
ON THE EXISTENCE OF ANALYTIC MAPPINGS BETWEEN

TWO ULTRAHYPERELLIPTIC SURFACES

BY GENKO HIROMI AND MITSURU OZAWΛ

§ 1. Introduction. Let R and S be two ultrahyperelliptic surfaces defined by
two equations y* = G(z) and u2=g(w), respectively, where G and g are two entire
functions having no zero other than an infinite number of simple zeros. Then one
of the authors [6], [7] established the following perfect condition for the existence
of analytic mappings from R into S.

THEOREM A. // there exists an analytic mapping φ from R into S, then there
exists a pair of two entire functions h(z) and f(z) satisfying an equation

and vice versa.

Let yR(R) be a family of non-constant meromorphic functions on R. Let / be
a member of 9R(R). Let P(f) be the number of Picard's exceptional values of /,
which we say α a Picard's value of / when a is not taken by / on R. Let P(R)
be a quantity defined by

(cf. [4]). Let P(S) be the corresponding quantity attached to S.

In the present paper we shall give a perfect condition for the existence of
analytic mappings from R into S in a case of P(7?)=P(S)=4, which is more direct
than theorem A, and shall give some characterizations of the surfaces R with
P(jR)=3 by the forms of defining functions G.

By a characterization, which was given in [5], of R with P(R)=4 by G(z) we
can put

F(z)2G(z) = (eH™ - r*)(eπ^ - δ), H(z) ^ const.,

with two suitable entire functions F and // and two constants γ and δ. Similarly
if jP(S)=4, we can put

f(wfg(w) = (eL^ - γ')(eL^-d'\ L(w) ̂  const.,
(L2) L(0)=0, γ'δ'(γ'-
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with two suitable entire functions / and L and two constants f and δ'. Then our
result is:

THEOREM B. Let R and S be two ultrahy per elliptic surfaces defined by (1. 1)
and (1. 2), respectively. Then there exists an analytic mapping φ from R into S if
and only if there exists an entire function h(z) such that either

(a) L°h(z)-L°h(Q)=H(z), γeL h«»=γ'9 ^/..ΛCO)^/

or

(b) L*h(z)-L*h(Q) = -H(z), γγ'=e

L*h^\ δδ'=eL°hW.

A proof of this theorem B will be given in § 3.

Next if the surface R satisfies P(R)=3, then its defining function G(z) satisfies

fli(z)5Ξ const., H2(z)*ϊ const., #i(0)=#2(0)=0, /3ι/52^0

with three suitable entire functions F, Hi and ff2 and two constants β1 and βz.
For completeness we shall give here a brief exposition of this fact. Since

P(R)=3, there exists a two-valued entire algebroid function f of z which is regular
on R and whose defining equation is

with two single-valued entire functions /ι(z) and f2(z) of z. Further we may assume
that 0, 1 and oo are three exceptional values of /. Then, by Remoundos' reasoning
[8] pp. 25-27, we have three possibilities

F(*,0)-| Γ c 1 Γβe"Γβe"-]

L c\

where c, β, βi and β2 are non-zero constants and //, Hi and H2 are non-constant
entire functions of z satisfying ^(0)=ft(0)=//2(0)=0. However we may put aside
the first and the second cases. In fact, from the equations

we have

By the characterization of surfaces with four Picard's values, we have
This is a contradiction. Therefore if P(R)~3, then we have the third case and
obtain a representation

4/2

2G-l-2/31e
ίJl-2/32e

ίr'4-^

Conversely, the surface R defined by (1. 3) satisfies P(R)^3. In fact,
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/(*)= -

is an entire function on R which is two-valued for z, where

G(z) = l- 2β1e
m - 2β2e

m + βfe2m - 2β1β2e
m+Ht - β

Then

satisfies

F(zfQ)=β1e
m and F(z,V)=βzCH\

This shows that /^O, 1 and oo on R.
However we did not succeed to determine all ultrahyperelliptic surfaces R with

P(R)=3 (cf. [5], [7]). Here we shall show the following

THEOREM C. The surface R defined by (1. 3) satisfies P(R)=3 if

m(r, eHl) = o(m(r, em))

outside a set of finite logarithmic measure.

A proof of this theorem C will be given in §4.

Further in § 5 we shall determine all the surfaces R with P(R)=3 when Hi
and //2 in (1. 3) are polynomials of degree 1 (Theorem D), and in § 6 we shall
determine all the surfaces R with P(R)=3 when Πi and //2 in (1. 3) are polynomials
of degree 2 (Theorem E).

§ 2. Lemmas. We need some preparatory lemmas in order to prove our results
introduced in § 1. The notations Γ, m, N, Ni and N are used in the sense of
Nevanlinna [3]. The notation Nz(r,a,f) is the TV-function of simple ^-points of/.
The following lemma is a generalization of BoreΓs theorem [1] and its proof de-
pends essentially on Nevanlinna's formulation [2].

LEMMA 1. Let aQ(z), aι(z), , an(z) be meromorphic functions and let f/ι(z), •> Qn(z)
be entire functions. Further suppose that

T(r, a j ) = o ( f ] m(r, *"»)), 7=0, 1, -, n,
\V=1 /

holds outside a set of finite logarithmic measure. If an identity

(2.1) 20,(z)^(e)=tfoW
V=l

holds, then we have an identity

(2.2) Σ^f/^y^-O
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with the exception of a case for which all the constants cv reduce to zero.

Proof. Let Gv(z) be av(φg^z\ Then we have

(2.10 ΣG,(*)=*0(2).
V = l

By differentiating both sides of (2. 10, we have

(2.3) ΣGP(z)=aP(z);

(2. 3')

On the other hand, we have

Σ
v=ι

/OO 0' ...

with a suitable polynomial P^ of indicated functions av, a'vί •••, a(

v

μ\ g'VJ •••, ̂ . Thus
we have

/ G(/0 \ / w \
Γ (r, -7^- ^ 0(Γ(r, «,)+ Γ(r, gy)) = o( Σ w(r, ̂ ) 1

\ Crw / \v=1 /

outside a set of finite logarithmic measure. Suppose that the determinant of the
simultaneous equations (2.10 and (2.30 Λ^O. By solving (2.30 with respect to
GJJ /=!, •••,«, we have

where

1 •••

Gί
Gl

Gί-»
Gi

1

G'n

Gn

G?-»
Gn

, 4 =

I ••• 1 α0 1 ••• 1

G f f~^t /~V /~V
i ίjj-l f W H tJ"w

G SΛ &Q J~Λ S~Λ
1 Crj-1 CJΓJ + ! Lrn

G{»-» GJlΓ15 ^_n G<««» G?-»
/^l ' ' ΓΛ ^0 f-Λ " π

Ori O -i (j-^+1 (Jrri

Since 7>, G?VG«)=<?(Σ?=ι w(r, ̂ )), we have

7 (r, ^j) — (91 / 1 m (r, e^v) 1, J. (r, Δj)=6>I 2j ̂  v > ^ υ )) , .7== -L>
\V=1 / \V=1 /

outside a set of finite logarithmic measure. Thus we have

and hence
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m(r, e

outside a set of finite logarithmic measure. This is a contradiction. Consequently
we obtain J=0 and we complete the proof.

By lemma 1 we can immediately conclude:

LEMMA 2. Let a1(z), ,an(z) be meromorphic functions and let g(z) be an entire
function. Further suppose that

T(r, aj) = o(m(r, **)), y=l, •••, n,

holds outside a set of finite logarithmic measure. Then an identity of the following

form

is impossible unless

Further we shall prove the following lemma which is fundamental to the proofs
of theorem B and theorem C.

LEMMA 3. Let βι(z), •••,#9(2) be meromorphic functions and let H(z) and L(z)
be entire functions. Further suppose that

T(r,aj)=o(m(r9e*)\ ;==!,-, 9

and

hold outside a set of finite logarithmic measure. Then an identity of the following
form

(2.4) 01e
2*+2*+tf2e

2i+*+08^
+2*^

is impossible, if the product of a\y " ,(Z9 does not vanish identically.

Proof. If (2. 4) holds, then by lemma 1 we have

c1tf1<?2L+2^+<;2tf2έ?2L+^+^^

with suitable constants a, so that

(2. 5) c1a1e
2L+H+ czaze

ZL + c,a,eL+π + c,a,e2L~π + c5a,eH + c,a&eL + cΊaΊe
L- H + c8α8 - 0.

If all acj (i*rj;i,j=l, ••-,?) are zero, then (2. 5) reduces to the one of the following
identities:

( i ) Cιaιe*L*H+Csa*=Q, i.e. eH=c(a8laι)e-ZL;

( ii ) C2a2e
2L-}- c8^8=0, i.e. eL = c*/a%\a£

(iii) csase
L+H +08(^8=0, i.e. eH=c(a8/a3')e-L;
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(iv) ciaieZL~II+c8ci8=^ 0, i.e. eu = c(a^a^L\

( v ) c5a5e
H-\-C8a8=Q, i.e. eII'-=ca8/ai)

(vi) c6aGe
Ljrc8ci8=^, i.e. eL^ca8/ai,

(vii) c7a7e
L-H +c8a8=Q, i.e. eπ=^c(a7/as)eL

with a non-zero constant c.
If at least one of ac3 (i*tj',i,j=l, •••,?) is not zero, then by lemma 1, which is

applicable to (2. 5) in this case, we have

Cι'aιe2L+H+cz'aze*L+c*'a*eL+u+Ct'aιeίL-H+cJ

with suitable constants ct', so that

(2.6) cι/0ιez+2*+c/020
L+//+^

If all cf

ic
f

j(i^j,i)j=lί •••,6) are zero, then (2. 6) reduces to the one of the following
identities:

(viii) Ci'tfi*?z+2//+<:7'07-0, i.e. e^cfa/aje-2*1',

( ix ) c2'a2e
L+H+ c,'a, = 0, i.e. eπ = c(a,\a^e~L\

( x ) C3/flr3e
2H+i:7/«7=0, i.e. e

( x i ) C4/^4^Z+C7/^7==0, i.e. cL

(xii) c6

/ββe-ι:+2//+C7/ύr7=0, i.e. <*

(xiii) cQ

fa&eHJr c7

/α7=0, i.e. eH

with a non-zero constant £.

If at least one of Ci'c/ (i*FJ',i,j—l, ,6) is not zero, then by using lemma 1
to (2. 6) we have

C/W^^ + ̂ ^^ + Cs^^

with suitable constants d", so that

(2. 7) c/'tf i + c^atf-11 + cJ'a*e-L + c4

//^4^-2// + c*"a&-*L + c*"a&-L-H - 0.

If all Ct//c/(i^y;f,y=2, •••,6) are zero, then (2.7) reduces to the one of the follow-
ing identities:

(xiv) 6Y/tfι+c2

//tf20~//=0, i.e. eu=cazlaύ

( xv ) c//αιH-C3//^3^"L^:0, i.e. e

(xvi) Cι/aι+c^/a^e~2H=Qy i.e. e

(xvii) Cι//<3rι+c5

//«5β~2L=0, i.e. e

(xviii) Cι//αι+c6

//α6^-L-//-0, i.e. eH=c(aβMe-L

with a non-zero constant c.
If at least one of cj'c" (i^j;i,j=2, « ,6) is not zero, then by using lemma 1
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to (2. 7) we have

with suitable constants d3, so that

(2.8) d2a2

If all didj(i*tj;i,j=3,~ ,6) are zero, then (2. 8) reduces to the one of the following
identities:

(xix) d2a2-\-d3a3e-L+π=0, i.e. eH=c(a2/a ό)eL;

(xx) d2a2+dίa4te-H=0) i.e. eH = ca^az]

(xxi) dza2+dBa6e-ZL+H=0, i.e. eu=c(az/a6)eZL;

(xxii) d2a2-i-dβaβe~L=0, i.e. eL=ca6laz

with a non-zero constant c.
If at least one of didj(i^j'ίiίj=3ί" ί 6 ) is not zero, then by using lemma 1 to

(2. 8) we have

with suitable constants dι', so that

(2. 9) dB'as+dt'aieL-ZH+dB'aBe-*+dQ'a*e-H=-Q.

If all di'dj' (i^j', /,./'= 4, 5, 6) are zero, then (2. 9) reduces to the one of the following
identities:

(xxiii) ds'as+dt'ate*-211^, i.e. eL^c(az]a^H\

(xxiv) d3'a3+d5'a5e-L=zQ, i.e. eL=ca5/a i,

(xxv) d3'a3-\-dQ'aQe~H—Q, i.e. eH=ca^la^

with a non-zero constant c.
If at least one of di!dj (i*?jm, i,j=&, 5, 6) is not zero, then by using lemma 1 to

(2. 9) we have

di"aieL-2Π+dt"a5e-L+ds"a6e-u=0

with suitable constants d^ff, so that

All the relations (i), --^(xxvi) give contradictions. In fact, since we have

T(r, aj)=o(m(r, eH))=o(m(r, eL)\ j=l, ••-, 9,

the cases (ii), (v), (vi), (x), (xi), (xiii), (xiv), (xv), (xvi), (xvii), (xx), (xxii), (xxiv) and
(xxv) are all absurd. The cases (i), (iv), (viii), (xii), (xxi) and (xxiii) contradict
that m(r, eH)~m(r, eL). If (vii) or (xix) holds, we can put

eH=aeL, T(r, ά)=o(m(r, eL))

with a meromorphic function a, and hence the equation (2. 4) has the form
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αitfVL + (tf24-tf3tf)<2e3L + ^

This is absurd by lemma 2. Similarly if (iii) or (ix) or (xviii) holds, by putting
eH=ae~L, (2. 4) reduces to the form

which is also a contradiction by lemma 1. In the remaining case (xxvi) we have

m(r, eL-H) = o(m(r, e11)).

Then, by writing (2. 4) in the form of

we can apply lemma 2. Then we arrive at a contradiction.
Thus we have completed our proof of this lemma.

Let L(z) be an entire function. Then almost all zeros of eL^—a are simple
zeros (cf. [5]). Involving this fact we obtain:

LEMMA 4. Under an assumption on the growth of an entire function <j

outside a set of finite logarithmic measure, we have

N2(r, 0, eL—g)~m(r, eL)

and

Nι(r, 0, eL—(j)=o(m(r, eL))

outside a set of finite logarithmic measure.

Proof. Let ψ be a meromorphic function denned by

—0

Then we have

N(r, oo, φ) — N(r, 0, g)^m(r, g) = o(m(r, eL)),

N(r,l,φ)=N(r,0,eL)=Q,

N(r, oo, φ')^2N(r; 0, g)=o(m(r, eL)),

T(r, φ}^T(r, eL)+T(r, g)+T(r, l/f/)+O(l)^m(r, eL)+o(m(r, eL})

and

m(r, eL)^m(r, eL-g)+m(r, g)+O(l)^T(r, φ)+o(m(r, eL}}

outside a set of finite logarithmic measure. By the second fundamental theorem
for φ, we have

T(r, φ)^N(r\ 0, φ)+N(r, oo, φ)+N(r, 1, 0-M(r, φ)+O(log (rT(r, φ)))
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outside a set of finite logarithmic measure. Since

Ni(r, φ)=N(r, oo, l/y/)+2Nfo oo, φ)-N(r, oo, ψ')

=N(r,Q,φ')+o(m(r,eLy),

we have

T(r, φ)^N(r, 0, φ)-N(r, 0, φ')+OQog (rm(r,

=N2(r, 0, p)+Wι(r, 0,

=N*(r, 0, έ^-flO+Mfo 0, ̂ -(/)+o(w(r, eL))

outside a set of Unite logarithmic measure. On the other hand we have

N2(r; 0, eL-g)+Nι(r, 0, e

L-g)+Nι(r, 0, eL-g)

=N(r, 0, eL-g')=N(r9 0, 0^ T(r, 0+0(1)

^Λ^2(r; 0, eL-g)+Nl(r, 0, ̂ L-(/)+^(m(r, ̂ L))

outside a set of finite logarithmic measure. Thus we obtain

and

Λf2(r; 0, eL—g)=m(r, eL)+o(m(r, eL))

outside a set of finite logarithmic measure, since T(r, φ)=m(r, eL)+o(m(r, βL)~). These
imply the desired result.

§ 3. Proof of Theorem B. The sufficiency part is evident by theorem A. In
fact, since G(z) has no multiple zero, we have

where F(z)/f°h(z) is an entire function.
In order to prove the necessity part, using again theorem A it suffices to con-

sider an equation of the following form:

(3. 1)

where /* is a meromorphic function which has poles and zeros at most at the
multiple zeros of (eL°h— γ')(eL°h— <5') and (eπ—γ)(eπ—δ), respectively. By lemma 4
we have

2m(r, eL°h)

outside a set of finite logarithmic measure, so that

(3. 2) m(r, eL'h)~m(r, eπ).

Further we have
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Γ(r,/*)=0(Γ(r, e

and

N(r,Q,f*)+N(r,oo,f*)

^M(r, 0, (0L Λ-rO(0LβΛ-dO)+M(r, 0, (^-rX^-

^Mr; 0, (LokY)+N(r, 0, H')^m(r, (L°K)')+m(r, H

^m(r, L»h)+m(r, H)+O(log (rm(r, L K)m(r, H)))

— o(m(r, eL°h)-\-m(r, eH))

outside a set of finite logarithmic measure. Thus we have

Γ(r,/*V/*)-m(r,/*'//*H N(r, oo,/*'//*)

(3. 3) ΞgO(log (ww(r,/*)))+Mr, 0,/*)+Mr, oo,/*)

=o(m(r, e^+mfa eH))

outside a set of finite logarithic measure.
By differentiation of both sides of (3. 1), we have

/*f2^(e8L'Λ-fr'+5/>^^

and again by using (3. 1)

^

so that we have

ffiβ^+^+fr+^ύ^

where

at=2γ'δ'(f*'lf*-HΓ), a,=2f*'lf*+(L*hy-H',

aΊ

and

flr9

By (3. 2) and (3. 3) we can apply lemma 3 to (3. 4). Thus we can deduce that

vanishes identically.
If 0ι=0, then we have
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with a non-zero constant c, and (3. 1) reduces to the equation

^

Hence by BoreΓs theorem [1] this is impossible unless L°h(z)—L°h(Q)=H(z), which
is the desired result (a) in our theorem.

If #2=0, then we have

with a non-zero constant c, and (3. 1) reduces to the equation

2L fc^

However this is a contradiction by BoreΓs theorem. Similarly if a ό=Q, we arrive
at a contradiction.

If #4=0, then we have

with a non-zero constant c, and (3. 1) reduces to the equation

^^^-(r+^^+^H-^

Hence by BoreΓs theorem we have the desired result (b) in our theorem. If a5=0,
then we have similarly the desired result (b) in our theorem.

If #6=0, then we have

y#2_££,-L°/t + //

with a non-zero constant c, and (3. 1) reduces to the equation

ce2L h+H—eL h+2H+((r+δ)—c(r'+δ'y)eL h*u—rδeL*

Hence by BoreΓs theorem we have the result (a) and the result (b) in our theorem
according as L°h—H= const, and L° h+H= const., respectively.

If #7=0, then we have

f**=ce-L'h

with a non-zero constant c, and (3. 1) reduces to the equation

ce2L°h— eL°h+2H+(γ+δ)eL<>fi+2Π— (γδ+c(γ'+δ'))eL h+cγ'δ' = Q.

However this is a contradiction by BoreΓs theorem. Similarly if #8=0, we arrive
at a contradiction.

If γ+δ= 0, then we have

(3.5) aιe2L h+2H+(r'+δ')aιeL h+2U+ate2L'h+a6e™

We may assume that #ι#3#4#5#7^0. Then by using lemma 1 to (3. 5) we have

Cl#102Lθ^2^ + C3#3£L°M2H^

with suitable constants Cι, so that

(3. 6) ciaie™ 2H + Csa*e2Π + c,a,eL°h + c,a5e-L°h+2Π + c7aΊ = 0.
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If all acj (i^jl i,j=l, 3, 4, 5) are zero, then (3. 6) reduces to the one of the following
identities:

(i) <7ιffιβLβΛ+2//+<;7ff7==0, i.e.

(ii) c άa^u+dai^ΰ, i.e.

(iii) G*4tf40L°ft+C7#7=0, i.e.

(iv) tW5<rLeA+2/f+C707==0, i.e.

with a non-zero constant c.
If at least one of acj (i*?j',i,j=l, 3, 4, 5) is not zero, then by using lemma 1 to

(3. 6) we have

Cι'aιeL°h+2H -f c*'a*#u -f- c^a^eLΛh + c^aGe-L'h m/ = 0

with suitable constants cY, so that

(3.7) c1

/«ιβ2J/+^/β8e-LβΛh2^+ί:5/«5^-2Lβ/M

If all Cί'c/ (i*?j;ij= 1, 3, 5) are zero, then (3. 7) reduces to the one of the following
identities:

(v) cι'tfιe2//+GYtf4 = 0, i.e. e y / ~ G * A # 4 / # i ;

(vi) c8

/ύr8β"Lβft+2f/+^/fir4=0, i.e. eLuh=c(a*/aue2H;

(vii) c5

/α6β-2LβΛ+21ί+C4/ύ?4=0, i.e. eL'h=c\/ά^a4ke
11

with a non-zero constant c.
If at least one of Yc/ (i*FJ',i,j=l, 3, 5) is not zero, then by using lemma 1 to

(3. 7) we have

Cι"0ι08// + c*"a*e-L°h+*u + d>"ase-*L'»' { 27/ - 0

with suitable constants cΐ

//, so that

(viii) cΛ i^071 + cJ'a*eL* + c5"a5 - 0.

These relations (i), •• ,(viii) lead to a contradiction. Indeed, the cases (ii), (iii) and
(v) are evidently untenable. The cases (i), (iv) and (vi) contradict (3. 2). If the
relation (vii) holds, then (3. 5) reduces to the identity

a1ate<L"ί + (f + df)a,a,e3Lah + (1 + c")a^e2L'h+ c(γ' + d')a,a>ieL°h + ca,a, = 0.

However this is a contradiction by lemma 2. The case (viii) also contradicts lemma 2.
If τ '+δ'=0, then we have similarly a contradiction unless aia^a^a^a^—^.
Thus we have completed our proof.

§4. Proof of Theorem C. In order to prove theorem C, it suffices to show
the impossibility of an identity of the form

(4. 1) /*2(^-r)(eff-5)=G;



EXISTENCE OF ANALYTIC MAPPINGS 293

provided that

(4. 2) m(r, em) = o(m(r, em))

outside a set of finite logarithmic measure, where //, Hi and H2 are non-constant
entire functions and γ, δ, βi and β2 are constants and /* is a meromorphic function
which has poles and zeros at most at the multiple zeros of (eπ—γ)(eπ—δ) and G,
respectively.

We put

Since Ft and F3 (i*rj',i,j=l., 2, 3, 4) have no common zero and

outside a set of finite logarithmic measure, by lemma 4 we have

N2(r, 0, G)= Σ N2(r, 0, f\)
ι=l

and

Nι(r, 0, G)= Σ M(r, 0, Fj =

outside a set of finite logarithmic measure. Thus we have

2m(r, eH)~N2(r; 0, (eH-γ)(eπ-δ»~N2(r, 0, G)~2m(r, eH*}

outside a set of finite logarithmic measure, so that

(4. 3) m(r, eH)

Further clearly we have

T(r,f*)=0(T(r, eΊί)+ T(r, e*')

Thus we have

(rm(r,f*y))+N(r, 0,/*)+7V(r; oo,/*)

=o(m(r, eH)+m(r, em))

outside a set of finite logarithmic measure, so that

(4. 4) T(r,f*'/f*)=o(m(r, eπ))=o(m(r, eH%

By differentiation of both sides of the equation (4. 1) we have

r^^



294 GENKO HIROMI AND MTTSURU OZAWΛ

and, using (4. 1), we finally have

a1e
2H+2

where

If (r+fyaiazasatasaeatfsa^Q, then by (4. 2), (4. 3) and (4. 4) the identity (4. 5)
contradicts lemma 3.

If βjΞO, then we have

with a non-zero constant c, and (4. 1) reduces to the equation

c2e2Ha-c2(r+δ)e-II+2m+c2rδe-2Π+2Π*==G,

which contradicts BorePs theorem.
If #2Ξθ, then we have

with a non-zero constant c. However this equation is absurd, since the right hand
term has simple zeros.

If tfsΞ O, then we have

with a non-zero constant c, and (4. 1) reduces to the equation

which contradicts BoreΓs theorem.
If #4ΞΞθ, then we have

with a non-zero constant c. Then (4. 1) reduces to the equation
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However by BoreΓs theorem we arrive at a contradiction.
If <25=0, then we have

f*=cem

with a non-zero constant c. Then (4. 1) reduces to the equation

This is also untenable by BoreΓs theorem.
If a 6=0, then we have

with a non-zero constant c. However this equation is absurd, since the right hand
term has simple zeros.

If #7Ξθ, then we have

/*2=<7(ft^--l)V-*

with a non-zero constant c. Then (4. 1) reduces to the equation

However by BoreΓs theorem we arrive at a contradiction.
If a8=Q, then we have

with a non-zero constant c. However this equation is absurd, since the right hand
term has simple zeros.

If #9=0, then we have

with a non-zero constant c. Then (4. 1) reduces to the equation

c2(j9ιβffl - iγ(eπ - r)(eπ-δ) = G.

However by BoreΓs theorem we arrive at a contradiction.
If γ-\-d= 0, then (4. 5) reduces to the equation

In this case we may assume that aia^a^a^a^a^^. However we arrive at a con-
tradiction by a similar argument as in (3. 5).

Thus we have the desired result.

§ 5. Let R be an ultrahyperelliptic surface defined by an equation

y*=G(χ),

where

+0^^
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If R satisfies P(7?)=4, then by the argument explained in § 1 we have

for suitable entire functions g, f and H. Here we may assume that g(z) and f ( z )
have no common zero. By the lemma given in [5], we have

N2(r; 0, eπ-γ)~ N2(r; 0, eH-δ)~ m(r, eπ)

outside a set of finite logarithmic measure. Since all simple zeros of (eπ—γ)(eπ—d)
are the zeros of G(z), we have

2m(r, eπ)~N2(r, 0, (eπ-γ)(eH-δ))^Nz(r, 0, G)^m(r, G)

outside a set of finite logarithmic measure. If //is a transcendental entire function
or a polynomial of degree greater than one, then we have

„— log m(r, G) ττ— log m(r, eH)
po= hm - ϊ - ̂  lim - -ϊ - - \ -

logr r_oo logr

which is absurd, since pa=l. Thus H must have the form az. Then we have

Let zn be

— log rH -- 2nπi, n—Q, ±1, •••,
α a

then these are simple zeros of eaz— γ. Therefore G(zn) = Q. Let

W = βCα1/β)2» l j ί,= =gCα i/α)2» l > ^ — ̂ gC^/β) log 7 = ̂ Cα./α)^ ^ = ̂ Cα./α) log r

Then for all integers n we have

By the lemma given in [4] we have

w=l and 15=1.

This implies that

aι =pι(x and a2 =p2a

for some suitable non-zero integers pi and p2.
Putting eaz/2=χ, we have

Since eaz/2—χo, χo^O has no zero other than an infinite number of simple zeros and

eaz/2 has no zero> every multiple zero of G(z) occurs at a suitable jnultiple zero of

F(χ) and vice versa. Thus F(χ) has only four simple zeros Λ/J , — Λ/r, \/5 and -Λ/^
In the first place we assume that Q<pι<p2. Evidently we have
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Since no two members of Fi, F2, F3 and F4 have common zero, we may seek for
all the multiple zeros of each function F/y=l,2,3,4). Then, since there is no
triple zero in each factor F3> every multiple zero is a double zero. From the
equations

JF1(χ)=0, |F2(χ)=0, JF3(χ) = 0, JF4(χ) = 0,

Wχ)=0, lFa'(χ)=0, Wχ)=0, lF4'(χ)=0,

we have

respectively, where X=pzl(p2—pi)«/Ji and Y=pιl(pι—pz)\/βz Thus every double
zero is a common point between />ι-th roots of X and />2-th roots of Y or that of
X and of - Y or that of -X and of Y or that of -X and of - F, respectively.
Let E(l,p) be the set of |/|i^cargί)/ί,+2n«/ί,> ^0, 1, •-. ,/>-!. If E(X,p1)ΓιE(Y,p2)*ψ,
then there are d common points of E(X,pι) and E(Y,pz), where J is the greatest
common measure of pi and />2.

If there is no double zero in F(χ), then we have 4/>2=4, that is

This is untenable. Therefore we may without loss of generality assume that

If E(-X,pι)nE(Y,pz)=φ and E&pJ n E(-Y,pz) = φ and E(-X,pι)Γ\
E(—Y,p2)=φ, then we have 4/>2-2d=4, that is,

This implies that

^=rf=l.

Thus we have 2/>2=3. This is untenable.
If £(-JP,Λ)nβ(F,ί2)^0 but E(X,pι)nE(-Y,p*)=φ and E(-X,pύ n

E(—Y,pz) = φ, then E(— X, pi) Γ\ E(Y, p2) contains just J points and hence we have

4^2— 4rf=4, i.e. p2=l+d.

Therefore we have

Thus we have d=l, pι = l and />2=2. Then β!2=!6β2 holds.
If further E(X)p1)Γ(E(-Y,p2)^ψ) then E(- X, pj Γ\ E(- Y,p2)*Φ and these two

sets contain just ί/ points, respectively. Thus we have

and 4/>2— 8J=4.
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And hence we have

This implies that rf=l, pι=2 and />2=3. This is untenable, since E(—X,2)Γ\

E(-Y,3)=φ.
Next we assume that pι<Q<pz Then, putting ρ1=^-qί9 we get

Since 0<#ι</>2+#ι, we can make use of the above result. Then we have

p2+q1=2ql = 2.

This implies that p2=qι = l and hence ρl = ~lj pz=l and 16β1β2=l.
If p2<Pι<Q, we put pι = —qι and />2=— ̂ 2. Then we have

4?ϊ 1 / 0 1 O O 2

— =1—2- ..... - γ2<?.-2— y '̂-^ + - 7^a_2_(l1_y492-2^ , J^L_ 4c93-2 χ ^ χ ^ 2 Z 2 Z χ

Since 0<#2— <7ι<^2, we can again apply the above fact. Then we have

^2—^1 = 1, #2=2 and /3ι2=-16/32.

And hence we obtain

/>!=-!, ί2=~2 and /5!2=16/32.

In the last case we assume that pL=pz. Then we have

where M=(v^ +\/S)2 and N=(^/Jl-^/J2γ. This implies that

P>*- — - V MN(M

if we assume that βi^βz Further />ι = l holds. If βι=βz, then either Tkf or TV is
equal to zero but one of them does not vanish. Thus G(z) has a form Λ(eaPιZ— I/ A).
This implies that pι=2.

Thus we have all the possible cases for which P(j?)=4, which can be listed
as follows:

(1) A =2, &=1, ft2=16^9ι; (2) p, = l9 p2=2, β^ = 16β,

(3) Λ=lι A=-l, 16ftft=l; (4) A=-l, A = l, 16 2̂=1;

(5) A=-2, A = -l, fta=16ft; (6) A = -l, A=-2, ^ι2-16/32;

(7) ^=^=1, /31?/52 are free but /3ι^/32; (8) pι=p2=2 and 0ι=/32.

Evidently in the first six cases we have
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G(z)=f(z)2(eag-r)(e«*-d), γδ(γ-δ)*Q

with a suitable entire function / and two suitable constants γ and δ. Therefore
P(R) is equal to 4 for all eight cases.

Summing up these results, we have

THEOREM D. Let R be an ultrahyperelliptic surface defined by an equation

y2^l-2β1e
a^~2β2e^x^β1

2e2a^-2β1β2e^+a^+β2

2e2a^,

with βιβ2a1a2^Q. Then P(R) is equal to 3 excepting the following four cases:

(1) α! = 2α2, β22 = l6βι] (2) az=2alt β,2 = l6β2]

(3) «ι=— az, 160102 = 1; (4) aι=a2, βι, β2 are free

for which we have

§ 6. Let R be an ultrahyperelliptic surface defined by an equation

-2β1β2e^+a^ί^ ^ >*+02 V *'-1 2r,χt βlβz(\aί\ + |

Then it is evident that R satisfies P(#)=3.
Suppose that P(R)=£. By the argument explained in § 1, we have

(6. 1)

with suitable entire functions g, f and PL Further by the same argument as in
§ 5, H(z) has the form az2-}-βz, because

-— log m(r, G)
pG=\ιm -- — - =^s.

r^oo log r

Then we have two possibilities a^O and α=0.
I. Case of α^O. Replacing 2: by z—β!2a, (6. 1) reduces to an equation

(6. 2) g(z-β/2aγG(z)=f(z)2(e«*2-f))e«z*-δ) ,

f - r/^i/4«, δ - 5/^'/4β,

Let ^TZ and "zn\ n—0, ±1, ••• be

/ I 1 \ 1 / 2 / I 1 \1 / 2

( — logfH --- 2nπi\ and — ί — logfH -- 2nπi\

respectively. Then these are simple zeros of eaz*— f . Therefore G(2TO)=0 and G(zn)=Q.
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Putting

we have

«e*» - 2B Yfe^n

and

Fn = l-

-2ABX2 Y2e^+V*n

for every integer n.
We use that if a constant χ satisfies |χ|<l, then we have

χneczn-+Q for n^^Jr00

and
χneczn—+00 for n— >— oo

with an arbitrary constant c.
At first we conclude that

\Xo\ = I and |F0|=1.

In fact, if \X0\<1 and |F0|<1, then

if LXo|>l and |F0|>1, then

lim Fn=l;
n—>—oo

and if \X0 >1 and F0|^l, or if \XQ\^l and |F0|>1, then

limFn=oo.

These all results lead to a contradiction, because Fw=0.
Next we show that

fι=0 and f2=0.

In fact, since

( 1

-

and

if Re[(//α)1/2f1]>0 and Re[(z7α)1/2f2]>0, then
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ϊιmFn=l]
?ι— »oo

if Re[(ι/α)1/2fι]<0 and Re [(z/α)1/2f2]<0, then

andif Re[(//α)1/2f1]>OandRe[(f/α)1/2f2]^0, or i f Re[(ί/α)1/2fι]^0 and Re[(z/α)1/2f2]>0,
then

lim Fn = oo.

These all results lead to a contradiction, because Fn=Fn=0. Thus we have

Similarly from relations

zn=—Λ/—2nπ

and

we have Re[(//α)1/2ίfι]=0 and Re[(//α)1/2£f2]=0. Consequently we have (z/α)1/2fι =
(ί7α)1/2f2=0, and hence f!=f2=0.

From fι=f2=0, we have

for all integer w. By the lemma given in [4], we have

Xo=l and F0=l.

If a1a2^0, this implies that

oίi—pia and a2—p2(x

for suitable non-zero integers p± and pz.
Putting eaz*/2=χ, we have

faΎ*^^

Since eaz'/2—χo, χo^O, z^O has no zero other than an infinite number of simple
zeros and eaz'/2 has no zero, every multiple zero of G(z), z^Q occurs from a suitable
multiple zero of F(χ)_ and vice versa. Thus F(χ) has just four simple zeros Λ/f ,
— \/f , v I and — v δ.

Then by the same argument as in § 5, we have all the possible cases for which
)=£, which can be listed as follows:

(1) ^=2, A=l, &2=16fr; (2) ^ = 1, ^=2, Pι2=16ft;

(2) ^=1, A=-l, 16ftA=l; (4) A = -l, A=l,



302 GENKO HIROMI AND M1TSURU OZΛWA

(5) A=-2, pz = -l, &2 = 16ft; (6) />ι--l, pz = -2, &2 = 16&;

(7) ^=#2=1, fa, fa are free but fa* fa (8) A=A=2 and &=&.

Evidently, in all the cases, we have

with two suitable constants f and δ and a suitable entire function /. And hence
P(R) is equal to 4.

If αiαs^O, we have

or

And hence P(ί?) is equal to 4.
II. Case of «=0. Then (6. 1) reduces to an equation

(6. 3) g(z)2G(z)=f(zY(e?*-rW-d).

Let 2W, w=0, ±1, ••-, be

•y log r+ y 2w^.

Then these are simple zeros of e$z~ γ. Therefore G(Zn)=Q. Since

we have

where ^w and /n are suitable constants and are equal to 1 or —1.
Putting

and
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we have

for every integer n.
At first we conclude that

In fact, by eliminating X%* on relations

and

we have

/ k p>*γin \ /14y"4Λ
=(J**n- ϊ 2 -LI ) _±L±J__n"V"/2^yF ^ / 5*y?»

for every integer n. Suppose first that |^G|>1. If

lim
W-»+oo

then

lim |Fw|=oo.
7l-»±oo

This is a contradiction, because Fft=0. If

then, by noting that for two numbers a and β limΛ->oo α/3w=l holds if and only if
tf=β = l, we have

Y\
y\

. -j

Hence we have

+ι=o

for almost all n, because Kn~ 0 or 2 for every w. Then we have

This is a contradiction, because Fn=0
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Next suppose that \Xί\<l. If

lim 1+-

then

lim

This is a contradiction, because Fn=Q. If

lim
W-*±oo

then we have

Hence we have

=0

for almost all n, because Kn=Q or 2 for every n. Then we have

This is a contradiction, because Fw=0. So we have 1^1=1. Again, by eliminating

Xf* on relations

Fn=0 and F2n=Q

and by reasoning similarly, we deduce |J£"2|=1. Thus 1^1 = 1^1=1 holds. Further

if I Γ i l ^ l Γ a l , then

limFri— oo or lim Fn— oo;
n— » OO 71— > — CX3

and if IFil-I^Kl or IFiM^IM, then

limFn=l or limFn=l.
?ι->oo n-»— oo

These results lead to a contradiction, because Fw=0. Consequently we have \Xι -=
1X1 = 1^1 = 1^1=1.

=| F2| = l we show that χι=χi=γ*=Yi=l. InNext from
fact, let

A=\A\eιaπ, X1 = el^π, Yl = e

ι

B=\B\eίbπ, X2=e™*π, Y2 = e

a, by xi, x2, yi, yϊ- real constants,

then
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=0 or 1.

Thus xi and ?/ι must be integers, and hence X\= Y\=\. Similarly we have X\= 11=1.
From the above fact, we can put

T+ β
2a2π

2 . 2a2πi r2πi
-τr-=P*™> —Eϊ- log r+ -V-

where pi, p2) q\ and q2 are integers. And hence we have

(6.4) —pιlogγ-\—^— =qιπi, — Alog^H—z—

On the other hand, by putting

1 ι - , 1 ozn = -y log o+ —- 2wπz
P P

we must have

(6. 5) —/>ι log 5+ ̂ ~- =qsπi, —p2 log ^+
β

with some suitable integers q$ and ^4.

From (6. 4) and (6. 5) we have

(τΓ-(τΓ-'
Since o/γ^l, pi and pz are zeros. This is a contradiction, because

and

Consequently the case II does not occur.
Summing up the above results, we have:

THEOREM E. Let R be an ultrahyper elliptic surface defined by an equation

y2 = l-2β1e
a^+r>x—2β2e

a>χί^x+βι2e2a>χ3+2r>x-2

Then P(R) is equal to 3 excepting the following four cases:

(1) α1=2α2, rι=2Γ2, &a = 16ft; (2) αa = 2α1, r2=2rι, ^ι2 = lβ/32;

(3) α1=— «2, 7Ί=— ̂ 2, 16/3ι/32^l; (4) «ι=α2, rι=r2» βi, β* are free
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for which we have P(R)— 4.

§ 7. Remarks.

It should be remarked here that a conjecture stated in the problem (1) in [7]
is not exact. By our theorems D and E we are obliged to add a more exceptional
case Hι = —H2y 16j8ιβ2=l in the terminologies in [7]. To solve the problem in its
most general form seems to be difficult and to be necessary any other method.

We can give a positive answer to the problem 3 in [7]. In fact, let R and S
be two ultrahyperelliptic Riemann surfaces defined by

ana

respectively. Then we have P(R)=3 and P(S)-=2 by theorem D and theorem E
(cf. [5]). Putting f=z and h=z2, we have an identity

Thus by theorem A there exists an analytic mapping from R into S.
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