
ON A MATCHING METHOD FOR A LINEAR ORDINARY

DIFFERENTIAL EQUATION CONTAINING A PARAMETER, I

BY TOSHIHIKO NlSHlMOΊΌ

§ 1. Introduction.

Let a linear ordinary differential equation of the form

/-• -.x ,, dy Λ /(I. 1) εh— =A(x, ε)?/,

be given, where h is a positive integer, x is a complex independent variable, ε is a
complex parameter, and A(x, ε) is an n-by-n matrix of the form

(1.2)

' 0 1 0

0 ' 1

- Pn(x,ε\ P»-ι(Λ?,e),...,Λ(j?,ε), 0 J

The functions Pk(x, ε) (k=2, ••-, n) are holomorphic in the domain of the x, ε-
space defined by the inequalities,

and each of the functions Pk(x, ε) has a uniformly asymptotic expansion in powers
of ε such that

v=o

as ε tends to zero in the domain (1. 3) with holomorphic coefficients Pkv(x):

Π ^ P, (r}— V rfPt. Pt. ^0\JL UJ J. kv\Λ>J / i •*/ -*• Kvμ ) •*• Kvmkll ~T-U,

where Pkvμ are constant and mkv are non negative integers. Suppose that mko^l
for k=2, ,n, then the equation (1.1) has a turning point at the origin. We
consider here the asymptotic behavior of solutions of equation (1. 1) in the neigh-
borhood of the turning point as ε tends to zero. When A(xt e) is a 2-by-2 matrix,
it was treated in this author's previous paper [2], and in this paper we shall
generalize that results to the equations of higher order.

Assume that
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(1.6)

(1.7)

(1.8)

where

(1.9)

Under these hypotheses with further restrictions described in later, we can
obtain the two types of asymptotic representations of the fundamental solutions of
the equation (1.1) whose domains of validity are overlapped with each other for
arbitrarily small ε in some neighborhoods of the turning point. In the next
paper, we remove the assumption (1. 8).

In Sections 2 and 3, we calculate the two types of formal solutions, in Sections
4 and 5 it will be proved that there exist fundamental solutions whose asymptotic
expansions coincide with the formal solutions in some neighborhoods of the turning
point, and in Section 6 we conclude that in several subdomains which overlap the
full neighborhood of the turning point, we can calculate the asymptotic expansions of
the fundamental solutions.

§2. Formal solutions for

The linear transformation introduced originally by Iwano and Sibuya [1],

(2.1) y=Ω(x)u,

where

r 1 O n
I f-a/n \

(2.2)
o

changes the equation (1.1) into

Γ 0

(2.3) .

dx

ĵn

0

~nPn(x, e),

r 0
1

i-U

By (1. 4) and (1. 5) we have
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(2.4)

Σ Σ
V=0 μ=rafc

- Σ Σ
V=0 μ=mj

where v/a+μ-kq/n=v/a+k (μlk—q/ri)^Q from (1.7), and vja+μ-kq/n^Q if and
only if v=0, μ/k=q/n from (1. 8).

Then the equation (2. 3) takes the form

(2.5)

where

(2.6)

with

ax

B(x, ε)~ Σ Bv(x) \
v=o

0 1

0

LP«0ί, -,P«

0

1

,o J

We notice here that for nonzero elements Pkoμjc, we have μk=kqln, and Bf(x) and
&,(#) (y^l) are holomorphic matrices functions of xl/ab, where b is a positive integer
for which ab kq/n is equal to integer for k=2, •••, n. (2. 6) means that for every m

m

v=0

where E7n(^, ε) is bounded in the domain (1. 3).
Here we put

/o 7\ /v. — rαb(A /; x —τ ,

then (2. 6) becomes

where C(r, ε) is holomorphic in τ and ε for

and has an asymptotic expansion when ε tends to zero:

(2.10) C(r, ε):
V = 0

The matrices functions Cv(τ) are holomorphic for |τ |<Ξτ 0, and
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0 1

(2. 11) C,(τ)=ab
0

0 •-. +C?(r).

> p ... n
nOqi •> -L kQμfc) > w -

Let 2ι, •••, λn be the characteristic roots of the matrix (afy^Coφ) and assume that

(2.12) λτ^λjy i^j, i,j=l,- ,n.

In this case we can prove the following lemma.

LEMMA 2. 1. Under the condition (2. 12), there exists a linear transformation

(2. 13) u = P(τ, ε)z

which changes the equation (2. 8) into

(2.14) [r-»β]*τ-^- = D(τ,εX

the following properties'.

a) Z>(r, ε) is holomorphic in τ and ε for

(2.15) \τ ̂ r0, |argr|^tfo, 0<|ε|^ε0 |argε|^30, 0<|τ-δε| ^μ0,

for sufficiently small positive numbers τ0 and μ0, and arbitrary a0.

b) As \τ~bε\ tends to zero, we have

(2.16) D(τ, e)~ΣD>(τ)[τ-be]v

v=o

uniformly in (2.15).

c) The matrices Dv(τ) are diagonal and holomorphic for |r|^r0,

Γ ΛM 0 Ί

d) Do(τ) = \ '.. , ^(τ) = ;4 + o(τ).

L 0 (̂r) J

e) 7%^ matrix P(τ, ε) is holomorphic in τ and e for (2. 15) and

(2.17) P(r,β)=:Σ/>(r)[r-»e]',
v=o

where Pβ(τ) is nonsingular and Pv(τ) holomorphic for |r|^r0.

The proof is almost same as [2] and then is omitted here, (see also Wasow [4]).

Since all the matrices Dv(τ) of (2. 16) are diagonal, we can calculate a formal
series solution of the differential equation (2. 14) and get a following theorem.

THEOREM 2. 1. The differential equation (2. 8) possesses a formal matrix solution
of the form,
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f) 1 Ά\ ιj ̂  V cPii (>\Δ. Lo) H^^ / i ε 2/,,(j
V = 0

with the properties]

(2. 19) uv(τ) = τ-*»ύv(τ),

where ύv(τ) are polynomials of degree v at most in log τ ivhose coefficients are holo-
morphic in τ ^τ0, and bounded in the domain (2. 15).

(2. 20) Fv(τ)=τ-b<v-h>Pv(τ) v^h-l

(2.21) Fh(τ)=fr\ogτ+Ph(τ)

where Pv(τ) (^=0, 1, •••, h) are holomorphic in r|^r0, and fh is a constant matrix.

The proof of this theorem is similar to that of [2], THEOREM 1, and then is
omitted here.

§3. Formal solutions in the neighborhoods of jc=0.

We transform the equation (1. 1) by stretching and shearing transformation of
the form, (see Iwano and Sibuya [1])

(3. 1) x=εas

(3. 2) y=Ω(εa)v,

where Ω(εa) is defined by (2. 2) with εα instead of t, and then becomes

Γ 0 1 0
dv

(3.3)
ds

0 1

L ε-nrpn(εas, e), •--, ε~2?-/>2(ε% ε), 0 -1

V.

where γ=qa/n.
From (1. 4) and (1. 5). we have

(3.4) ε-^(ε%ε)~; pfcvμs"εv *«.«-*

and remark here that from (1. 7) and (1. 8),

(3. 5) v+aμ-kγ=ak ^ - --"k n

(3. 6)
kq

if and only if y=0 and μ=μjc= — .

We put

(3. 7) ε = (o
Ώ^

with io>0 for arg ε=0.
Thus the equation (3. 3) can be written
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(3.8)

TOSHIHIKO NISHIMOTO AND YOSϊίlKAZU HIRASAWA

where H(s, p) is holomorphic in 5 and p for (1. 3), and has asymptotic expansion
in (1. 3) and \S\^SQ for arbitrary s0 such that

(3.9) H(s,p)=ΣHv(s)p",
V = 0

where Hυ(s) are holomorphic matrices functions of the forms

0 1 0

(3.10) #o(s)= 0

(3. 11)

nOqS*, •• ,M,fcS
/*, • • ' , 0 J

Uw,(s), -,A2l,(s), 0 J

Now we consider the asymptotic properties of //(s, p) in the domain (1. 3) and

So.

Let #**(<>) be

HΪ*(s)=Ω(s)~1Hv(s)Ω(s),

Then from (3. 11) and (2. 2)

Ή**(s)=\
0

AUs), -., S-«/w/)2v(s), 0 1
but from (3. 4) and (3. 7), the function hkv(s) is a polynomial of s of degree at most
kqjn+vlnh, and then H**(s) can be written

where H*(s) is bounded at 5=00. Thus Hv(s) can be written

(3. 12) Hv(s) = sv/nh^/

where H*(s) is bounded at s=co.

LEEMA 3. 1. F<9r every wi^O, ίΛerβ βmίs ^ matrix function Em+ι(s, p), bounded
in the domain (I. 3) and S\^SQ such that

(3. 13) H(s, P)-

Proof. To prove this lemma, it is sufficient for us to state that for every
m^Q, there exists a bounded function em+ι(s, p) in the domain (1.3) and |s|^s0

such that
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(3. 14) s, p)>pm+l.

But this is easily derived by considering the order of magnitude of the remainder
terms, and the details are rendered to the previous paper [2].

Let

(3.15) z>~ Σ ».'
v=o

be a formal solution of (3. 3). Then vv(s) must satisfy the following equations:

//ί»~
(3.16)

(3. 17)
μ,=ι

The asymptotic solution of (3. 16) can be obtained from the recent results of
Okubo [3]. Now we translate the Okubo's main results into the terminology of the
differential equation (3. 16).

If we transform the equation (3. 16) by the equations

n+q

we have

(3. 18)

where

n-\-q

0 n~l-

7 0

B=
0

0
\pnoq, •", Pkθμk,

1
O/

Here we suppose the following assumptions on the matrices A and B.
a) Let Λ, •••, λn be the characteristic roots of B, and choose arg λ% in such a

way that — τr< arg λt^π, i=l, •••, n. Then, we assume in addition to (2. 12),

|arg ^-
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b) Let P be a constant matrix such that P~1BP= Λ is diagonal, and let 77 be
a diagonal matrix whose diagonal elements πl are the diagonal elements of P~1AP.
In this case, we assume

kg

c)

n+q

q(k-l)
n+q

— πt* — l, —2, •••, ί = l, •••, n, A=0, 1,

-0, ±1, ±2, , &, /=0, 1,

Under these conditions, the differential equation (3. 18) has a fundamental
matrix solution in the neighborhood of ξ=0 of the form

(3.19) >O= Σ wQvξ
v \ζA, det woo

Lv=o J

with constant matrices WQV, and in the neighborhood of ί=oo, there exist several
asymptotic matrices solutions in the sectorial domains of the form

(3. 20) det w

with constant matrices w^v.
The connection formulas of the solutions (3. 19) and (3. 20) can be obtained in

several sectorial neighborhoods of <f=oo which overlap the full neighborhood of
f=00. One of such sectorial neighborhoods is given by

where β is arbitrarily small positive number. The sector Σ(Θ) contains a sector
whose central angle is at least π. Let I7 be a sector contained in Σ(0) such that

(3. 21) Σ: -α

where the number a is specified in later.
Thus we have an asymptotic solution of the equation (3.16) of the form

(3. 22)

where

sR exp

(3. 23) R=
n+q

L 0
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n ^n+ VTO
n+q

" Λl 0 '

- 0 Λn -
CO

7/1 n(ς*\^~' \ ' 7 / t o— Cw+ίjOv/W rlpl" 77)t^OV^y — / i tt/Oυ«-> , U.CL ti/c

(3.24) Q(s)=

(3. 25)
V = 0

with constant matrices 0̂,, and this is valid in the domain >S(s0):

(3. 26)

(3. 27)
— an ^ n(π—a)

—-— < args <
n-\-q - s -

Now we must solve the differential equation (3.17) which is of the form

(3. 28) -̂  =ffo<

with entire coefficients. The integral

(3.29) t(s) = Γ

JΓ(s)

is a solution of (3. 28) if Γ(s) designates a set of paths ?>(s) in σ-plane ending at
σ—s for every scalar integral contained in (3. 29). The paths γjk(s) will be given
in later.

Define ί(s), v0(s) and F(s) by the relations

(3. 30)

(3. 31)

(3. 32)

Then, (3. 29) becomes

R exp

f3. 33)
ί (<0(ff/s)Λ exp [QW-Q(s)]^.

Now assume that for some positive number b,

(3.34) £χs)s-δ is bounded in S(s0),

then

(3.35) ίo^-^^s-6 is bounded in S(s0).

To simplify the notations, we define ^fc(s) and βjk by

(3. 36)
n-\-q
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From (3. 33), (3. 35) and (3. 36), every element of the matrix in the integrand
of (3. 33) has a form

(3. 37) pjk(σ)σϋ (s/σγj-rkexp [βJk(s<n+0/n-σ<n+«>/n)],

where pjk(σ) is bounded in S(s0). We consider this integral in the ί-plane and
introduce the auxiliary variables

(3. 38) ζ= — — σ^+q^n ξ= _^_ s(n + Q)/nβ

n+q n-\~q

The sector S defined by (3. 27) in the σ-plane corresponds to a half plane Σ in the
ζ-plane. Now we choose the angle a in (3. 20) in such a way that every line,

(3. 39) Re [(^-^)C] = 0 j*k, j, k=l, •••, n

does not coincide with boundary lines of Σ, and clearly this is always possible.
Then every line (3. 39) has one half line inside Σ. Hence for every pair (/, k\ j^k,
we can draw a ray ljk through the origin into the interior of Σ such that
Re [(λj— 4)C] increases monotonically to oo along l j k ( j * ? k ) as \ζ\ increases to oo.
Denote by λjk(ξ) (j^k) the straight half line in Σ which is parallel to ίjk and has
one end point at a point ξ of Σ. Then Re[(Λ/— 4)C] also increases monotonically
to oo along 2jk(ζ). We define γjk(s),j*rk, as the curve in the sector S of the (j-plane
whose image under (3. 38) is 2Jk(ξ). Then Re feO) grows monotonically to oo as
σ increases to oo along γjk(s).

In order to make sure that all points of γjk(s) lie in the domain S(s0) of the
ff-plane, we must limit 5 to a domain S(sι), where Si is sufficiently large. For the
paths γjj(s), it suffices to take them as segments from some points sz in S(sλ) to

sι), where s2 is so large that these segments lie in S(s0) for all

LEMMA 3. 2. If the differential equation (3. 28) satisfies the condition (3. 34),
then it possesses a solution of the form

(3. 40) t(s)=sb+1Ω(s)t*(s)sR exp [Q(s)],

where ΐ*(s) is bounded as 5-̂ 00 in S.

Proof. If (3. 37) is integrated along 7-^(5), it becomes in terms of ζ and f ,

(3. 41) _-^- {exp (^-^(ί-
n+q J^ co

If we express ζ on λjk(ξ) in the form

y, ^=1, 2, - - - , «,

where <5̂  is a constant of modulus 1 and r is a real variable, then (3. 41) becomes

n poo Γ r ~\*k-*j + (.nl>-p)Kn+q)
(3.42) — ί-fOtf-tf/OHtfl {exp-^- ĵ̂ }^,,) 1+3 ^Jr,

L C J

y,*=ι,2, -,«.
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For j^k, Re(λj~4)<5j*>0 on λjk(ξ) and thus the integral in (3.42) is a uniformly
bounded function of ξ for seS(sι). Then (3. 42) is of the order O(sb~q/n) as s-^oo
in S(5ι). For j=k, βJk=Q in (3. 37), and then integral of (3. 37) along γjά(s) is O(sδ+1).
Thus Lemma 3. 2 follows at once using the relation (3. 30).

LEMMA 3. 3. The differential equation (3. 17) possesses a particular solution of
the form

(3. 43) vv(s)=sevΩ(s)wv(s)sR exp [Q(s)]>

where wv(s) is bounded as s-^oo in the sector S, and

(3.44) ^.l+JL+i.
nh n

Proof. We prove this by induction. For v=0, the equation (3. 17) becomes the
equation (3.16) and the statement in Lemma 3. 3 is satisfied from (3. 22). Assume
it to be true for v<m. The μ-th term of the summation in (3. 17) has a form

Hμ(s)vm-μ(s)=s'<m> ^Ω(s)ffμ*(s)wm-μ(s)sR exp [Q(s)],

where Hμ(s) is the expression defined by (3.12), and

The exponent f(m, μ) is the largest for μ=l, and then for v~m we can apply
Lemma 3. 2 to the equation (3. 17) with

(3. 45) b=f(m, 1).

Thus we get the following theorem.

THEOREM 3. 1. We assume on the matrices A and B in (3. 18) the conditions
a), b), c) and (2. 12), and let k(s) be defined by

( 0 if s|^so,
(3.46) k(s)={

( 1 if s|>s0.

Then the differential equation (3. 8) has a formal matrix solution v of the form

(3. 47) 0~β(s*< >) Σ w»(s)[sk^ p]»sk^R exp [Q(s)]
lv=o J

where wv(s) are bounded in the domain (1.3) and |s|^s0 with k(s)=Q, and in the
domain (1.3), |5|>50 with k(s) = l.

REMARK 1. Among the assumptions on the matrices A and B stated in above
Theorem, the essential conditions are the condition (2.12) and the condition (b).
In fact the connection formulas of the solutions (3. 19) with (3. 20) can be obtained
without the condition a) and c) by a little modification. (Okubo [3].)

But we assume to hold all the conditions stated in Theorem 3.1 for simplicity's
sake.
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REMARK 2. Let C be the connection matrix between the solution of the equation
(3. 16) in the neighborhood of s=Q and the asymptotic solution (3. 22) in the sector
(3. 27), and let v^\ ^(00) be the solutions of (3. 17) in the neighborhood of 5=0,
5=00 respectively. Then, we can construct the solution vv

w such that

(3.48) v^ C= vv^\ p=0, 1, •••.

To prove this statement, we consider the equation (3. 28) with

(3. 49) ~r =fli(s)f<°>+F(5) s\ ̂

(3. 50)

If t»(s) is a solution of (3. 49), then /<°>(s)C is a solution of (3. 50). Hence if
we determine the solution ί(0)(s) by the condition

for some point Si, we can conclude (3. 48). And this is always possible for

and ^(s) which is constructed in Lemma 3. 2 by taking constant matrix P appro-
priately. Therefore two formal solutions of (3. 8)

Σ'
v=o

exp[Q(s)L

s« exp K?(s);
v=o

are connected formally by the relation

§4. Existence Theorem (1).

Here we prove the following theorem.

THEOREM 4. 1. Let T be any sector of τ-plane with vertex at the origin and
central angle less than π/bh (b is the number introduced in (2. 7), and different from
that of (3. 34)), and let

be a formal solution of (2. 8) whose existence was shown in Theorem 2. 1. Thqn,
there exists an actual solution of (2. 8) of the form
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(4. 1) «(r,
v=o

/or 00ery positive integer m, there exists a domain Di of ε, τ-plane defined by

(4.2) τ€T, 0<|e|^eι, large ^δα, Cι|e|1/6^M^2,

(εi, di, ci cwί/ c2 are certain constants depending on m but independent of ε) in which
it holds

m

(4. 3) ώ(r, ε)- Σ «»(ry = E»(r, ε) [ι-6β]"+1,
V = 0

where Em(τ, ε) is a matrix function bounded in the domain (4. 1).

Proof. We divide this proof into several stages. At first we analyze the
equation (2. 14).

Let the matrices functions Dm(τ, ε) and 2(m)(r, ε) be

(4.4) />m(r,6)=ϊΣΛΛ(r)[r-»β]",
v=o

i m+h
Σ ev-hFv(
v=o

Then 2(m)(r, e) is a fundamental solution of an equation

(4. 6) (τ-bέ)hτ -^- = £w(r, ε)0.

By the transformation

(4. 7) 2^^(m)+^Cm),

the equation (2. 14) becomes

/7;/jCm)

(4. 8) (τ-hε}hτ — ̂ — =P(r, έ)w™ + [Z?(r, έ)—Dm(τ, ε

and if we define K(τ, ε), DA(r, e), z2;(m)(r, ε) and z Cm)(r, ε) by

(4.9) A(τ,e)=Σeyί1

y(r),
v=o

(4.10) Z?A(τ,e)=Σl>,(τ)[r-»β]",
τ=0

(4. 11) zί;(m)(r, ε)-=w;(m)(τ, ε) exp [-e-/l^(r, ε)],

(4. 12) £(m)(τ, ε)=^(w)(r, ε) exp [—e~hK(τ, ε)],

then (4. 8) becomes

,
(4. 13) dτ

+ [D(τ, ε)-Dm(τ,
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Here we have

(4. 14) D(τ, ε)-Dh(τ, c) = (τ-6ε)Λ+1£Λ(r, ε),

(4. 15) D(τ, ε)-Dm(τ, ε) = (r-6ε)m+/l4l£m(τ, ε),

where Eh(τ, ε) and Em(τ, ε) are bounded in (2. 15), and from (4. 5), (4. 9) and (4. 12),
we can see

[ m+h ~\ Γ m+Ii -j
Σ e'-'Ή(r) =exp Σ (τ-»e)»-hFv(τ) \

V=Λ+1 J Lv = Λ+l _|

with bounded matrices functions Fv(τ), and then zm is bounded in (2. 15).

Now we write the differential equation (4. 13) for each component of wCm)(r, ε) =
, e)), that is

(4. 16)

where dl are the z-th diagonal element of Dh(τ, ε), and this differential equation can
be converted by the method of variation of constants into the following integral
equation

,A 1^ ,(4. 17)

+ [D(σ, ε)-Dm(σ, e)

where

with diagonal elements Xi(r, ε) of X(τ, ε), and γι3 is an integral path which is chosen
so that the exponential function in (4. 17) remains bounded as ε tends to zero.

Now we prove the existence of the solution of the equation (4. 17) by the fixed
point theorem.

Let F be the set of all matrices functions W(τ, ε) = (WIJ(T, ε)) whose components
are holomorphic in τ and e for (4. 2) and satisfy the inequality

(4.18)

where

(4.19) l I,
J

and the constant M will be chosen appropriately. F is closed, compact, and convex
with respect to the topology of uniform convergence on each compact subset of
the domain (4. 2). The mapping T(w) is defined by right hand term of (4. 17).
Thus it is sufficient for us to prove that the mapping T is continuous and has a
contracting property. The continuity follows at once if we choose the integral
paths γij in such a way that the integral (4. 17) converges uniformly for all matrices
functions of F.
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From (4. 14), (4. 15) and the boundedness of zm(τ, ε), there exist constant Mfi, Mm

and Bm and B independent of ε, τ and τ~bε such that

I \D(τ, e)-Dm(τ, ε)| | ^Mm\

in the domain (2. 15). Then we have

(4. 20) T(wlj)\^\ε m+1( {cxvε-h[μij(τ)-Vij(σ)]}(MllM\σ-*ε\+^

Here we must take τ~bε sufficiently small, that is

(4.21) |r-

and this is achieved by taking ci in (4. 2) large enough.
Now we can choose the constants e:, δlt d and c2 in (4. 2) and the integral

paths γτj(τ) (i,j=l, •••, n) in (4. 17) in such a way that the Re [ε-hμtj(τ, ε)] is monotonic
decreasing along τv(r) and a following inequality holds for τ in the domain (4. 2)

(4. 22)

where Mi is dependent on m but not on ε, τ0 and //i. These statements can be
proved by the same methods in [2] and the proof is omitted. Hence we have from
(4. 20),

and if μι in (4. 21) is taken so small and M so large that

so we can conclude that ||Γ(^)||^M|τ-δe|m+1 and also from the uniform convergence
of the integral, T(w) is holomorphic, that is

Thus we prove the existence of the solution of (4. 17) and then (4. 16) or (4. 13) of
the form

(4. 23) ώ(m)(τ, e) = (r-6ε)'Λ+1£I(r, e),

where E(τ, ε) is bounded in (4. 2).
Now we prove that the solution $(m)(r, ε) of (4. 16) such that

(4.24) zί;^(τ,ε)-0(τ-δε)w+1

is unique. Assume the contrary, and let φ=(ψij(τ,έ)) be the difference of any two
solutions. Then, evidently the integral equation

{exp ε^/τ)-/^)] }[£(</, e)-Dh(σ, e)]φtj(σ, ε^^dσ
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must hold. If we put

max \φij(τ, ε)(τ-δε)-(m+1)| =A>0,

it follows that

T-bf\m+l

Therefore if we choose μι in (4. 21) so small that MitM^<l, we obtain K<K
which is a contradiction. Hence K=Q and the unicity of the solution is established.

Next we consider the solution of the equation (2. 14):

z(τ, ε, m)=£(m)(τ, ε) + w;Cm)(r, ε).

Then, we can prove that the solution z(r, ε, nί] is independent of m. Let m'>m,
Dι(mf), Dι(m) be corresponding domains which are dependent on μι in (4. 15) and
hence on m, and

z(τ, ε, m)^[l(m)(τ, ε)+W(m)(τ, ε)] exp [ε-/lAΓ(τ, ε)],

2(τ, ε, w/) = [«Cm')(τ, ε)-f W^r, ε)] exp [ε~^(τ, ε)].

Clearly the function

2(w/)(τ, e)+«&<TOl)(r, ε)-£(w)(r, ε)

satisfies the differential equation (4. 16), and in the domain /Λ(w) n Λ(m') and μι in
(4. 21) sufficiently small it satisfies the inequality (4. 18). It follows from the unicity
established above that

r, ε)-l(m)(τ, ε),

and then

z(τ, ε, m)=z(τ, ε, m')-

Thus we have established Theorem 4. 1 for the solutions of the differential
equation (2. 14), and concerning the solutions of the differential equation (2. 8), the
statements of Theorem 4. 1 can be easily obtained with some modifications on each
constants eα, δlt Cι and c2 and on £"m(r, ε), by the same methods in [2].

§5. Existence Theorem (2).

In this Section we prove the existence theorem corresponding to the formal
solution (3. 47) in Theorem 3. 1.

THEOREM 5. 1. Let

v~ Σ *ΦV
v=0

^R exp
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be a formal solution of the differential equation (3. 8) whose existence was proved
in Theorem 3. 1. Then, for every positive integer m, there exists a domain D2 oj
the 5, p -plane defined by

(5.1) seS, 0<H^P2, |argp|^52, \scp\^ca,

where p>>, δ2 and c* are some constants depending on m and e is a number defined
by (3. 44), and there exists a fundamental matrix solution v(s, p) of the equation
(3. 8), which is related to the formal solution by the formula

(5. 2) v(s, p)- Σ v(s)p^Ω(sM)Em(s, p)[s^^p]^^sk^R exp [Q(s)]>
v=o

where Em(s, p) is a matrix function bounded in the domain (5. 1), and k(s), Ω(s), R,
Q(s) are defined in (3. 46), (2. 2), (3. 23), (3. 24) respectively. The solution v(s, p) is
independent of m.

Proof. Let

(5.3) v™(s,p)^Σvv(s)pv

v=o

be the finite sum of the series (3. 47). This satisfies a differential equation

(5. 4) ^j- =Hmv, Πm=v^f'(vm)-\
as

where y(m)' denotes the derivative of #(m) with respect to s.
Clearly VQ(S) is a nonsingular matrix function and all vv(s) are entire matrices

functions. Hence if s0>0 is chosen arbitrarily, vm(s, p)'1 exists for

(5.5) \P\^pι, \s\^s0,

where P! is sufficiently small positive number depending on s0 and m. On the
other hand, by Lemma 3. 3 we have

(5. 6) v^(s, p)=Ω(s)Σ wv(s)(s*pγsκ exp
Lv=o J

where wv(s) are bounded for |s|>s0 and seS, and WQ(S) is nonsingular for s^O from
(3. 22), and the nonsingularity of v0(s). Then it follows from (5. 6) that z/m)(s, p)-1

exists for seS and

(5.7) \sep\^ίt \s\>s0,

where 571 is sufficiently small positive number depending on sα and m.
Define a function ^Cm)(5, p) by the equation

(5. 8) v™(s, p)=Ω(sk^)vM(s, p)sMR exp Q(s),

where k(s) is defined in (3. 46). Then from the above discussions, the matrix func-
tion $Cw)(s, p) is bounded and nonsingular if 5 and p satisfy the condition (5. 5) or
(5. 7).

If we put
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(5.9) fl = ϋ<™>+2<™>,

the equation (3. 8) becomes

x/^(m)

(5. 10) — — =H(s, p)z™+H(s, p)vM—v^'.

Then any solution of the integral equation

*Cm)(s, P)= ( v»(s, p)v*(σ, p)-1 {[//(*, p)-II0(σ, p)]z™(σ, p)
(5. 11)

+ [H(σ, p)v™(σ, p)—v<my(σ, p)]}dσ

satisfies the differential equation (5. 10). Here Γ(s) denotes a set of ri* paths of
integration in the σ-plane ending at 5.

If z(m)(s, p) is defined by

(5. 12) ZM(S, jo) = Ω(sfc(β))2(m)(s, p)sk™B exp [Q(s)],

then (5. 11) becomes

JΓ(8)

(5. 13) {[H(σ, p)-Ho(σ, pϊ\Ω(σk^)z™(σ, p)^™* exp [Q(

+ [//(σ, ̂ ^^σ, p)-v™(σ, pY]} exp [-Q(s)]s-*

Here we need an estimate of H(σ, p)vM(σ,p) — vM(σ, p)'.

v=o

= Σ ̂  Σ HPv-μ-vv' \+
V=0

where the summation Σ* is for

and Rm denotes the remainder terms in the series expansion of H(s, p). Among
the last three expressions in (5. 14), the first term is zero, because vv is the solution
of (3. 17). From (3. 12) and (3. 43), the second term can be written

(5. 15) £(s*<'>) Σ * p'st^Wfi^w^skMB eχp

where 0(y, μ)=μlnh+q/n-}-(v— μ)e. The maximum number of g(v, μ) for each v is
attained by μ=l, that is

and so the summation (5. 12) can be written

(5. 16) £(s*<«>)£(s, p)[s*™ep]m hl5-*C8) sfc(s) Λ exp [Q(s)]

where E(s,p) is bounded in (5. 5) or (5. 7) respectively, and e is given in (3. 44).
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For the last term Rmv<m:> we have from (3. 13) (5. 8) and boundedness of the func-
tion VM(S, p),

(5. 17) RmvM

where E(s, p) is bounded. Hence we have

(5. 18) HmvM-vM'=Ω(sk^)E(s, p^s^'p]™^-*™^*™ exp [Q(s)]

with another bounded function E(s, p).
Using above results and (3. 13) with w=0, the integral equation (5. 13) can be

written

JΓ(S)

(5. 19) Eι(σ, p)έ™(σ, p)+E(σ,

where wϋ(σ)-\ Eι(σ,p) and E(σ,p) are bounded in the domain considered. We prove
the existence of the solutions of this equation by the fixed point theorem. Let F be
the set of all matrices functions with the properties that every matrix function
Z— (%ij(s, PΪ) is defined in D2 except for |s|=s0, holomorphic for s^oo, and satisfies
the inequalities in the domain (5. 1) such that

(5.20)

(5.21) \\Z\\^M\sβp\m+\ if

The constant M and the other constants in (5. 1) are defined in later.
The mapping T is defined by

/c <v^ Q(σ)]}σ-^^w,(σ)-1{E1(σt p)Z(σ,
(5. ΔΔ) Jr(s)

+E(σ,

We can write this equation for each component of Z = (zlj(s,p)) as follows

(Ό. Δό)

where n and qij(s) are defined in (3. 23) and (3. 36). Here Lτj(Z) is a linear form
of -th column of Z with bounded coefficients and pi$(σy p) is a bounded matrix
function.

If we transform σ and 5 into ζ and f by the relations (3. 38), the sector S
corresponds to the half plane Σ, and the integral (5. 23) becomes

,c o^
(5. 24)

)(e-l)n/(n-fQ') ! .
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where π% and λ% are defined at a) and b) in Section 3, and L%j(Z) is a linear combi-
nation of -th column of the matrix Z with bounded coefficients and pij(σ, p) is a
bounded matrix function.

Let SC be a closed half disk in Σ which satisfies

(5.25) \&'i<n+*> p\^>η2

for each p, and >?2 denotes a constant sufficiently small. On the circular arc of
the boundary of ,̂ we can conclude from the choice of a which determines the
sector Σ in (3. 21) that there exists for every ij (i^j) a unique point ζl} at which
Re [(Λί— λj)ζ] attains its maximum in 3C. Then the quantity Re [(λt— λj)(ξ— ζ)] in-
creases monotonically when ζ moves from ζ τ j to ζ in 3C along a straight segment.
Here we limit ξ to the convex polygon 3C* in 3C whose vertices are ζτj and two
endpoints of the diameter of X. If ξ is any point of <#"*, the integral path λτj(ξ)
in (5. 24) is defined by the segment joining ξ and ζτj. Thus for ζ on Λ/ί)> there
exist a positive constant p, independent of i, j and p such that

(5. 26) Re [(*i-m-Q]<-p\ξ-ζ\

We take here the inverse image of hj(ξ) in the o -plane as the integral path γιj(s)
for i ̂ jy and the path γjj(s) is to be the ray from the origin to s.

Here we choose the positive constants p2 and r72 in (5. 1) so small that the
domain defined by

(5.27) 0<|H^o2, |arg/)|^2

satisfies the condition (1. 3).
Now we prove the contracting property of the transformation T. From (5. 24)

and (5. 20), or (5. 21),

,c oox I T&M = I H«"|£« x*<-*/> I ί |C-*(')("*-^ I {exp Re (^-^(ξ-ζ)}
(5. Zδ) J^ (ξ)

where 5 is some constant. We estimate the the integral :

(5. 29) /=C
J^

where h(m)=e(m-}-l)n/(n-}-q)—n/(n-\-q).
(1) y=£&. From (5. 26) we can write for each

where Ci and other constants Cr introduced below are some constants independent
of ξ and p. If the point ξ, and all the points of Λ/<?) satisfy the inequality

we can prove easily that



MATCHING METHOD FOR DIFFERENTIAL EQUATION 327

and if |ί|><?o, and some parts of λlj(ξ) are contained in |£|^?o,

Next, if |ί|^?o and λv(ξ) is contained in |f|^ίo,

7^C4ίo
wc^),

and if \ξ\^ξo, and λτj(ξ ) has the parts on which

(2) ?—/. In this case / becomes

/==C |ζ | f cO

J*nφ

If |f|^fo, we have

7^
If |f |>fo,

Then for each case, it follows that

(5.30)

where C8 is some constant depending on f 0 and w, but is independent of p and <?.
Therefore we have from (5. 28) that

and then,

1 1 T(Z)\ I ̂ nCQ

If we choose M so large and η\y p2 so small that

and
n

so we get the contracting property, \\T(F)\\^M\sk^ep\m+1. The fact that T(Z) is
holomorphic matrix function in the domain D2 except for |s|=s0 and 5=00 follows
from the method of construction of the mapping T, and from the uniform conver-
gence of the integral (5. 22).

Hence we obtain a solution of the integral equation (5. 13) and then a solution
of (5. 11) which is also a solution of the differential equation (5. 10).

If we put

then v(s, p) is a solution of the differential equation (3. 8). The facts that the solu-
tion 2Cm)(s, p) of (5. 10) in F is unique and then the solution v(s, p) of (3. 8) is
independent of m, are easily established as in Section 4.

The constant c3 in (5. 1) is chosen such that c^^ηi and the inverse image //*
in the s, ^o-plane of 3C* in the f, /?-plane contains the domain (5. 1).
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§ 6. Conclusions.

The differential equation (1.1) has two types of asymptotic solutions. The one
is from Theorem 4. 1,

(6.1) y=Ω(x}.u

(6. 2) u = ύ(τ, ε) exp Γ Σ εv~hFv(τ)\
Lv=o J

(6.3) *2(τ,ε)~f>υ(τy,
v=o

where x=-<τab, and uv(τ) are defined in Theorem (2. 1). The domain of the asymptotic
expansion is given (4. 2). And the other is from Theorem 5. 1,

(6.4) y=Q(e*Ws,p)

(6. 5) v(s, p)~Ω(sk^) Σ wv(s)[sk^ep]vsk^R exp [Q(s)],
v=o

where x=εas and ε=pn+(ι. The domain of the asymptotic expansion is given in
(5. 1). Now we prove that the two domains (4. 2) and (5. 1) overlap with each
other for all sufficiently small ε.

The inequality c\ ε|1 / δ^|τ[^c2 becomes in terms of x and e

(6.6) c^\ε

and the inequality s€p\^cs becomes

(6.7) |a?|=ίΓ31/e

where e=l/nh+q/n+l>0. The domains (6.6) and (6.7) overlap clearly for all ε
sufficiently small, and this is the chief purpose of this paper.

Now we have in mind that the result of this paper is applicable to a boundary
value problem of a linear differential equation containing a turning point, and that
this matching method may be developed to a certain singular perturbation problem
of linear and nonlinear systems which contains the turning point problem as a
special case. In future, we will discuss these problems.
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