ON A MATCHING METHOD FOR A LINEAR ORDINARY
DIFFERENTIAL EQUATION CONTAINING A PARAMETER, I

By TosHiniko NISHIMOTO

§1. Introduction.

Let a linear ordinary differential equation of the form

11 et dy = Az, )y,
dx

be given, where /2 is a positive integer, a is a complex independent variable, ¢ is a
complex parameter, and A(z, ¢) is an n-by-n matrix of the form

0 1 ] 0
(L.2) A, 9= 0 ; 1
- Pu(®, €), Pa-i(x, &), -+, Po(x,¢), 0
The functions Pz, ¢) (k=2, ---, #) are holomorphic in the domain of the z, e-
space defined by the inequalities,
1.3 o] s2<l,  0<|e[Se, arg e[=d

and each of the functions Pux, ¢) has a uniformly asymptotic expansion in powers
of ¢ such that

(1.4 Pz, &)= 2:0 Pp(x)er

as ¢ tends to zero in the domain (1. 3) with holomorphic coefficients £, (x):

oo

(1 5) Pkp(x): Z ‘Z'”Pk,,,,, kamku#O,
Mm=mgy
where P, are constant and s, are non negative integers. Suppose that me=1
for k=2, ---, n, then the equation (1.1) has a turning point at the origin. We
consider here the asymptotic behavior of solutions of equation (1. 1) in the neigh-
borhood of the turning point as e tends to zero. When A(z, ¢) is a 2-by-2 matrix,
it was treated in this author’s previous paper [2], and in this paper we shall
generalize that results to the equations of higher order.
Assume that
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(L. 6) Muo=q=1,

.7 %’&g%_%.i, for ;:gln
o msalo e
where

(1.9) a= n”fq.

Under these hypotheses with further restrictions described in later, we can
obtain the two types of asymptotic representations of the fundamental solutions of
the equation (1.1) whose domains of validity are overlapped with each other for
arbitrarily small ¢ in some neighborhoods of the turning point. In the next
paper, we remove the assumption (1. 8).

In Sections 2 and 3, we calculate the two types of formal solutions, in Sections
4 and 5 it will be proved that there exist fundamental solutions whose asymptotic
expansions coincide with the formal solutions in some neighborhoods of the turning
point, and in Section 6 we conclude that in several subdomains which overlap the
full neighborhood of the turning point, we can calculate the asymptotic expansions of
the fundamental solutions.

§2. Formal solutions for xx0.

The linear transformation introduced originally by Iwano and Sibuya [1],

@1 y=2z)u,
where
1 , 0
@ 2) )= .
0 fn=1a/n
changes the equation (1. 1) into
0 1 ) 0
(2. 3) 8h$—q/n%= 0 .. 1
(@) P, €), (x7)" PP, i(x, 6), v, 0
0 1 0
. i ch x—q/n—-l . u.
”n -
0 n—1

By (1.4) and (1. 5) we have
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o] oo
(@) *Py(z, )= 3 ) Puatti/n.e
V=0 p=mpgy

(2. 4)

e e
=30 3 P,
V=0 p=myg

where vja-p—kgn=v/a+k (p/k—q/n)=0 from (1.7), and v/a+p—kq/n=0 if and
only if v=0, u/k=gq/n from (1. 8).

Then the equation (2. 3) takes the form

(2. 5) [oveee-T Bl o,
dx
where
@.6) B(x, 9= 3, Bw) [ /]
v=0

with

0 1 0

By(x)= 0 ' 1 |+BXa).
P‘any Tty PIcO,uky ,0

We notice here that for nonzero elements P, we have u==~kg/n, and B¥(x) and
B.,(x) (v=1) are holomorphic matrices functions of x'/#?, where b is a positive integer
for which ab-kg/n is equal to integer for k=2, ---, n. (2. 6) means that for every m

Bz, — % Bz ae] = En(z, )aoe]m+,

where En(x, ¢) is bounded in the domain (1. 3).
Here we put

2.7 =1,
then (2. 6) becomes

du
~blhm T
(2. 8) [z=Y¢]"r 7 =C(z, e)u,

where C(z, ¢) is holomorphic in = and ¢ for
2.9 ]S, 0<l|e|<ey,  arg €] <0y,

and has an asymptotic expansion when ¢ tends to zero:
2. 10) Clz, &)= 31 C(x) [z7%].
v=0

The matrices functions C,(zr) are holomorphic for |r|< 7o, and
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0 1
2.11) Co(z)=ab 0 ’ +C¥@).

Paogy - Proggr (1)
Let 4y, ---, 4, be the characteristic roots of the matrix (a0)~'Co(0) and assume that
@.12) Al ixj, =1,

In this case we can prove the following lemma.

LemMA 2. 1. Under the condition (2.12), there exists a linear transformalion
(2.13) u=2D_(t, ¢)z

which changes lhe equation (2. 8) inlo
dz

~bglhp 22— &)z

(2.14) [z~2e] 7 D(z, &)z,

with the following properties:

a) Dz, ¢) is holomorplic in t and ¢ for
2.15)  |t|S7, |argt|=e,  0<|e|se |argel=dn, 0|t = m,
for sufficiently small posilive numbers v, and o, and arbilvary .

b) As |t7%]| tends to zero, we have
2. 16) D(z, = X, Du(@) [rl
v=0

uniformly in (2. 15).

c) The matrices D,(z) are diagonal and holomorphuc for |t| <z,

Ai(7) 0
d) DO(T)=[ :I, 2{(0) =2+ o(z).
0 An(7)

e) The matrix P(z, ¢) is holomorphic in © and e for (2.15) and
2.17) PG, 9= 5 P [,
where Po(7) is nonsingular and PJz) holomorphic jfor |t|=rt,.
The proof is almost same as [2] and then is omitted here. (see also Wasow [4]).

Since all the matrices D,(c) of (2.16) are diagonal, we can calculate a formal
series solution of the differential equation (2. 14) and get a following theorem.

THEOREM 2. 1. The differential equation (2. 8) possesses a formal malvix solulion
of the form
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oo 13
2.18) s~ Y, &u,(r) exp[Z e""‘F»(r)—I,
v=0 v=0 -
with the properties;
(2.19) w(t)=7""4,(7),

where #,(t) are polynomials of degree v at most in log t whose coefficients are holo-
morphic in |t| <1, and bounded in the domain (2.15).

(2. 20 F(r)=1"0-wF (1) v<h—1
(2. 21) Fu(®)=f, log t+Fu(7)
where B.(c) v=0,1, -, h) are holomorphic in |t|<ts, and fu is a constant matrix.

The proof of this theorem is similar to that of [2], THrEorREM 1, and then is
omitted here.

§3. Formal solutions in the neighborhoods of x=0.

We transform the equation (1.1) by stretching and shearing transformation of
the form, (see Iwano and Sibuya [1])

@E.1 xr=e%s
3.2) y=02(%,
where 2(c%) is defined by (2. 2) with ¢* instead of ¢, and then becomes
0 1 ) 0
dv .
(3.3) i 0 1 Jo.

5—'47’])"(5'1«3, 6), RE) 6-—27[)2(5@3’ ‘S), 0

where y=qa/n.
From (1. 4) and (1. 5). we have

(3. 4) e‘krpk(eas, 5): i i /)A:u/,S/'€”'af'_k7
V=0 p=mpgy

and remark here that from (1.7) and (1. 8),

Rl 4
3. 5) v+ap—kr=ak — = + . b =0

. . kq
(3. 6) v+ap—ky=0 if and only if v=0 and p=pm= ey

We put

(3. 7) 62‘()"'*"7

with p>0 for arg e=0.
Thus the equation (3. 3) can be written
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3.8) B s, o

where H(s, p) is holomorphic in s and p for (1. 3), and has asymptotic expansion
in (1. 3) and |s|<s, for arbitrary s, such that

3. 9) H(s, 0)= g:offu(s)p”,

where H,(s) are holomorphic matrices functions of the forms
[ 0 1 ) 0

(3. 10) Hy(s)= 0 A ,
L ProgSY, +++y Prou S, -+, (1)

3.11) TI(s)= 0 ]
—hnu(s)’ Yy /12,,(5), 0

Now we consider the asymptotic properties of 77(s, p) in the domain (1. 3) and
|SlgSo.
Let H¥*(s) be

HF¥(s)=0(s)"[1,(s)f(s), v=1).
Then from (3. 11) and (2. 2)

HFH(s) 2[ O ]’
s==Danp, (8), -+, STUPy(S), 0

but from (3. 4) and (3.7), the function /(s) is a polynomial of s of degree at most
kg/n+v/nh, and then H**(s) can be written

HF¥(s)=s/nrra/n[T¥(s),
where H¥*(s) is bounded at s=co. Thus H,(s) can be written
(3.12) H,(s)=s"nr+a/nQ($)[T*(s)2(s™1) (v=1),

where H*(s) is bounded at s=oo.

LeEeMA 3. 1. For every m=0, there exists a matrix function En.(S, p), bounded
in the domain (1.3) and |s|=s, such that

3.13) H(s, p)— 23 H(s)p*=sV™A$)Emii(s, p)2(s™Y) [sV"p]™*2,
v=0
Proof. To prove this lemma, it is sufficient for us to state that for every

m=0, there exists a bounded function em+i(s, p) in the domain (1. 3) and |s|=s,
such that
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(3_ ]_4) e""pk(e"s, e)___ VZE] hku(s)‘ov:skq/n +(m+1)/nhem H(s’ P) .pm+1'

But this is easily derived by considering the order of magnitude of the remainder
terms, and the details are rendered to the previous paper [2].

Let
3. 15) e 37 0,(5)p"
v=0
be a formal solution of (3.3). Then »,(s) must satisfy the following equations:
di
3.16) =),
dav, v
3.17) 5 =Hy($)v,+ 2 H(S)0,-,
S p=1

The asymptotic solution of (3.16) can be obtained from the recent results of
Okubo [3]. Now we translate the Okubo’s main results into the terminology of the
differential equation (3. 16).

If we transform the equation (3. 16) by the equations

— ” (n+@d/n
< n+q S
Vo=20(s)w,
we have
dw
(3. 18) E—— =(A-+EBw,
(l’g
where
0 0
n—+q ) ’
0 n—1
0 1

0 )
pany tty pkollk) ) 0

Here we suppose the following assumptions on the matrices A and B.
a) Let 4, ---, 2, be the characteristic roots of B, and choose arg 2, in such a
way that —r»< arg 4,<r, i=1, ---, n. Then, we assume in addition to (2. 12),

21#0’ i=1 - m,
larg A;—arg 4;|>0,  ixj,  4,j=1, - n
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b) Let P be a constant matrix such that P-'BP= A is diagonal, and let /7 be
a diagonal matrix whose diagonal elements =, are the diagonal elements of P-*AP.
In this case, we assume

— kq —mx—1, —2, -, i=1, -, n, k=0,1, ---, n—1,
n-+q
c)
l(k__ﬁ:(), 1, 42,y kLR I=0,1, -, n—1.
n-tq

Under these conditions, the differential equation (3. 18) has a fundamental
matrix solution in the neighborhood of £=0 of the form

3.19) Wo= [ i Z{)OVE"]EA, det wiox0.
V=0

with constant matrices wo,, and in the neighborhood of &=o0, there exist several
asymptotic matrices solutions in the sectorial domains of the form

(3. 20) We = [ f wmf‘”]f"e“f, det 20,30,
y=0 -

with constant matrices ..

The connection formulas of the solutions (3.19) and (3. 20) can be obtained in
several sectorial neighborhoods of &=co which overlap the full neighborhood of
&=o00. One of such sectorial neighborhoods is given by

»

0= n ‘larg LE| = %—n’—ﬁ},

where 8 is arbitrarily small positive number. The sector X() contains a sector
whose central angle is at least n. Let 2 be a sector contained in 2(0) such that

(3. 21) Y. —agarg < —a+t, <0§a< Z),

where the number « is specified in later.
Thus we have an asymptotic solution of the equation (3.16) of the form

3. 22) vo=82(s)wo(s)s® exp [Q(s)],
where
T 71
(3.23) R=n7+q . 0 = . ° )

0 Ty 0 Tn
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a 0 o) 0
= n (n+q@)/n .. . .,
3. 24) Q= s . = . :
0 An 0 qn(s)
3. 25) ()= 3 wous= @O/ det wne 0,
v=0

with constant matrices w,,, and this is valid in the domain S(s.):

(3. 26) [s]=so,
—an n(r—a)
3.27 < =,
( ) P args < P
Now we must solve the differential equation (3.17) which is of the form
(3.28) & )

with entire coefficients. The integral
(3. 29) t(s):S vo(S)v0~ (o) (0)do
r(s)

is a solution of (3.28) if I'(s) designates a set of paths yu(s) in ¢-plane ending at
o=s for every scalar integral contained in (3.29). The paths 7;(s) will be given
in later.

Define #(s), #o(s) and F(s) by the relations

(3. 30) 1(s)=L(s)E(s)s® exp [Q(s)],
(3.31) 0o(5)=12(s)Do(s)s” exp [Q(s)],
(3. 32) F (s)=Q(s)ﬁ‘(s)sR exp [Q(s)].

Then, (3. 29) becomes

f(S)=ﬁo(S)Sr® {exp [Q()—Q()]} (s/o)FDu(a)™!

(3. 33)
-F(a)(a/s) exp [Q(a)—Q(s)]do.

Now assume that for some positive number b,

(3. 34) F(s)s® is bounded in S(so),
then
(3. 35) Do(s)"1F(s)s=®  is bounded in S(so).

To simplify the notations, we define g(s) and B by

(3. 36) I =) )= sy RO
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From (3. 33), (3. 35) and (3. 36), every element of the matrix in the integrand
of (3.33) has a form

(.30 Pir(0)a”(s[0) 17Tk exp [Bju(s " O — g O],

where pji(e) is bounded in S(so). We consider this integral in the é&-plane and
introduce the auxiliary variables

S(n+q)/n

(3.38) ¢

— (n+q)/n —
ntq’ 8 n+q

The sector S defined by (3. 27) in the o-plane corresponds to a half plane ¥ in the

{-plane. Now we choose the angle « in (3.20) in such a way that every line,

(3. 39) Re [(lj—lk)C]=0 ]ﬂ*_‘k) j: k:L e, R

does not coincide with boundary lines of 2, and clearly this is always possible.
Then every line (3. 39) has one half line inside X. Hence for every pair (4, &), 14,
we can draw a ray [ through the origin into the interior of Y such that
Re [(4;— )] increases monotonically to oo along Iy (jk) as |€| increases to oo.
Denote by (&) (k) the straight half line in 2 which is parallel to /; and has
one end point at a point £ of ¥. Then Re[(2;—4)¢] also increases monotonically
to co along 1;:(§). We define 7u(s), 734, as the curve in the sector S of the ¢-plane
whose image under (3. 38) is 2;«(£). Then Re g;(s) grows monotonically to co as
o increases to co along 7;i(s).

In order to make sure that all points of yu(s) lie in the domain S(s,) of the
g-plane, we must limit s to a domain S(s;), where s, is sufficiently large. For the
paths 7;(s), it suffices to take them as segments {from some points s, in S(s;) to
seS(sy), where s, is so large that these segments lie in S(s,) for all seS(sy).

LEMMA 3. 2. If the differential equation (3.28) satisfies the condition (3. 34),
then it possesses a solution of the form

(3. 40) Hs)=s""12(s)t*(s)s* exp [Q(s)],

where 1*%(s) is bounded as s—oo in S.

Proof. If (3.37) is integrated along 7;(s), it becomes in terms of ¢ and &,

(3. 4D) : E"f-“kg {exp (4= A)(E— D)} P(a) hp i/ i g,
q 2558
7, k=1,2, -+, n.
If we express ¢ on 4;(€) in the form
CZE_'—BJICV? jr k':l) 2) oy N,

where 0, is a constant of modulus 1 and 7 is a real variable, then (3. 41) becomes

n

(3. 42) 7 ]"k-ﬂ;+(nb—p)/(n+q)

- E‘"”‘”""”’S: {exp—(y— W)dr) fielo) [1+ g

B k=1,2,, n.

5jk v,



MATCHING METHOD FOR DIFFERENTIAL EQUATION 317

For jxk, Re (A;—)05#%>0 on A;%(€) and thus the integral in (3. 42) is a uniformly
bounded function of & for seS(s;). Then (3.42) is of the order O(s*~¢") as s—co
in S(sy). For j=k, 8#=0 in (3. 37), and then integral of (3. 37) along 7,;(s) is O(s*+1).
Thus Lemma 3. 2 follows at once using the relation (3. 30).

Lemma 3. 3. The differential equation (3. 17) possesses a particular solution of
the form
(3. 43) v.(8)=s*8s)w.(s)s" exp [Q(s)],

where w,(s) is bounded as s—oo in the sector S, and

1l e
(3. 44) e=— bl

Proof. We prove this by induction. For v=0, the equation (3. 17) becomes the
equation (3. 16) and the statement in Lemma 3. 3 is satisfied from (3. 22). Assume
it to be true for v<m. The p-th term of the summation in (3. 17) has a form

H(8)0m- () =57 ™ W Q) *(s)wm-,(s)s* exp [Q(s)],
where H,.(s) is the expression defined by (3.12), and
flm, = % + —j{; +(m— p)e.
The exponent f(m, ) is the largest for p=1, and then for v=m we can apply
Lemma 3.2 to the equation (3. 17) with
(3. 45) b=f(m, 1).
Thus we get the following theorem.

THEOREM 3. 1. We assume on the matrices A and B in (3. 18) the conditions
a), b), ¢) and (2. 12), and let k(s) be defined by

0 if [s| =50,
(3. 46) k(s)={
1 if [s] > so.

Then the differential equation (3.8) has a formal maivix solution v of the form
3. 47) o000 | 5 ol o} [0 exp QL.
v=0

where w.(s) are bounded in the domain (1.3) and |s|<s, with k(s)=0, and in the
domain (1.3), |s|>s, with k(s)=1.

ReMARK 1. Among the assumptions on the matrices A and B stated in above
Theorem, the essential conditions are the condition (2.12) and the condition (b).
In fact the connection formulas of the solutions (3.19) with (3. 20) can be obtained
without the condition a) and c¢) by a little modification. (Okubo [3].)

But we assume to hold all the conditions stated in Theorem 3. 1 for simplicity’s
sake.
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Remark 2. Let C be the connection matrix between the solution of the equation
(3. 16) in the neighborhood of s=0 and the asymptotic solution (3. 22) in the sector
(3.27), and let v,°, 9, be the solutions of (3.17) in the neighborhood of s=0,
s=oo respectively. Then, we can construct the solution »,* such that

(3. 48) 0,42 .C=0,, v=0,1, -,
To prove this statement, we consider the equation (3. 28) with
dro
(3. 49) — =Hy($)EO+F(s) [sI=s0
ds]
dt
(3. 50) s =Hy($)t+F(s)C [s]> .

If #(s) is a solution of (3.49), then ((s)C is a solution of (3. 50). Hence if
we determine the solution #¢(s) by the condition

t(°’(sl)C=t(°°)(sl)

for some point s;, we can conclude (3. 48). And this is always possible for
t“D‘(s)=Svo(s)vo(a)“lF(a)da—f—vo(s)-P

and #“(s) which is constructed in Lemma 3. 2 by taking constant matrix P appro-
priately. Therefore two formal solutions of (3. 8)

MO { go w, 0 (s)p* } exp[Q(s)],

0| £ w1l exp 1005

are connected formally by the relation

P~ . C,

§4. Existence Theorem (1).

Here we prove the following theorem.

TurorReEM 4.1. Let T be any seclor of t-plane with vertex at the ovigin and
central angle less than n|bh (b is the number introduced in (2. 7), and diffevent from
that of (3. 34)), and let

U~ 206”%,,(2') exp[éoe"“”Fy(r)il

be a formal solution of (2.8) whose existence was shown in Theorem 2.1. Then,
there exists an actual solution of (2. 8) of the form
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h
“.1 u(z, &)=10(z, ) eXp[Z 6"—"F,,(T):I,

v=0
and for every positive integer m, there exists a domain D: of ¢, t-plane defined by
4. 2) €T, 0<l|e|Ze, |arge|<di, cile*?=|t]=Zcy

(e1, 01, €1 and co arve certain constants depending on m but independent of <) in which
it holds

4. 3) a(z, &)— i u,(t)eb=En(z, €) [t~t]™,
v=0
where En(z, ¢) is a matvia function bounded in the domain (4.1).

Proof. We divide this proof into several stages. At first we analyze the
equation (2. 14).
Let the matrices functions Dn(z, ¢) and 2 (z, ¢) be

m+h
4.9 Dn(z, &)= 2, Dy(z) [t%],
v=0
m+h
4. 5) 2™ (z, s)=exp{ P eV*’LFy(z-)}.
v=0
Then z™(z, €) is a fundamental solution of an equation
dz
“b\hp 25 ¢
(4. 6) (T r.) T dz Dm(’l', )Z.

By the transformation
(4. 7) 2=z(m) +w(nt),
the equation (2. 14) becomes

(m)

4.8 (zre)rr dw =D(z, yw™ +[D(z, e)—Dn(z, )]z,

T

and if we define K(z, ¢), Du(z, €), W™ (z, ¢) and 2(z, ¢) by

4.9 K(z, )= 31 eF),
v=0
(4. 10) Di(z, &)= i}D,(‘c)[z“”e]”,
4. 11) W (z, &)=w™(z, ¢) exp [—e " K(z, ¢)],
4. 12) 2 (7, &)=z (z, &) exp [—e " K(z, ¢)],
then (4. 8) becomes
)

(z~ )t

=Du(r, W™ =™ D(z, &)+[D(z, &)= Du(r, )lw™
(4.13)
+[D(z, &) —Dufz, 1.
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Here we have

(4.1 D(z, &)—Du(r, o) =(z7e)" ! Lo (z, ),
4. 15) D(z, )= Dulz, &) =(c0e)™ M1, (z, ¢),

where FEn(z,¢) and En(r,¢) are bounded in (2. 15), and from (4. 5), (4. 9) and (4. 12),
we can see

m+h m+n ~
2(m):exp[ > s”‘”F,(r)]zeXp[ n (r"’e)”‘”F,(r)}

v=h+1 v=h+1
with bounded matrices functions F.(c), and then 2, is bounded in (2. 15).

Now we write the differential equation (4. 13) for each component of W™ (z, &)=
(W (z, €)), that is
dt; ;™
dr
where d, are the i-th diagonal element of D.(z,¢), and this differential equation can
be converted by the method of variation of constants into the following integral
equation

4.16)  (c7%)c =(di—d Wi +[(D— D)™ +(D— D)2,

@ 17) W™ (r, 8)=6‘”Srij{exp e [1135(0) = prs( @)} D(0, &) — Di(a, )J ™ (z, )

+[D(0, &) — Dn(o, €)]2™ (0, &) } 150"~ do,
where
/Zij(f, 5) = Ki<77 E) - K]'(T: E)

with diagonal elements Ki(z, €) of K(z, ¢), and 74, is an integral path which is chosen
so that the exponential function in (4. 17) remains bounded as ¢ tends to zero.
Now we prove the existence of the solution of the equation (4. 17) by the fixed
point theorem.
Let F be the set of all matrices functions W(z, )= (w.;(z, ¢)) whose components
are holomorphic in = and e for (4. 2) and satisfy the inequality

(4. 18) (| W(z, &)|| =M |z=be|™,

where

4. 19) Iwii=mas| 5l |
1Zi=n =1

and the constant M will be chosen appropriately. F'is closed, compact, and convex
with respect to the topology of uniform convergence on each compact subset of
the domain (4.2). The mapping T(w) is defined by right hand term of (4. 17).
Thus it is sufficient for us to prove that the mapping T is continuous and has a
contracting property. The continuity follows at once if we choose the integral
paths 7y, in such a way that the integral (4. 17) converges uniformly for all matrices
functions of F.
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From (4. 14), (4. 15) and the boundedness of Z.(z, €), there exist constant M, My
and Bn and B independent of ¢z and z=% such that

[1D(z, €)— Du(z, )| | = M |c e+,
[|D(z, €)—Din(z, €)|| = My, |c-0e|m+r 11,
12m(z, o)l | =B,

in the domain (2.15). Then we have

“4.20)  |T(wy)l= lel"““S {exp e p;(0) — 1 ()]} (MnM |07"e| + ML) | o | 2™ O =1dlg,

2]

Here we must take |t7%]| sufficiently small, that is
4. 21) |o=e| < py,

and this is achieved by taking ¢; in (4. 2) large enough.

Now we can choose the constants ej, d;, ¢; and ¢, in (4.2) and the integral
paths 7.;(z) (G, 7=1, -+, #) in (4. 17) in such a way that the Re [¢~"4;(z, )] is monotonic
decreasing along 7.;(r) and a following inequality holds for ¢ in the domain (4. 2)

4. 22) S || m+D=1| dg| < M, |¢|-bCm+D
745(0

where M, is dependent on s but not on ¢ 7o and p. These statements can be
proved by the same methods in [2] and the proof is omitted. Hence we have from
(4. 20),

| T (wig)| = [MnMps+ MBI M [0 [t
and if g, in (4. 21) is taken so small and M so large that
n[MLMﬂl—I"MmB]MléMy

so we can conclude that ||T(w)|| =M |c~%|™*! and also from the uniform convergence
of the integral, T'(w) is holomorphic, that is

T(F)CF.
Thus we prove the existence of the solution of (4.17) and then (4.16) or (4.13) of
the form
(4. 23) W ™(z, &)= (r"e)"E(z, €),
where £(z,¢) is bounded in (4. 2).
Now we prove that the solution @™ (z,¢) of (4. 16) such that
4. 24) W™ (z, €)=0(cbe)m+!

is unique. Assume the contrary, and let ¢=(g:;(z, <)) be the difference of any two
solutions. Then, evidently the integral equation

Tij

i(T, 6)=6"‘S {exp e[ i5(2) — pif( @)} [D(0, ©)— Di(o, &)]pis(a, )o*"~'do
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must hold. If we put
max |psi(t, &)(cte)~ | = K >0,
lgl?sn
it follows that
[pis(e, O S K My Mile=0s] - [ebe| .
Therefore if we choose g in (4.21) so small that M, M <1, we obtain K<K

which is a contradiction. Hence K=0 and the unicity of the solution is established.
Next we consider the solution of the equation (2. 14):

2(z, e, m)=2"™(z, &) +w™(z, ¢).

Then, we can prove that the solution z(z, ¢ m) is independent of m. Let m/ >m,
Di(m"), D:(m) be corresponding domains which are dependent on g, in (4. 15) and
hence on m, and

z(t, 6, m)=[2(z, )+ W™ (z, &)] exp [e " K(z, €)],
(t, &, m)=[2™(7, )+ W™ (z, &)] exp [e"K(z, ¢)].
Clearly the function
2™z, &)+ W™ (r, £)—2™(z, €)

satisfies the differential equation (4. 16), and in the domain D,(m)N Di(m’) and p, in
(4. 21) sufficiently small it satisfies the inequality (4. 18). It follows from the unicity
established above that

Wz, ) =2z, )+ D™z, ) —E™(z, <),

and then
2(z, e, my=2(z, e, m’).

Thus we have established Theorem 4.1 for the solutions of the differential
equation (2. 14), and concerning the solutions of the differential equation (2. 8), the
statements of Theorem 4.1 can be easily obtained with some modifications on each
constants e;, d;, ¢; and ¢; and on En(z,¢), by the same methods in [2].

§5. Existence Theorem (2).

In this Section we prove the existence theorem corresponding to the formal
solution (3. 47) in Theorem 3. 1.

THEOREM 5. 1. Let
VD~ ZO v,(s)p’

~ (st { ;::o w,(s)(s*®ep) } SHOE exp [Q(s)]
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be a formal solution of the diffevential equalion (3.8) whose existence was proved
in Theorem 3.1. Then, for cvery positive inleger m, theve exists a domain D, of
the s, p-plane defined by

6.1 seS, 0<|pl=p,, largo|=0d, |[s°0|=cy,

where p,, 0, and cs ave some constants depending on m and ¢ is a number defined
by (8. 44), and there exists a fundamental matrix solution v(s,p) of ilhe equation
(3. 8), which is related to the formal solution by the formula

®.2) (s, p)— ﬁ] 0(8)p* =) Ens, p)[s*¢p]™ 1% exp [Q(S)],

where En(s, p) is a matrix function bounded in the domain (5.1), and k(s), $2(s), R,
Q(s) are defined in (3. 46), (2. 2), (3. 23), (3. 24) respectively. The solution v(s, p) is
independent of m.

Proof. Let
5.3) 0™(s, p)= VZ_IO .(s)p
be the finite sum of the series (3.47). This satisfics a differential cquation
dv
— = —pm)’, (ym)—1
(. 4) s Hno, In=v (™1,

where v denotes the derivative of »™ with respect to s.
Clearly vo(s) is a nonsingular matrix function and all »,(s) are entire matrices
functions. Hence if s,>0 is chosen arbitrarily, vn(s, p)~* exists for

(5.5) lol=p1,  [sI=s0,

where p; is sufficiently small positive number depending on s, and m. On the
other hand, by Lemma 3.3 we have

.6) (s, p>=9<s>[ pHAS <scp>v]s" exp [QS)],

where w,(s) are bounded for |[s|>s, and seS, and wo(s) is nonsingular for sx0 from
(3. 22), and the nonsingularity of vo(s). Then it follows from (5. 6) that v (s, p)~*
exists for seS and

G.7) [sep| =7, [s]> S0,

where 7, is sufficiently small positive number depending on s, and .
Define a function (s, p) by the equation

(5.8) 0™(s, p)=R(s*)Pm™ (s, p)s*E exp Q(s),

where k(s) is defined in (3. 46). Then from the above discussions, the matrix func-
tion #(s, p) is bounded and nonsingular if s and p satisfy the condition (5.5) or
5. 7).

If we put
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(5. 9) V= v(’ln)_!_z(m)’
the equation (3. 8) becomes
dzm
(. 10) o =H(s, 02 +H(s, P —v ™.

Then any solution of the integral equation

6. 1) z2m(s, p)= Sm)vo(s, o)vo(e, 0)"{[11(a, p)—11(s, p)]z2™ (0, p)

+[H (o, p)o™ (0, 0)— 0" (0, p)]} do

satisfies the differential equation (5. 10). Here ['(s) denotes a set of #* paths of
integration in the o-plane ending at s.
If 2(m(s, p) is defined by

(5_ ]_2) Z(M)(S, p).:Q(sk(s))z‘(m)(s, p)sk(s)h‘ exp [Q(S)],
then (5.11) becomes
Zm(s, P)=wo(s)gr( )s"‘“"’{exp [Q(s)— Q)] } o~ By ()20 5<)
(5.13) {[H(o, p)—Hilo, 9)l2a+)5 (3, 0)a*F exp [Q(0)]
+[H(a, p)v™(a, p)—v™ (0, p)']} exp [~ Q(s)]s~#Ed.

Here we need an estimate of FH (o, p)o™ (g, p)—0v™ (g, p)’.

Flpm) —— >’ — [ i Hup”—I—Rm] ZL] 0,0°— 25 00"
5. 1) . I

m v
=20 IZ l[Fv_,‘—v,’} + 23 ¥ o, 00+ R,

V=0 p=1
where the summation »;* is for

u=m, v—p=m, v>m, p=l,

and R, denotes the remainder terms in the series expansion of H(s, p). Among
the last three expressions in (5. 14), the first term is zero, because », is the solution
of (3.17). From (3.12) and (3. 43), the second term can be written
5. 15) g(sk(s)) Z* pusk(s)g(v.p)[]/‘*wy_#sk(sm exp [Q(s)],

where ¢(v, p)=p/nh+q/n+@—pe. The maximum number of g(v, ) for each v is
attained by p=1, that is

A1 Ne=ve—
o7 + " +—pe=ve—1,
and so the summation (5. 12) can be written

(5' 16) -Q(Sk(S))E(S, p)[sk(s)ep]m lrls*k(s) _Sk(s)R,eXp [Q(S)]
where E'(s, p) is bounded in (5.5) or (5. 7) respectively, and e is given in (3. 44).
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For the last term Ruo™ we have from (3.13) (5. 8) and boundedness of the func-
tion 9™ (s, p),

(5.17) Ry =Q(s*E (s, p)[s¥®ep]m+isk@ kR exp [Q(S)],
where £(s, p) is bounded. Hence we have
(5.18) Hopm —p@m' = Q(sEVE (s, p)[sE®¢p]m*1s7k @ sk®R exp [Q(S)]

with another bounded function E(s, p).
Using above results and (3. 13) with m=0, the integral equation (5. 13) can be
written

£, )=t || 5O lexp [QU) QU] o) (o4O

(5.19) Ex(0, )2 (0, )+ (0, p)o e Dpm g h®)
04 R exp [Q(0) ~ Q) s+ do,

where wy(0)?, Ei(o, ) and E (o, p) are bounded in the domain considered. We prove
the existence of the solutions of this equation by the fixed point theorem. Let F be
the set of all matrices functions with the properties that every matrix function
Z=(zi(s, p)) is defined in D, except for |s|=s,, holomorphic for s3 oo, and satisfies
the inequalities in the domain (5.1) such that

5. 20) 121= max 3" |z, DI =M]p|™t, i [s|=sn
1isn ;5
(. 21) [|1Z]|=M|stp|™+1, it |s|> so.

The constant M and the other constants in (5.1) arc defined in later.
The mapping T is defined by

5. 22) T(Z)=wi(s) Sr(s)sk‘”’* {exp [Q(s) —Q(0)]} 7 Fwy(0) " Ex(a, p)Z(a, p)o* D

+E(O‘, p)g-k(a)e(m+1)pm 11 5~k(a) }ok(v)R{exp [Q(U)'—Q(s)]}s_k(S)Rdo',

We can write this equation for each component of Z=(Z,(s, 0)) as follows

T(e=soomi | gronriiex g~ g
Tij(s)

. {L”.(ZA)UIC(U)(e—l)p__}_pij(a-’ p)ar@emiD gm i15-k() g,
where », and ¢;;(s) are defined in (3. 23) and (3. 36). Here sz(ZA) is a linear form

of j-th column of Z with bounded coefficients and pij(o, p) is a bounded matrix
function.
If we transform ¢ and s into { and & by the relations (3.38), the sector S

corresponds to the half plane 3], and the integral (5.23) becomes

(5. 23)

T(é‘”.) — gk(s) (xg—nyp) S C-—k(") (aj—n4) {exp (174 _l])({:__ C)}
76
. {z\n.j(ZA)Ck(") (e—Dn/(n+ @) +I§ij(0', p)Ck(a)[e(m»| Dn/(nt—-nin \-q]pm FI}CAq/(rw q)dc,

(5. 24)
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where =, and 2, are defined at a) and b) in Section 3, and L.,(Z) is a lincar combi-
nation of j-th column of the matrix Z with bounded coefficients and p:(s, p) is a
bounded matrix function.

Let 40 be a closed half disk in 3, which satisfies

(5. 25) |Lae/mt 0 p| =7y

for each p, and 7, denotes a constant sufficiently small. On the circular arc of
the boundary of ¥, we can conclude from the choice of a which determines the
sector 2, in (3.21) that there exists for every 4,7 (i) a unique point &, at which
Re [(4;—2;)¢] attains its maximum in . Then the quantity Re [(4;—2;)(6—0)] in-
creases monotonically when ¢ moves from &, to & in 9 along a straight segment.
Here we limit & to the convex polygon J* in JC whose vertices are {,, and two
endpoints of the diameter of J. If £ is any point of J*, the integral path 4,,(§)
in (5. 24) is defined by the segment joining & and {,,. Thus for { on 4,;(§), there
exist a positive constant p, independent of 7, 7 and p such that
(5. 26) Re [(A4i— (=01 < —plé—=L].
We take here the inverse image of 1,;(¢) in the o-plane as the integral path 7.;(s)
for 37, and the path y;;(s) is to be the ray from the origin to s.

Here we choose the positive constants p, and 4, in (5.1) so small that the
domain defined by
(5. 27) 0<lpl=ps,  larg p|=ds
satisfies the condition (1. 3).

Now we prove the contracting property of the transformation 7. TFrom (5. 24)
and (5. 20), or (5. 21),

| TG =] p|™ +1|5k<s>(ni—:rj>|8 |-k Ei==p | {exp Re (2 —A)(E—E&)}
2§(8)
. {jwlc|k(a)en/(n+q)lp| _,_B}lclk(v)[e(m-!-l)n/(n lq)—71/(n+q)]IC|—q/(n+q)I([CL

(5. 28)

where B is some constant. We estimate the the integral:
(5. 29) fES | @imap | {exp Re (i—2;)(E—=0)} [C [ |{|-v/ o |qC],
gce

where A(m)=e(m-+1)n/(n+q)—n/(n+q).
(1) j#k. From (5.26) we can write for each &eJC*

]éclﬁ {eXp _p'g_cl}IC!—k(ﬂ)(Re(zi—n,’)—h(m))icl—q/(‘nvq)|dCIy
458
where C; and other constants C, introduced below are some constants independent
of € and p. If the point & and all the points of 2,;(&) satisfy the inequality

& >&0= et Som o/,

we can prove easily that
]SCZISI_Ro(”i_”.f)+"(m'1)"/("”7)_1

§C2|5|fl'{o(xi—zj) ! (m&l)/’n/(noq))
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and if |&]>&,, and some parts of 2,;(§) are contained in |£]<&,,
]écsson/(n+q).

Next, if |£]=&, and 2,;(§) is contained in |§] <&,
J=CéM o,

and if |&] =&, and 2,;(6) has the parts on which |&]|>¢,,

]SC5EO"R9(”77_"") t(m4 Den/ntgd |
(2) i=j. In this case J becomes
f:S Iclk(ﬂ)h(m)ﬂz/(n-rq)qu‘
A4 (&)

If |&]=&,, we have
]gccfon/(n»}q)'

If 1§]>&,

jSC7|E|(m+I)0n/(n+q)‘

Then for each case, it follows that
(5. 30) ]écslslk(s)(m-x-1)enl(n1 q)|§|——k(s)Re(1ri—1rj),

where Cs is some constant depending on & and m, but is independent of p and &.
Therefore we have from (5. 28) that

| T(2.)| =Co{ M |s¥¢p| 4 B} |skep|m 1,
and then,
H T(Z)] I §”C0{Mlsk(3)epl +B}l3k(3)ep'm+l,

If we choose M so large and 7, p» so small that

nCo{Mn:+B} =M,
and
nCo{ Mo.+B} =M,

so we get the contracting property, ||T(F)||=M|s¥®¢p|m+1, The fact that T7'(Z) is
holomorphic matrix function in the domain D, except for [s|=s, and s=co follows
from the method of construction of the mapping 7, and from the uniform conver-
gence of the integral (5. 22).

Hence we obtain a solution of the integral equation (5.13) and then a solution
of (5.11) which is also a solution of the differential equation (5. 10).

If we put

v(s, p)=v™(s, p)+z2(s, p),

then »(s, p) is a solution of the differential equation (3. 8). The facts that the solu-
tion z¢™(s, p) of (5.10) in F is unique and then the solution o(s,p) of (3.8) is
independent of m, are easily established as in Section 4.

The constant ¢; in (5. 1) is chosen such that c¢;=#; and the inverse image I7*
in the s, p-plane of J* in the &, p-plane contains the domain (5. 1).
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§ 6. Conclusions.

The differential equation (1. 1) has two types of asymptotic solutions. The one
is from Theorem 4.1,

6.1) y=02(z) - u
6. 2) u=1(r, &) CXp [i e“—’LFy(r)—I
®.3) dr, = 5 u, (o),

v=0

where z=7%, and u.,(r) are defined in Theorem (2. 1). The domain of the asymptotic
expansion is given (4.2). And the other is from Theorem 5.1,

6. 4) y=58(2)u(s, p)
(6. 5) v(s, p) = 0(st) i w,(8)[s¥¢p] st OF exp [Q(s)],
v=0

where xz=¢%s and e¢=p"*e. The domain of the asymptotic expansion is given in
(6.1). Now we prove that the two domains (4.2) and (5.1) overlap with each
other for all sufficiently small e.

The inequality c¢,|e['?=]|c|=c; becomes in terms of x and e

(6. 6) 1] o = || S,
and the inequality |s®p]=c; becomes
(6 7) lx|=031/elela—l/e<nm)’

where e=1/nh+q/n+1>0. The domains (6.6) and (6.7) overlap clearly for all ¢
sufficiently small, and this is the chief purpose of this paper.

Now we have in mind that the result of this paper is applicable t» a boundary
value problem of a linear differential equation containing a turning point, and that
this matching method may be developed to a certain singular perturbation problem
of linear and nonlinear systems which contains the turning point problem as a
special case. In future, we will discuss these problems.
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