht

then the image Σ of the region in the f-plane is a sector of annuli whose central
angle at the origin is less than π. Let Σ*^)Σ be an isosceles triangle with the
same axis of symmetry as Σ, with its base tangent to the larger circular arc of
the boundary of Σ and its sides passing through the endpoints of the smaller
boundary of Σ. Without loss of generality we may assume that, for positive ε,
the base of Σ* is not parallel to any rays through the origin of the f-plane on
which the quantity

(4. 17) Re >

equals to zero. <5ι in (4. 2) is to be taken so small that (4. 17) remains different
from zero for all ε with \argε\^31^δQ. The size β of the two equal angles at the
base of Σ* is to be independent of ε and so small that any direction from an end-
point of the base of I7* into I7* is not parallel to a ray through the origin on
which (4. 17) vanishes for some ε with |arge|^5ι.

Let £ι, £2, fs be the vertices of I7* as in Figure 1. The radii rίt r2 of the
circular arcs that bound Σ are

(4. 18) rι=cι(m+«)Λ|e|ft^r2=c2

Cm+β)Λ .

Since the shape of Σ* is independent of ε, there exist positive constants ki and k2

depending only on β such that

(4.19) |fι|=*ιrι, l
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Fig. 1

Now Ci and c2 in (4. 15) must be chosen so that the inverse image H* of Σ* in
the r-plane lies in the domain where (2. 14) is satisfied. 21* lies in the ring

(4.20) I f i l ^ l f l ^ l f ί l

Hence, by (4. 18), (4. 19) and (4. 20), H* lies in

The first of these inequalities implies that

|T-Cm+β>e | ^^-i/Λ^-Cm f«>.

Therefore, (4. 14) can be satisfied by taking cι large enough. The condition |r|^r0

is satisfied if c2 is taken sufficiently small. In order to be sure |fι |<|f2 | , it may
be necessary to take ei in (4. 2) smaller than ε0 in (1. 2). Now consider the region
Σ* in the ζ-plane and let ζ=ζ be some point in J£*. From the method of construc-
tion of I7*, the quantity (4. 17) with ζ in place of £, changes monotonically if ζ
moves from ?2 along a straight segment to ξ and then to £8 Hence this quantity
increases along one of the two paths ζ2ξ or ζsξ. For j*?k, let λjk(ζ) be the one of
these two segments along which (4. 17), with ζ for ζ, increases. The inverse image
of λjk(ξ) under (4. 16) will be our path ^*(τ). For j=k, we may take either of these
paths as f/XΓ) Finally from (4. 13), we can choose r0 and μ\ so small that
Re [ε~hμjk(σ, e)] also increases along ^(r). Now let us consider the integral (4. 11).
From the way τv*(τ ) was constructed, we have

About the integral appearing in above inequality, we prove the following lemma.

LEMMA 4. 1. There exists a constant Mi, depending on β and γ but not on
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ε, μι and τQ such that

(4.21)

Proof. If we write this integral in term of ζ, (4. 21) becomes

To fix the idea assume that Λ<y(£) starts at £2. Let 0 denote the polar angle in the
ζ-plane. Designate by p, θp the polar coordinates of the end point of the perpen-
dicular from ζ=Q onto the straight line on which λϊj(ξ) is situated, and denote by
θξ the polar angle of ξ. Then along λjk(ξ) we have

Let λ$(ξ) be the part of Λ/Λ(?) where

10 01 <. πP — 2

If 4fc(<?) is not empty,

\ mJ j j f f c C O ->r/2-|3

and we have \θξ—UP\^π/2—β so that

£=|f| cos(θζ-θp)^\

Hence

(4. 22) ( f \ζ\-r/h~l\dζ\ =(sin ^)-r/Λ|ί|-r

Let Λ$(ί) be the part of λik(ξ) not in Λ$(ί) and assume that it is not empty.
On this segment, \dζ\<\d\ζ\ \ sec/3, and therefore

(4. 23)

where £* is the left end point of λ$(ζ). If λ$(ζ) is not empty \ξ\^\ξ* , and if
4*(f) is ^mPty <f* coincide with ξ. Then <?* can be replaced by ξ in (4. 23), and
Lemma 4. 1 follows at once by adding (4. 22) and (4. 23).

From Lemma 4. 1 we have

hence if μ\ in (4.14) is taken so small and M so large that

nlMhM

then we can conclude that
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and also from uniform convergence of the integral (4. 11) we have

If we apply the fixed point theorem, we can prove the existence of the solution
of the equation (4. 9) and hence (4. 6) of the form

W^(τ, ε) = [τ-(m+v>ε]r+Έr(τ, ε),

where Er(τ, ε) is bounded in (4. 2). Then the function

w(τ, ε)=w<r\σ, ε)-f-z(r)(τ, e) exp [ε~hK(τ, ε)]

is a fundamental matrix solution of the differential equation (2.13). By a usual
method, we can prove that the solution w(τ, ε) is independent of r. This completes
the proof of Theorem 4. 1.

§5. Existence theorem (2).

In this Section we prove the existence theorem corresponding to the formal
solution (3. 53) in Theorem 3. 1.

THEOREM 5. 1. Lei S be the sector in the s-plane defined in Section 3, and let

(5. 1) π exp [Q(s

be a formal solution of (3. 10) whose existence was proved in Theorem 3. 1. Then,
there exists an actual solution v(s, p) of (3. 10) of the form

v(s, p) =Ω(sk< s:>)v(s, p)sk<is:>π exp [Q(s)],

and for every integer r, there exists a domain D2 of s, p-plane defined by

(p2, ^2 and c% are some constant independent of p), in which it holds that

r

v(s, P)— Σ wM(s)[sP™ep]v=Er(s, /o)[s*<ί)β/o]r+1»
v=o

where Er(s, p) is bounded.

Proof. Let

(5.3) v^(s,p)=ΣvM(s)pv

v=o

be a finite sum of the series (3. 53). This satisfies a differential equation

— =//r(s, ρ)v, IM$, p)=v^(s, p)V°(s, p)~\



82 TOSHIHIKO N1SHIMOTO

where VM> denote the derivative of VM with respect to s. Clearly ^(0)(s) is a non-
singular matrix and all VM(S) are entire matrices. Hence if s0>0 is chosen arbi-
trarily, v^(s9p)'~1 exists for

(5.4) H^3,

where /?3 is a sufficiently small positive number depending on s0 and r. On the
other hand, from Lemma 3. 4 we have

(5. 5) v™(s, p)=Ω(s)\Σ w^(snsePΫ\sπ exp [Q(s)]9
[v=o J

where WM(S) are bounded for |s|>So and s€S, and &c;(0)(s) is nonsingular for
Then it follows from (5. 5) that ^(m)(s, p)~l exists for

(5.6) seS, \sep\^μz, |sl>s0,

where μ2 is a sufficiently small positive number depending on s0 and r.
Define a function $Cr)(s, />) by

(5. 7) ^Cr)(s, p)=^(s*(ίj)ί)cr)(s, /ojs^'^ exp [Q(s)].

Then, from the above discussions, ί(r)(5, ̂ ) is bounded and nonsingular if 5 and
satisfy the condition (5. 4) or (5. 6).

If we put

(5.8) v(stp)=vw(

then the equation (3. 10) becomes

(5. 9)

Then any solution of the integral equation

2<r)= f 0<°>(5)ί,co>(σ)-i[{#fo ̂ -̂ (̂̂ l̂ ^ + f^σ, p>MK p)-v™(σ, p)'}]dσ
jΓds )

satisfies the differential equation (5. 9). Here Γ(s) denotes a set of n2 paths of
integration in the σ-plane ending at s.

If ίco)(5) and z^(s, p) are defined by

(5. 10)
2cr)(s> /0)=β(s*c'))«(ί )(5, ̂ )5ΛCs)/7 exp

then the above integral equation becomes

JΓ(s)

(5. 11) -[{H(σ, p)-Hw(σ)}Ω(σMz^σkMIΊ exp [Q(σ)]

+ {H(σ, p)v™(σ, p)-v^(σ, Py}]S-
k^π exp [-Q(s)]dσ.

After a short calculation, using (3. 17), (3. 18), (3. 19), (3. 50) and (5. 7) we get
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H(σ, p)v™-V™(σ, p)' = Ω(σ*™)E(σ, p)[σ^epγ+ισ-k^σMπ eχp [Q^9

and

H(σ, p)-H^(σ)

where E(σ, p) is a bounded matrix in (5. 4) or (5. 6). If these relations are inserted
into (5. 11), we have

sfc(S)/7 [eχp {Q(s)-Q(a)}]σ-κ*πfc»(a)-lE(σ, p)
rω

(5. 12)
.{^CαXe-l)^Cr)+[σΛ;Cα)^]^

where E(σ, p) is some bounded matrix.
We prove the existence of the solution of this equation by the fixed point

theorem. Let 2 be the set of all matrices Z = (zjk(s,p)) whose elements are holo-
morphic in the domain D2 for |s|<s0 and |s|>s0 O^oo) respectively and satisfy
the inequality such that

1, if
l£j£n k=l

(5. 13)
r1, if |s|>s0.

The constant M and others in (5. 2) are defined later. The mapping 'L (Z) is
given by the right term in (5. 12) with Z for £(r), and with dividing the integral
into |s|<s0 and |s|>s0. if we write ζ[(Z) for each component,

crfcCOGr,-,*) [exp
rjkζs)

(5. 14)

where π, is the diagonal element of 77, Ljk(Z) is a linear form of k-th column of
Z with bounded coefficients, pjk(β, p) is a bounded matrix and gjk(s) is from (3. 38)
and (3. 44),

ΎYl

(5. 15) qjk(s)=

If we transform <j and s into C and f by the relations (3. 46), the sector S
corresponds to the sector Σ, and if we insert (5. 15) into (5. 14), we have

I (Zjk)\ ^|p|r+1 |^(s)(^-^)m/(

(5.16) Hexpi^W-^^J

. |ζ|fc(<;){e(r+l)ra/(m+Q)-m/(ra+g)} . I ζ l -

where 5 is some constant. Let 5ί be the closed disk in Σ in which

(5.17) |ζeίΛ/θΛ+«VI^8
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for eace p. From the way that Σ was constructed, the quantity

(5.18) Re[(4-4)ζ]

does not vanish on both boundary lines of Σ. and the cental angle of Σ does not exceed
π. For each pair (/,*) j*?k, draw a line in the ζ-plane on which (5. 18) vanishes,
and then the ζ-plane is divided into two half planes. If Σ is contained in the nega-
tive half plane, the path of integration λjk(ξ) is to be the segment from the origin
to ζ. On the other hand, if Σ and the positive half plane have common part,
there exists one and only one point ζjk on the circular arc of 9C such that the
quantity (5. 18) takes its maximum at the point ζjk. Then in this case we take the
segment from ζ# to ξ in Σ as the path of integration λjk(ζ). For j=k, λjj(ξ) is the
ray from origin to ξ. γjk(s) is to be the inverse image in the σ-plane of λjk(ξ)
under the transformation (3. 46). Here we limit ξ to the convex polygon 5C* in 3C
whose vertices are ζ/fc and two end points of the boundary lines. By this choice
of paths of integration, there exists a positive constant p independent of j, k and p
for f€#;* and ζ on λjk(ξ) (j*k\ such that

(5. 19) Re [(^-4)(f-Q]^-^|ί-ζ|.

Here we choose constant numbers R and 7£~ independent of ξςΣ, j, k, p such such

Re[qjk(s)-qjk(σ)]^K if \ξ-ζ\^R,
(5. 20)

for ζ on λjk(ξ). Next we estimate the integral

(5. 21) /=( |ζ-*cαx.r,ιpm/cm+ί>| | exp [qjk(s) -qjk(σ}} \ \ζ\κ w-q'<mιq>\dζ\9

Jty*(O

where h(r) = e(r+ l)m/(m +q)—m/(m+q).

LEMMA 5. 1. There exists a constant C independent of ξ and p such that

(5 22) 7<

for

Proof. For j=k, Lemma is obvious, and then we prove only for j^k. The
contribution of the integral /on the path of λjk(ξ) on which the inequality |ζ|^?2

is satisfied, is by virtue of (5. 20)

where C\ and Cr introduced below are some constants independent of ξ and p. If
\ξ\>ξι and on the part of λjk(ξ) on which |ζ|>ίι, we have

r^^l^-CTΓj— π ̂ m/Cm+g)! 1^1 eO+l)m/(ra+g)-l

^Clξ-ζπj-πjcϊm/i m+ql |^|β(r+l)m/(m+ί)

and when |ί|^?ι, the contribution of the part of λjk(ξ) on which ζ|>ςι is
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Thus if we add Λ and /2, or Λ and /3 we get Lemma 5. 1 for j
From (5. 16) and (5. 22). we have

and then

(5. 23) \\%(Z)\\^nBC{M\sMep\+l}\sk^ep\r'11.

Here we choose μ3 in (5. 17), p2 in (5. 2) so small, and M in (5. 13) so large that

Let sQ in (5. 4) or (5. 6) be chosen such that s0>Sι = [(m+#/m)fι]m/Cm|-«), and let
p*=p*, δ2 in (5. 2) be chosen so small that corresponding ε satisfies the condition
(1.2). The constant c3 in (5.2) must be chosen so small that c3^μ2 and the in-
verse image H* in the s, p-plane of ^* in the ξ, />-plane under the transformation
(3. 46) contains the domain (5. 2). From this choice of constants in (5. 2), we can
apply the fixed point theorem to 3 and £Γ, and there exists a solution of the equa-
tion (5. 11) and hence of the differential equation (5. 9) of the form

with

Hence, v(s, p)=vM(s, p)+z^(s, p) is a fundamental solution of (3. 10). The fact
that v(s, σ) is independent of r can be proved easily by an usual method. This
completes the proof of Theorem 5. 1.

As a conclusion, we remark that the two domains Dι and D2 are overlapped
with each other for arbitrarily small e, and this fact makes it legitimate to identify
the two types of solutions:

y=Ω(ε°')v(s, p),

where the functions u(τ, ε) and v(s, p) are defined in Theorem 4. 1 and in Theorem
5. 1 respectively.

When the fundamental assumption (1. 11) is not satisfied, that is, when the
characteristic polygon 77 consists of several segments, the asymptotic nature of the
solution is quite complicated.
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