ON THE EXISTENCE OF ANALYTIC MAPPINGS BETWEEN TWO ULTRAHYPERELLIPTIC SURFACES

By Genkō Hiromi ^nd Mitsuru Ozawa

§ 1. Introduction. Let R and S be two ultrahyperelliptic surfaces defined by two equations $y^{2}=G(z)$ and $u^{2}=g(w)$, respectively, where G and g are two entire functions having no zero other than an infinite number of simple zeros. Then one of the authors [6], [7] established the following perfect condition for the existence of analytic mappings from R into S.

Theorem A. If there exists an analytic mapping φ from R into S, then there exists a pair of two entire functions $h(z)$ and $f(z)$ satisfying an equation

$$
f(z)^{2} G(z)=g \circ h(z)
$$

and vice versa.
Let $\mathfrak{M}(R)$ be a family of non-constant meromorphic functions on R. Let f be a member of $\mathfrak{M}(R)$. Let $P(f)$ be the number of Picard's exceptional values of f, which we say α a Picard's value of f when α is not taken by f on R. Let $P(R)$ be a quantity defined by

$$
\sup _{f \in \operatorname{m}(R)} P(f)
$$

(cf. [4]). Let $P(S)$ be the corresponding quantity attached to S.
In the present paper we shall give a perfect condition for the existence of analytic mappings from R into S in a case of $P(R)=P(S)=4$, which is more direct than theorem A, and shall give some characterizations of the surfaces R with $P(R)=3$ by the forms of defining functions G.

By a characterization, which was given in [5], of R with $P(R)=4$ by $G(z)$ we can put

$$
\begin{align*}
F(z)^{2} G(z)= & \left(e^{H(z)}-\gamma\right)\left(e^{I(z)}-\delta\right), \quad H(z) \neq \text { const. }, \\
& H(0)=0, \quad \gamma \delta(\gamma-\delta) \neq 0 \tag{1.1}
\end{align*}
$$

with two suitable entire functions F and $I I$ and two constants γ and δ. Similarly if $P(S)=4$, we can put

$$
\begin{gather*}
f(w)^{2} g(w)=\left(e^{L(w)}-\gamma^{\prime}\right)\left(e^{L(w)}-\delta^{\prime}\right), \quad L(w) \neq \text { const., } \\
L(0)=0, \quad \gamma^{\prime} \delta^{\prime}\left(\gamma^{\prime}-i^{\prime}\right) \neq 0 \tag{1.2}
\end{gather*}
$$

Received May 27, 1965.
with two suitable entire functions f and L and two constants γ^{\prime} and δ^{\prime}. Then our result is:

Theorem B. Let R and S be two ultrahyperelliptic surfaces defined by (1.1) and (1.2), respectively. Then there exists an analytic mapping φ from R into S if and only if there exists an entive function $h(z)$ such that either

$$
\begin{equation*}
L \circ h(z)-L \circ h(0)=H(z), \quad \gamma e^{L \circ h(0)}=\gamma^{\prime}, \quad \delta e^{I \circ h(0)}=i^{\prime} \tag{a}
\end{equation*}
$$

or
(b)

$$
L \circ h(z)-L \circ h(0)=-H(z), \quad \gamma \gamma^{\prime}=e^{L \circ h(0)}, \quad \delta \partial^{\prime}=e^{L \circ h(0)} .
$$

A proof of this theorem B will be given in $\S 3$.
Next if the surface R satisfies $P(R)=3$, then its defining function $G(z)$ satisfies

$$
\begin{gather*}
F^{2} G=1-2 \beta_{1} e^{H_{1}}-2 \beta_{2} e^{H_{2}}+\beta_{1}^{2} e^{2 H_{1}}-2 \beta_{1} \beta_{2} e^{H_{1}+H_{2}}+\beta_{2}{ }^{2} e^{2 H_{2}}, \tag{1.3}\\
H_{1}(z) \neq \text { const., } \quad H_{2}(z) \neq \text { const., } \quad H_{1}(0)=H_{2}(0)=0, \quad \beta_{1} \beta_{2} \neq 0
\end{gather*}
$$

with three suitable entire functions F, H_{1} and H_{2} and two constants β_{1} and β_{2}.
For completeness we shall give here a brief exposition of this fact. Since $P(R)=3$, there exists a two-valued entire algebroid function \tilde{f} of z which is regular on R and whose defining equation is

$$
F(z, \tilde{f}) \equiv \tilde{f}^{2}-2 f_{1}(z) \tilde{f}+f_{1}(z)^{2}-f_{2}(z)^{2} G(z)=0
$$

with two single-valued entire functions $f_{1}(z)$ and $f_{2}(z)$ of z. Further we may assume that 0,1 and ∞ are three exceptional values of \tilde{f}. Then, by Rémoundos' reasoning [8] pp. 25-27, we have three possibilities

$$
\left[\begin{array}{l}
F(z, 0) \\
F(z, 1)
\end{array}\right]=\left[\begin{array}{c}
c \\
\beta e^{H}
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{c}
\beta e^{I I} \\
c
\end{array}\right] \quad \text { or }\left[\begin{array}{l}
\beta_{1} e^{H_{1}} \\
\beta_{2} e^{H_{2}}
\end{array}\right]
$$

where c, β, β_{1} and β_{2} are non-zero constants and H, H_{1} and H_{2} are non-constant entire functions of z satisfying $H(0)=H_{1}(0)=H_{2}(0)=0$. However we may put aside the first and the second cases. In fact, from the equations

$$
\left\{\begin{array}{r}
f_{1}{ }^{2}-f_{2}{ }^{2} G=c, \\
1-2 f_{1}+f_{1}{ }^{2}-f_{2}{ }^{2} G=\beta e^{H}
\end{array} \quad \text { or } \quad \begin{array}{r}
f_{1}{ }^{2}-f_{2}{ }^{2} G=\beta e^{H}, \\
1-2 f_{1}+f_{1}^{2}-f_{2}{ }^{2} G=c,
\end{array}\right.
$$

we have

$$
4 f_{2}^{2} G=\left(\beta e^{H}-(1+\sqrt{c})^{2}\right)\left(\beta e^{H}-(1-\sqrt{c})^{2}\right) .
$$

By the characterization of surfaces with four Picard's values, we have $P(R)=4$. This is a contradiction. Therefore if $P(R)=3$, then we have the third case and obtain a representation

$$
4 f_{2}^{2} G=1-2 \beta_{1} e^{H_{1}}-2 \beta_{2} e^{H_{2}}+\beta_{1}{ }^{2} e^{2 H_{1}}-2 \beta_{1} \beta_{2} e^{H_{1}+H_{2}}+\beta_{2}{ }^{2} e^{2 H_{2}} .
$$

Conversely, the surface R defined by (1.3) satisfies $P(R) \geqq 3$. In fact,

$$
\tilde{f}(z)=\frac{1}{2}\left(1+\beta_{1} e^{H_{1}}-\beta_{2} e^{H_{2}}\right)+\frac{i}{2} \sqrt{\tilde{G}(z)}
$$

is an entire function on R which is two-valued for z, where

$$
\tilde{G}(z)=1-2 \beta_{1} e^{H_{1}}-2 \beta_{2} e^{H_{3}}+\beta_{1}{ }^{2} e^{2 H_{3}}-2 \beta_{1} \beta_{2} e^{H_{1}+H_{2}}-\beta_{2}{ }^{2} e^{2 H_{2}}
$$

Then

$$
F(z, \tilde{f}) \equiv \tilde{f}^{2}-\left(1+\beta_{1} e^{T_{1}}-\beta_{2} e^{H H_{2}}\right) \tilde{f}+\beta_{1} e^{H_{1}}
$$

satisfies

$$
F(z, 0)=\beta_{1} e^{I_{1}} \quad \text { and } \quad F(z, 1)=\beta_{2} e^{H_{2}}
$$

This shows that $\tilde{f} \neq 0,1$ and ∞ on R.
However we did not succeed to determine all ultrahyperelliptic surfaces R with $P(R)=3$ (cf. [5], [7]). Here we shall show the following

Theorem C. The surface R defined by (1.3) satisfies $P(R)=3$ if

$$
m\left(r, e^{H_{1}}\right)=o\left(m\left(r, e^{H_{2}}\right)\right)
$$

outside a set of finite logarithmic measure.
A proof of this theorem C will be given in $\S 4$.
Further in $\S 5$ we shall determine all the surfaces R with $P(R)=3$ when H_{1} and H_{2} in (1.3) are polynomials of degree 1 (Theorem D), and in $\S 6$ we shall determine all the surfaces R with $P(R)=3$ when H_{1} and I_{2} in (1.3) are polynomials of degree 2 (Theorem E).
§ 2. Lemmas. We need some preparatory lemmas in order to prove our results introduced in §1. The notations T, m, N, N_{1} and \bar{N} are used in the sense of Nevanlinna [3]. The notation $N_{2}(r ; a, f)$ is the N-function of simple a-points of f. The following lemma is a generalization of Borel's theorem [1] and its proof depends essentially on Nevanlinna's formulation [2].

Lemma 1. Let $a_{0}(z), a_{1}(z), \cdots, a_{n}(z)$ be meromorphic functions and let $g_{1}(z), \cdots, g_{n}(z)$ be entire functions. Further suppose that

$$
T\left(r, a_{j}\right)=o\left(\sum_{\nu=1}^{n} m\left(r, e^{g_{\nu}}\right)\right), \quad j=0,1, \cdots, n,
$$

holds outside a set of finite logarithmic measure. If an identity

$$
\begin{equation*}
\sum_{\nu=1}^{n} a_{\nu}(z) e^{g_{\nu}(z)}=a_{0}(z) \tag{2.1}
\end{equation*}
$$

holds, then we have an identity

$$
\begin{equation*}
\sum_{\nu=1}^{n} c_{\nu} a_{\nu}(z) e^{g_{\nu}(z)}=0 \tag{2.2}
\end{equation*}
$$

with the exception of a case for which all the constants c_{ν} reduce to zero.
Proof. Let $G_{\nu}(z)$ be $a_{\nu}(z) e^{g_{\nu}(z)}$. Then we have

$$
\sum_{\nu=1}^{n} G_{\nu}(z)=a_{0}(z) .
$$

By differentiating both sides of (2.1'), we have

$$
\begin{equation*}
\sum_{\nu=1}^{n} G_{\nu}^{(\mu)}(z)=a_{0}^{(\mu)}(z) ; \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{\nu=1}^{n} G_{\nu}(z) \frac{G_{\nu}^{(\mu)}(z)}{G_{\nu}(z)}=a_{0}^{(\mu)}(z), \quad \mu=1, \cdots, n-1 . \tag{2.3'}
\end{equation*}
$$

On the other hand, we have

$$
G_{\nu}^{(\mu)}(z)=P_{\mu}\left(a_{\nu}, a_{\nu}^{\prime}, \cdots, a_{\nu}^{(\mu)}, g_{\nu}^{\prime}, \cdots, g_{\nu}^{(\mu)}\right) e^{q_{\nu}(z)}
$$

with a suitable polynomial P_{μ} of indicated functions $a_{\nu}, a_{\nu}^{\prime}, \cdots, a_{\nu}^{(\mu)}, g_{\nu}^{\prime}, \cdots, g_{\nu}^{(\mu)}$. Thus we have

$$
T\left(r, \frac{G_{\nu}^{(\mu)}}{G_{\nu}}\right) \leqq O\left(T\left(r, a_{\nu}\right)+T\left(r, g_{\nu}\right)\right)=o\left(\sum_{\nu=1}^{n} m\left(r, e^{g_{\nu}}\right)\right)
$$

outside a set of finite logarithmic measure. Suppose that the determinant of the simultaneous equations (2.1^{\prime}) and (2.3^{\prime}) $\Delta \neq 0$. By solving (2.3') with respect to $G_{j}, j=1, \cdots, n$, we have

$$
G_{3}=\frac{\Delta_{3}}{\Delta}
$$

where

$$
\Delta=\left|\begin{array}{ccc}
1 & \cdots & 1 \\
\frac{G_{1}^{\prime}}{G_{1}} & \cdots & \frac{G_{n}^{\prime}}{G_{n}} \\
\cdots \cdots \cdots \\
\frac{G_{1}^{(n-1)}}{G_{1}} & \cdots & \frac{G_{n}^{(n-1)}}{G_{n}}
\end{array}\right|, \quad \Delta_{j}=\left|\begin{array}{ccccccc}
1 & \cdots & 1 & a_{0} & 1 & \cdots & 1 \\
\frac{G_{1}^{\prime}}{G_{1}} & \cdots & \frac{G_{j-1}^{\prime}}{G_{j-1}} & a_{0}^{\prime} & \frac{G_{j+1}^{\prime}}{G_{j+1}} & \cdots & \frac{G_{n}^{\prime}}{G_{n}} \\
\cdots \cdots \cdots & \cdots \cdots & \cdots \cdots \cdots \\
\frac{G_{1}^{(n-1)}}{G_{1}} & \cdots & \frac{G_{j-1}^{(n-1)}}{G_{j-1}} & a_{0}^{(n-1)} & \frac{G_{j+1}^{(n-1)}}{G_{j+1}} & \cdots & \frac{G_{n}^{(n-1)}}{G_{n}}
\end{array}\right| .
$$

Since $T\left(r, G_{\nu}^{(\mu)} / G_{\nu}\right)=o\left(\sum_{\nu=1}^{n} m\left(r, e^{\left.g_{\nu} \nu\right)}\right)\right.$, we have

$$
T(r, \Delta)=o\left(\sum_{\nu=1}^{n} m\left(r, e^{g_{\nu}}\right)\right), \quad T\left(r, \Delta_{j}\right)=o\left(\sum_{\nu=1}^{n} m\left(r, e^{g_{\nu}}\right)\right), \quad j=1, \cdots, n,
$$

outside a set of finite logarithmic measure. Thus we have

$$
\begin{aligned}
m\left(r, e^{g_{\nu}}\right) & =T\left(r, e^{g_{\nu}}\right) \leqq T\left(r, a_{\nu}\right)+T\left(r, G_{\nu}\right) \\
& \leqq T\left(r, a_{\nu}\right)+T(r, \Delta)+T\left(r, \Delta_{\nu}\right)=o\left(\sum_{\nu=1}^{n} m\left(r, e^{g_{\nu}}\right)\right),
\end{aligned}
$$

and hence

$$
\sum_{\nu=1}^{n} m\left(r, e^{g_{\nu}}\right)=o\left(\sum_{\nu=1}^{n} m\left(r, e^{g_{\nu}}\right)\right)
$$

outside a set of finite logarithmic measure. This is a contradiction. Consequently we obtain $\Delta \equiv 0$ and we complete the proof.

By lemma 1 we can immediately conclude:
Lemma 2. Let $a_{1}(z), \cdots, a_{n}(z)$ be meromorphic functions and let $g(z)$ be an entire function. Further suppose that

$$
T\left(r, a_{j}\right)=o\left(m\left(r, e^{g}\right)\right), \quad j=1, \cdots, n
$$

holds outside a set of finite logarithmic measure. Then an identity of the following form

$$
\sum_{\nu=1}^{\infty} a_{\nu}(z) e^{\nu g_{(z)}} \equiv 0
$$

is impossible unless $a_{1}(z) \equiv \ldots \equiv a_{n}(z) \equiv 0$.
Further we shall prove the following lemma which is fundamental to the proofs of theorem B and theorem C .

Lemma 3. Let $a_{1}(z), \cdots, a_{9}(z)$ be meromorphic functions and let $H(z)$ and $L(z)$ be entire functions. Further suppose that

$$
T\left(r, a_{j}\right)=o\left(m\left(r, e^{H}\right)\right), \quad j=1, \cdots, 9
$$

and

$$
m\left(r, e^{I I}\right) \sim m\left(r, e^{L}\right)
$$

hold outside a set of finite logarithmic measure. Then an identity of the following form

$$
\begin{equation*}
a_{1} e^{2 L+2 H}+a_{2} e^{2 L+H}+a_{3} e^{L+2 H}+a_{4} e^{2 L}+a_{5} e^{2 H}+a_{6} e^{L+H}+a_{7} e^{L}+a_{8} e^{H}+a_{9}=0 \tag{2.4}
\end{equation*}
$$

is impossible, if the product of a_{1}, \cdots, a_{9} does not vanish identically.
Proof. If (2.4) holds, then by lemma 1 we have

$$
c_{1} a_{1} e^{2 L+2 H}+c_{2} a_{2} e^{2 L+H}+c_{3} a_{3} e^{L+2 H}+c_{4} a_{4} e^{2 L}+c_{5} a_{5} e^{2 H}+c_{6} a_{6} e^{L+H}+c_{7} a_{7} e^{L}+c_{8} a_{8} e^{H}=0
$$

with suitable constants c_{i}, so that

$$
\begin{equation*}
c_{1} a_{1} e^{2 L+H}+c_{2} a_{2} e^{2 L}+c_{3} a_{3} e^{L+I I}+c_{4} a_{4} e^{2 L-I I}+c_{5} a_{5} e^{H}+c_{6} a_{6} e^{L}+c_{7} a_{7} e^{L-H}+c_{8} a_{8}=0 \tag{2.5}
\end{equation*}
$$

If all $c_{i} c_{\jmath}(i \neq j ; i, j=1, \cdots, 7)$ are zero, then (2.5) reduces to the one of the following identities:

$$
\begin{array}{lll}
c_{1} a_{1} e^{2 L+H}+c_{8} a_{8}=0, & \text { i.e. } & e^{H}=c\left(a_{8} / a_{1}\right) e^{-2 L} ; \\
c_{2} a_{2} e^{2 L}+c_{8} a_{8}=0, & \text { i.e. } & e^{L}=c \sqrt{a_{8} / a_{2} ;} \tag{ii}\\
c_{3} a_{3} e^{L+H}+c_{8} a_{8}=0, & \text { i.e. } & e^{H}=c\left(a_{8} / a_{3}\right) e^{-L} ;
\end{array}
$$

(iii)
(iv)

$$
c_{4} a_{4} e^{2 L-I I}+c_{8} a_{8}=0, \quad \text { i.c. } \quad e^{H}=c\left(a_{4} / a_{8}\right) e^{2 L} ;
$$

$$
c_{5} a_{5} e^{H}+c_{8} a_{8}=0, \quad \text { i.c. } \quad e^{I I}=c a_{8} / a_{5} ;
$$

$$
c_{6} a_{6} e^{L}+c_{8} a_{8}=0, \quad \text { i.e. } \quad e^{L}=c a_{8} / a_{6} ;
$$

(vii)

$$
c_{7} a_{7} e^{L-H}+c_{8} a_{8}=0, \quad \text { i.e. } \quad e^{I I}=c\left(a_{7} / a_{8}\right) e^{L}
$$

with a non-zero constant c.
If at least one of $c_{i} c_{\jmath}(i \neq j ; i, j=1, \cdots, 7)$ is not zero, then by lemma 1 , which is applicable to (2.5) in this case, we have

$$
c_{1}^{\prime} a_{1} e^{2 L+H}+c_{2}^{\prime} a_{2} e^{2 L}+c_{3}^{\prime} a_{3} e^{L+I I}+c_{4}^{\prime} a_{4} e^{2 L-I I}+c_{5}^{\prime} a_{5} e^{H}+c_{6}^{\prime} a_{6} e^{L}+c_{7}^{\prime} a_{7} c^{L-I I}=0
$$

with suitable constants $c_{\imath}{ }^{\prime}$, so that
(2. 6) $\quad c_{1}{ }^{\prime} a_{1} e^{L+2 H}+c_{2}{ }^{\prime} a_{2} e^{L+I I}+c_{3}{ }^{\prime} a_{3} e^{2 I I}+c_{4}{ }^{\prime} a_{4} e^{L}+c_{5}{ }^{\prime} a_{5} e^{-L+2 I I}+c_{6}{ }^{\prime} a_{6} e^{I I}+c_{7}{ }^{\prime} a_{7}=0$.

If all $c_{i}^{\prime} c_{j}^{\prime}(i \neq j, i, j=1, \cdots, 6)$ are zero, then (2.6) reduces to the one of the following identities:

$$
\begin{equation*}
c_{1}^{\prime} a_{1} e^{L+2 I I}+c_{7}^{\prime} a_{7}=0, \quad \text { i.e. } \quad e^{L}=c\left(a_{7} / a_{1}\right) e^{-2 I I} ; \tag{viii}
\end{equation*}
$$

(ix)

$$
c_{2}^{\prime} a_{2} e^{L+H}+c_{7}^{\prime} a_{7}=0, \quad \text { i.e. } \quad e^{I I}=c\left(a_{7} / a_{2}\right) e^{-L} ;
$$

(x) $\quad c_{3}{ }^{\prime} a_{3} e^{2 H}+c_{7}{ }^{\prime} a_{7}=0$, i.e. $\quad e^{I I}=c \sqrt{ } a_{7} / a_{3} ;$

$$
\begin{equation*}
c_{4}^{\prime} a_{4} e^{L}+c_{7}^{\prime} a_{7}=0, \quad \text { i.e. } \quad e^{L}=c a_{7} / a_{4} ; \tag{xi}
\end{equation*}
$$

with a non-zero constant c.
If at least one of $c_{\imath}{ }^{\prime} c_{\jmath}{ }^{\prime}(i \neq j ; i, j=1, \cdots, 6)$ is not zero, then by using lemma 1 to (2.6) we have

$$
c_{1}^{\prime \prime} a_{1} e^{L+2 I I}+c_{2}^{\prime \prime} a_{2} e^{L+H}+c_{3}^{\prime \prime} a_{3} e^{2 H}+c_{4}^{\prime \prime} a_{4} e^{L}+c_{5}^{\prime \prime} a_{5} e^{-L+2 I I}+c_{6}^{\prime \prime} a_{6} e^{I I}=0
$$

with suitable constants $c_{\imath}{ }^{\prime \prime}$, so that
(2. 7) $\quad c_{1}{ }^{\prime \prime} a_{1}+c_{2}{ }^{\prime \prime} a_{2} e^{-I I}+c_{3}{ }^{\prime \prime} a_{3} e^{-L}+c_{4}{ }^{\prime \prime} a_{4} e^{-2 I I}+c_{5}{ }^{\prime \prime} a_{5} e^{-2 L}+c_{6}{ }^{\prime \prime} a_{6} e^{-L-H}=0$.

If all $c_{\imath}{ }^{\prime \prime} c_{\jmath}{ }^{\prime \prime}(i \neq j ; i, j=2, \cdots, 6)$ are zero, then (2.7) reduces to the one of the follow. ing identities:
(xiv)
($x v$)

$$
c_{1}^{\prime \prime} a_{1}+c_{2}^{\prime \prime} a_{2} e^{-H}=0, \quad \text { i.c. } \quad e^{I I}=c a_{2} / a_{1}
$$

(xvi)

$$
c_{1}^{\prime \prime} a_{1}+c_{3}^{\prime \prime} a_{3} e^{-L}=0, \quad \text { i.e. } \quad e^{L}=c a_{3} / a_{1}
$$

$$
c_{1}{ }^{\prime \prime} a_{1}+c_{4}{ }^{\prime \prime} a_{4} e^{-2 H}=0, \quad \text { i.e. } \quad e^{H}=c \sqrt{a_{4} / a_{1}} ;
$$

(xviii)

$$
\begin{array}{lll}
c_{1}^{\prime \prime} a_{1}+c_{5}^{\prime \prime} a_{5} e^{-2 L}=0, & \text { i.e. } & e^{L}=c \sqrt{a_{5} / a_{1}} ; \tag{xvii}\\
c_{1}^{\prime \prime} a_{1}+c_{6}^{\prime \prime} a_{6} e^{-L-H}=0, & \text { i.e. } & e^{H}=c\left(a_{6} / a_{1}\right) e^{-L}
\end{array}
$$

with a non-zero constant c.
If at least one of $c_{\imath}{ }^{\prime \prime} c_{j}{ }^{\prime \prime}(i \neq j ; i, j=2, \cdots, 6)$ is not zero, then by using lemma 1
to (2.7) we have

$$
d_{2} a_{2} e^{-I I}+d_{3} a_{3} e^{-L}+d_{4} a_{4} e^{-2 H}+d_{5} a_{5} e^{-2 L}+d_{6} a_{6} e^{-L-H}=0
$$

with suitable constants d_{3}, so that

$$
\begin{equation*}
d_{2} a_{2}+d_{3} a_{3} e^{-L+H}+d_{4} a_{4} e^{-I I}+d_{5} a_{5} e^{-2 L+H}+d_{6} a_{6} e^{-L}=0 \tag{2.8}
\end{equation*}
$$

If all $d_{i} d_{\jmath}(i \neq j ; i, j=3, \cdots, 6)$ are zero, then (2.8) reduces to the one of the following identities:

(xix)	$d_{2} a_{2}+d_{3} a_{3} e^{-L+I I}=0$,	i.e.	$e^{I H}=c\left(a_{2} / a_{3}\right) e^{L} ;$
(xx)	$d_{2} a_{2}+d_{4} a_{4} e^{-H}=0$,	i.e.	$e^{H}=c a_{4} / a_{2} ;$
(xxi)	$d_{2} a_{2}+d_{5} a_{5} e^{-2 L+H}=0$,	i.e.	$e^{I I}=c\left(a_{2} / a_{5}\right) e^{2 L} ;$
(xxii)	$d_{2} a_{2}+d_{6} a_{6} e^{-L}=0$,	i.e.	$e^{L}=c a_{6} / a_{2}$

with a non-zero constant c.
If at least one of $d_{i} d_{\jmath}(i \neq j ; i, j=3, \cdots, 6)$ is not zero, then by using lemma 1 to (2. 8) we have

$$
d_{3}^{\prime} a_{3} e^{-L+I I}+d_{4}^{\prime} a_{4} e^{-I I}+d_{5}^{\prime} a_{5} e^{-2 L+I I}+d_{6}^{\prime} a_{6} e^{-L}=0
$$

with suitable constants $d_{2}{ }^{\prime}$, so that

$$
\begin{equation*}
d_{3}^{\prime} a_{3}+d_{4}{ }^{\prime} a_{4} e^{L-2 H}+d_{5}^{\prime} a_{5} e^{-L}+d_{6}{ }^{\prime} a_{6} e^{-H}=0 . \tag{2.9}
\end{equation*}
$$

If all $d_{\imath}{ }^{\prime} d_{j}{ }^{\prime}(i \neq j ; i, j=4,5,6)$ are zero, then (2.9) reduces to the one of the following identities:

$$
\begin{array}{llll}
\text { (xxiii) } & d_{3}^{\prime} a_{3}+d_{4}^{\prime} a_{4} e^{L-2 H}=0, & \text { i.e. } & e^{L}=c\left(a_{3} / a_{4}\right) e^{2 H} ; \\
\text { (xxiv) } & d_{3}^{\prime} a_{3}+d_{5}^{\prime} a_{5} e^{-L}=0, & \text { i.e. } & e^{L}=c a_{5} / a_{3} ; \\
(\mathrm{xxv}) & d_{3}^{\prime} a_{3}+d_{6}^{\prime} a_{6} e^{-H}=0, & \text { !.e. } & e^{H}=c a_{6} / a_{3}
\end{array}
$$

with a non-zero constant c.
If at least one of $d_{\imath}{ }^{\prime} d_{j}{ }^{\prime}(i \neq j ; i, j=4,5,6)$ is not zero, then by using lemma 1 to (2.9) we have

$$
d_{4}^{\prime \prime} a_{4} e^{L-2 I}+d_{5}^{\prime \prime} a_{5} e^{-L}+d_{6}{ }^{\prime \prime} a_{6} e^{-I I}=0
$$

with suitable constants $d_{2}{ }^{\prime \prime}$, so that

$$
\begin{equation*}
d_{4}{ }^{\prime \prime} a_{1} e^{2(L-H)}+d_{6}{ }^{\prime \prime} a_{6}{ }^{L-I I}+d_{5}^{\prime \prime} a_{5}=0 . \tag{xxvi}
\end{equation*}
$$

All the relations (i), \cdots, (xxvi) give contradictions. In fact, since we have

$$
T\left(r, a_{j}\right)=o\left(m\left(r, e^{H}\right)\right)=o\left(m\left(r, e^{L}\right)\right), \quad j=1, \cdots, 9
$$

the cases (ii), (v), (vi), (x), (xi), (xiii), (xiv), (xv), (xvi), (xvii), (xx), (xxii), (xxiv) and (xxv) are all absurd. The cases (i), (iv), (viii), (xii), (xxi) and (xxiii) contradict that $m\left(r, e^{H}\right) \sim m\left(r, e^{L}\right)$. If (vii) or (xix) holds, we can put

$$
e^{H}=a e^{L}, \quad T(r, a)=o\left(m\left(r, e^{L}\right)\right)
$$

with a meromorphic function a, and hence the equation (2.4) has the form

$$
a_{1} a^{2} e^{4 L}+\left(a_{2}+a_{3} a\right) a e^{3 L}+\left(a_{4}+a_{5} a^{2}+a_{6} a\right) e^{2 L}+\left(a_{7}+a_{8} a\right) e^{L}+a_{9}=0
$$

This is absurd by lemma 2. Similarly if (iii) or (ix) or (xviii) holds, by putting $e^{H}=a e^{-L}$, (2.4) reduces to the form

$$
a_{4} e^{4 L}+\left(a_{2} a+a_{7}\right) e^{3 L}+\left(a_{1} a^{2}+a_{6} a+a_{9}\right) e^{2 L}+\left(a_{3} a+a_{8}\right) a e^{L}+a_{6} a=0
$$

which is also a contradiction by lemma 1 . In the remaining case (xxvi) we have

$$
m\left(r, e^{L-H}\right)=o\left(m\left(r, e^{H}\right)\right) .
$$

Then, by writing (2.4) in the form of

$$
\begin{aligned}
\left(a_{1} e^{2 L-2 H}\right) e^{4 H} & +\left(a_{2} e^{2 L-2 H}+a_{3} e^{L-I I}\right) e^{3 I I} \\
& +\left(a_{4} e^{2 L-2 H}+a_{5}+a_{6} e^{L-H}\right) e^{2 H}+\left(a_{7} e^{L-H}+a_{8}\right) e^{H}+a_{9}=0
\end{aligned}
$$

we can apply lemma 2. Then we arrive at a contradiction.
Thus we have completed our proof of this lemma.
Let $L(z)$ be an entire function. Then almost all zeros of $e^{L(z)}-\alpha$ are simple zeros (cf. [5]). Involving this fact we obtain:

Lemma 4. Under an assumption on the growth of an entire function g

$$
m(r, g)=o\left(m\left(r, e^{L}\right)\right)
$$

outside a set of finite logarithmic measure, we have

$$
N_{2}\left(r ; 0, e^{L}-g\right) \sim m\left(r, e^{L}\right)
$$

and

$$
N_{1}\left(r ; 0, e^{L}-g\right)=o\left(m\left(r, e^{L}\right)\right)
$$

outside a set of finite logarithmic measure.
Proof. Let φ be a meromorphic function defined by

$$
\frac{e^{L}-g}{-g} .
$$

Then we have

$$
\begin{aligned}
& N(r ; \infty, \varphi)=N(r ; 0, g) \leqq m(r, g)=o\left(m\left(r, e^{L}\right)\right), \\
& N(r ; 1, \varphi)=N\left(r ; 0, e^{L}\right)=0, \\
& N\left(r ; \infty, \varphi^{\prime}\right) \leqq 2 N(r ; 0, g)=o\left(m\left(r, e^{L}\right)\right), \\
& T(r, \varphi) \leqq T\left(r, e^{L}\right)+T(r, g)+T(r, 1 / g)+O(1) \leqq m\left(r, e^{L}\right)+o\left(m\left(r, e^{L}\right)\right)
\end{aligned}
$$

and

$$
m\left(r, e^{L}\right) \leqq m\left(r, e^{L}-g\right)+m(r, g)+O(1) \leqq T(r, \varphi)+o\left(m\left(r, e^{L}\right)\right)
$$

outside a set of finite logarithmic measure. By the second fundamental theorem for φ, we have

$$
T(r, \varphi) \leqq N(r ; 0, \varphi)+N(r ; \infty, \varphi)+N(r ; 1, \varphi)-N_{1}(r, \varphi)+O(\log (r T(r, \varphi)))
$$

outside a set of finite logarithmic measure. Since

$$
\begin{aligned}
N_{1}(r, \varphi) & =N\left(r ; \infty, 1 / \varphi^{\prime}\right)+2 N(r ; \infty, \varphi)-N\left(r ; \infty, \varphi^{\prime}\right) \\
& =N\left(r ; 0, \varphi^{\prime}\right)+o\left(m\left(r, e^{L}\right)\right),
\end{aligned}
$$

we have

$$
\begin{aligned}
T(r, \varphi) & \leqq N(r ; 0, \varphi)-N\left(r ; 0, \varphi^{\prime}\right)+O\left(\log \left(r m\left(r, e^{L}\right)\right)\right)+o\left(m\left(r, c^{L}\right)\right) \\
& \leqq \bar{N}(r ; 0, \varphi)+o\left(m\left(r, e^{L}\right)\right) \\
& =N_{2}(r ; 0, \varphi)+\bar{N}_{1}(r ; 0, \varphi)+o\left(m\left(r, e^{L}\right)\right) \\
& =N_{2}\left(r ; 0, e^{L}-g\right)+\bar{N}_{1}\left(r ; 0, e^{L}-g\right)+o\left(m\left(r, e^{L}\right)\right)
\end{aligned}
$$

outside a set of finite logarithmic measure. On the other hand we have

$$
\begin{aligned}
& N_{2}\left(r ; 0, e^{L}-g\right)+N_{1}\left(r ; 0, e^{L}-g\right)+\bar{N}_{1}\left(r ; 0, e^{L}-g\right) \\
= & N\left(r ; 0, e^{L}-g\right)=N(r ; 0, \varphi) \leqq T(r, \varphi)+O(1) \\
\leqq & N_{2}\left(r ; 0, e^{L}-g\right)+\bar{N}_{1}\left(r ; 0, e^{L}-g\right)+o\left(m\left(r, e^{L}\right)\right)
\end{aligned}
$$

outside a set of finite logarithmic measure. Thus we obtain

$$
\bar{N}_{1}\left(r ; 0, e^{L}-g\right) \equiv N_{1}\left(r ; 0, e^{L}-g\right)=o\left(m\left(r, e^{L}\right)\right)
$$

and

$$
N_{2}\left(r ; 0, e^{L}-g\right)=m\left(r, e^{L}\right)+o\left(m\left(r, e^{L}\right)\right)
$$

outside a set of finite logarithmic measure, since $T(r, \varphi)=m\left(r, e^{L}\right)+o\left(m\left(r, e^{L}\right)\right)$. These imply the desired result.
§ 3. Proof of Theorem B. The sufficiency part is evident by theorem A. In fact, since $G(z)$ has no multiple zero, we have

$$
\left\{\frac{F(z)}{f \circ h(z)}\right\}^{2} G(z)=g \circ h(z)
$$

where $F(z) / f \circ h(z)$ is an entire function.
In order to prove the necessity part, using again theorem A it suffices to consider an equation of the following form:

$$
\begin{equation*}
f^{* 2}\left(e^{L^{\circ} h}-\gamma^{\prime}\right)\left(e^{L^{\circ} h}-\delta^{\prime}\right)=\left(e^{H}-\gamma\right)\left(e^{H}-\delta\right) \tag{3.1}
\end{equation*}
$$

where f^{*} is a meromorphic function which has poles and zeros at most at the multiple zeros of $\left(e^{L \circ h}-\gamma^{\prime}\right)\left(e^{L \circ h}-\delta^{\prime}\right)$ and $\left(e^{I I}-\gamma\right)\left(e^{I I}-\delta\right)$, respectively. By lemma 4 we have

$$
\begin{aligned}
2 m\left(r, e^{L \circ h}\right) & \sim N_{2}\left(r ; 0,\left(e^{L \circ h}-\gamma^{\prime}\right)\left(e^{L^{\circ} h}-\delta^{\prime}\right)\right) \\
& \sim N_{2}\left(r ; 0,\left(e^{H}-\gamma\right)\left(e^{I I}-\delta\right)\right) \sim 2 m\left(r, e^{I I}\right)
\end{aligned}
$$

outside a set of finite logarithmic measure, so that

$$
\begin{equation*}
m\left(r, e^{L^{\circ} h}\right) \sim m\left(r, e^{H}\right) . \tag{3.2}
\end{equation*}
$$

Further we have

$$
T\left(r, f^{*}\right)=O\left(T\left(r, e^{L^{\circ} h}\right)+T\left(r, e^{H}\right)\right)
$$

and

$$
\begin{aligned}
& N\left(r ; 0, f^{*}\right)+N\left(r ; \infty, f^{*}\right) \\
\leqq & N_{1}\left(r ; 0,\left(e^{L \circ h}-\gamma^{\prime}\right)\left(e^{L^{\circ} h}-\delta^{\prime}\right)\right)+N_{1}\left(r ; 0,\left(e^{I I}-r\right)\left(e^{I I}-\delta\right)\right) \\
\leqq & N\left(r ; 0,\left(L_{\circ} h\right)^{\prime}\right)+N\left(r ; 0, H^{\prime}\right) \leqq m\left(r,\left(L_{\circ} h\right)^{\prime}\right)+m\left(r, H^{\prime}\right)+O(1) \\
\leqq & m\left(r, L_{\circ} h\right)+m(r, H)+O\left(\log \left(r m\left(r, L_{\circ} h\right) m(r, H)\right)\right) \\
= & o\left(m\left(r, e^{L \circ h}\right)+m\left(r, e^{H}\right)\right)
\end{aligned}
$$

outside a set of finite logarithmic measure. Thus we have

$$
\begin{align*}
& T\left(r, f^{* \prime} \mid f^{*}\right)=m\left(r, f^{*^{\prime}} \mid f^{*}\right)+N\left(r ; \infty, f^{*}| | f^{*}\right) \\
\leqq & O\left(\log \left(r m\left(r, f^{*}\right)\right)\right)+N\left(r ; 0, f^{*}\right)+N\left(r ; \infty, f^{*}\right) \tag{3.3}\\
= & o\left(m\left(r, e^{L o h}\right)+m\left(r, e^{H}\right)\right)
\end{align*}
$$

outside a set of finite logarithic measure.
By differentiation of both sides of (3.1), we have
and again by using (3.1)

$$
\begin{aligned}
& {\left[2 \frac{f^{* \prime}}{f^{*}}\left(e^{2 L^{\circ} h}-\left(\gamma^{\prime}+\delta^{\prime}\right) e^{L^{\circ} h}+\gamma^{\prime} \delta^{\prime}\right)+(L \circ h)^{\prime}\left(2 e^{2 L^{\circ} h}-\left(\gamma^{\prime}+\delta^{\prime}\right) e^{L \circ h}\right)\right]\left[e^{2 H}-(\gamma+\delta) e^{I I}+\gamma \dot{\partial}\right] } \\
= & H^{\prime}\left(2 e^{2 H}-(\gamma+\delta) e^{H}\right)\left(e^{2 L \circ h}-\left(\gamma^{\prime}+\delta^{\prime}\right) e^{L \circ h}+\gamma^{\prime} \delta^{\prime}\right)
\end{aligned}
$$

so that we have

$$
\begin{align*}
a_{1} e^{2 L^{\circ \circ h+2 H}} & +(\gamma+\delta) a_{2} e^{2 L \circ h+H}+\left(\gamma^{\prime}+\dot{o}^{\prime}\right) a_{3} e^{L^{\circ h}+2 H}+a_{4} e^{2 L \circ h}+a_{5} e^{2 H} \\
& +(\gamma+\delta)\left(\gamma^{\prime}+\delta^{\prime}\right) a_{6} e^{L^{\circ} h i H}+\left(\gamma^{\prime}+\delta^{\prime}\right) a_{7} c^{L \circ h}+(\gamma+\tilde{\delta}) a_{8} e^{I I}+a_{9}=0 \tag{3.4}
\end{align*}
$$

where

$$
\begin{array}{ll}
a_{1}=2\left(f^{*} \mid f f^{*}+(L \circ h)^{\prime}-H^{\prime}\right), & a_{2}=-\left(2 f^{* \prime} \mid f^{*}+2(L \circ h)^{\prime}-H^{\prime}\right), \\
a_{3}=-\left(2 f^{* \prime} \mid f^{*}+(L \circ h)^{\prime}-2 H^{\prime}\right), & a_{4}=2 \gamma^{\delta}\left(f^{*} \mid f *+(L \circ h)^{\prime}\right), \\
a_{5}=2 \gamma^{\prime} \delta^{\prime}\left(f^{*} \mid f^{*}-H^{\prime}\right), & a_{6}=2 f^{*} \mid f^{*}+(L \circ h)^{\prime}-H^{\prime}, \\
a_{7}=-\gamma \delta\left(2 f^{* \prime} \mid f^{*}+(L \circ h)^{\prime}\right), & a_{8}=-\gamma^{\prime} \delta^{\prime}\left(2 f^{*} / \mid f^{*}-I^{\prime}\right)
\end{array}
$$

and

$$
a_{9}=2 \gamma \dot{\gamma} \gamma^{\prime} \partial^{\prime} f^{*} / \mid f^{*}
$$

By (3.2) and (3.3) we can apply lemma 3 to (3.4). Thus we can deduce that

$$
(\gamma+\delta)\left(\gamma^{\prime}+\delta^{\prime}\right) a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7} a_{8}
$$

vanishes identically.
If $a_{1} \equiv 0$, then we have

$$
f^{*}=c e^{-L \circ h+H}
$$

with a non-zero constant c, and (3.1) reduces to the equation

$$
\left(c^{2}-1\right) e^{2 L^{\circ} h+2 H}+(\gamma+\delta) e^{2 L \circ h+H}-c^{2}\left(\gamma^{\prime}+\delta^{\prime}\right) e^{L \circ h+2 I I}-\gamma \delta e^{2 L \circ h}+c^{2} \gamma^{\prime} \hat{o}^{\prime} e^{2 I I}=0 .
$$

Hence by Borel's theorem [1] this is impossible unless $L \circ h(z)-L \circ h(0)=H(z)$, which is the desired result (a) in our theorem.

If $a_{2} \equiv 0$, then we have

$$
f^{* 2}=c e^{-2 L^{\circ} \cdot h+I I}
$$

with a non-zero constant c, and (3.1) reduces to the equation

$$
e^{2 L \circ h+2 I I}-(\gamma+\delta+c) e^{2 L \circ h+H}+\gamma \delta e^{2 L \circ \hbar}+c\left(\gamma^{\prime}+\delta^{\prime}\right) e^{L \circ h+I I}-c \gamma^{\prime} \dot{\delta}^{\prime} e^{H}=0 .
$$

However this is a contradiction by Borel's theorem. Similarly if $a_{3} \equiv 0$, we arrive at a contradiction.

If $a_{4} \equiv 0$, then we have

$$
f^{*}=c e^{-L \circ h}
$$

with a non-zero constant c, and (3.1) reduces to the equation

$$
e^{2 L^{\circ} h+2 H}-(\gamma+\delta) e^{2 L \circ h+I I}+\left(\gamma \delta-c^{2}\right) e^{2 L^{\circ} h}+c^{2}\left(\gamma^{\prime}+\delta^{\prime}\right) e^{L L^{\circ} h}-c^{2}=0 .
$$

Hence by Borel's theorem we have the desired result (b) in our theorem. If $a_{5} \equiv 0$, then we have similarly the desired result (b) in our theorem.

If $a_{6} \equiv 0$, then we have

$$
f^{* 2}=c e^{-L \circ h+I I}
$$

with a non-zero constant c, and (3.1) reduces to the equation

$$
c e^{2 L \circ h+H}-e^{L \circ h+2 H}+\left((\gamma+\delta)-c\left(\gamma^{\prime}+\delta^{\prime}\right)\right) e^{L \circ h+I I}-\gamma \delta e^{L \circ h}+c \gamma^{\prime} \delta^{\prime} e^{H}=0 .
$$

Hence by Borel's theorem we have the result (a) and the result (b) in our theorem according as $L \circ h-H \equiv$ const. and $L \circ h+I I \equiv$ const., respectively.

If $a_{7} \equiv 0$, then we have

$$
f^{* 2}=c e^{-L \circ h}
$$

with a non-zero constant c, and (3.1) reduces to the equation

$$
c e^{2 L^{\circ} h}-e^{L \circ h+2 H}+(\gamma+\delta) e^{L \circ h+2 I I}-\left(\gamma \delta+c\left(\gamma^{\prime}+\delta^{\prime}\right)\right) e^{L \circ h}+c \gamma^{\prime} \delta^{\prime}=0 .
$$

However this is a contradiction by Borel's theorem. Similarly if $a_{8} \equiv 0$, we arrive at a contradiction.

If $\gamma+\delta=0$, then we have

$$
\begin{equation*}
a_{1} e^{2 L^{\circ} h+2 H}+\left(\gamma^{\prime}+\delta^{\prime}\right) a_{3} e^{L \circ h+2 I I}+a_{4} e^{2 L \circ h}+a_{5} e^{2 I I}+\left(\gamma^{\prime}+\delta^{\prime}\right) a_{7} e^{L^{\circ / h}}+a_{9}=0 . \tag{3.5}
\end{equation*}
$$

We may assume that $a_{1} a_{3} a_{4} a_{5} a_{7} \neq 0$. Then by using lemma 1 to (3.5) we have

$$
c_{1} a_{1} e^{2 L^{\circ} h+2 H}+c_{3} a_{3} e^{L{ }^{\circ} h+2 H}+c_{4} a_{4} e^{2 L^{\circ} h}+c_{5} a_{5} e^{2 I I}+c_{7} a_{7} e^{L^{\circ} h}=0
$$

with suitable constants c_{\imath}, so that

$$
\begin{equation*}
c_{1} a_{1} e^{L \circ h+2 I I}+c_{3} a_{3} e^{2 I I}+c_{4} a_{4} e^{L \circ h}+c_{5} a_{5} e^{-L \circ h+2 I I}+c_{7} a_{7}=0 . \tag{3.6}
\end{equation*}
$$

If all $c_{i} c_{j}(i \neq j ; i, j=1,3,4,5)$ are zero, then (3.6) reduces to the one of the following identities:

$$
\begin{equation*}
c_{1} a_{1} e^{L \circ h+2 I I}+c_{7} a_{7}=0, \quad \text { i.e. } \quad e^{L \circ h}=c\left(a_{7} / a_{1}\right) e^{-2 I I} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
c_{3} a_{3} e^{2 H}+c_{7} a_{7}=0, \quad \text { i.e. } \quad e^{I I}=c \sqrt{a_{7} / a_{3}} ; \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
c_{4} a_{4} e^{L \circ h}+c_{7} a_{7}=0, \quad \text { i.e. } \quad e^{L \circ h}=c a_{7} / a_{4} ; \tag{iii}
\end{equation*}
$$

$$
c_{5} a_{5} e^{-L^{\circ h} h 2 H}+c_{7} a_{7}=0, \quad \text { i.e. } \quad e^{L^{\circ} h}=c\left(a_{5} / a_{7}\right) e^{2 I I}
$$

with a non-zero constant c.
If at least one of $c_{i} c_{\jmath}(i \neq j ; i, j=1,3,4,5)$ is not zero, then by using lemma 1 to (3.6) we have

$$
c_{1}^{\prime} a_{1} e^{L^{\circ} h+2 H}+c_{3}^{\prime} a_{3} e^{2 I I}+c_{4}^{\prime} a_{4} e^{L^{\circ h}}+c_{5}^{\prime} a_{5} e^{-L \circ h / 2 I I}=0
$$

with suitable constants $c_{2}{ }^{\prime}$, so that

$$
\begin{equation*}
c_{1}^{\prime} a_{1} e^{2 I I}+c_{3}^{\prime} a_{3} e^{-L^{\circ \circ h}+2 I I}+c_{5}^{\prime} a_{5} e^{-2 L^{\circ o h} 42 I I}+c_{4}^{\prime} a_{4}=0 . \tag{3.7}
\end{equation*}
$$

If all $c_{i}{ }^{\prime} c_{j}{ }^{\prime}(i \neq j ; i, j=1,3,5)$ are zero, then (3.7) reduces to the one of the following identities:

$$
\begin{equation*}
c_{1}^{\prime} a_{1} e^{2 I I}+c_{4}^{\prime} a_{4}=0, \quad \text { i.e. } \quad e^{I I}=c \sqrt{ } a_{4} / a_{1} ; \tag{v}
\end{equation*}
$$

$$
\begin{equation*}
c_{3}^{\prime} a_{3} e^{-L \circ h+2 I}+c_{4}^{\prime} a_{4}=0, \quad \text { i.e. } \quad e^{L \circ h}=c\left(a_{3} / a_{4}\right) e^{2 H} ; \tag{vi}
\end{equation*}
$$

$$
\begin{equation*}
c_{5}^{\prime} a_{5} e^{-2 L^{\circ} h+2 I I}+c_{4}^{\prime} a_{4}=0, \quad \text { i.e. } \quad e^{L \circ h}=c \sqrt{a_{5} / \overline{a_{4}}} e^{I I} \tag{vii}
\end{equation*}
$$

with a non-zero constant c.
If at least one of $c_{\imath}{ }^{\prime} c_{\jmath}{ }^{\prime}(i \neq j ; i, j=1,3,5)$ is not zero, then by using lemma 1 to (3. 7) we have

$$
c_{1}^{\prime \prime} a_{1} e^{2 I I}+c_{3}{ }^{\prime \prime} a_{3} e^{-L o h+2 I I}+c_{5}^{\prime \prime} a_{5} e^{-2 L \circ h+2 I I}=0
$$

with suitable constants $c_{\imath}{ }^{\prime \prime}$, so that

$$
\begin{equation*}
c_{1}{ }^{\prime \prime} a_{1} e^{2 L^{L \circ}}+c_{3}{ }^{\prime \prime} a_{3} e^{L^{\circ h}}+c_{5}^{\prime \prime} a_{5}=0 . \tag{viii}
\end{equation*}
$$

These relations (i), \cdots, (viii) lead to a contradiction. Indeed, the cases (ii), (iii) and (v) are evidently untenable. The cases (i), (iv) and (vi) contradict (3.2). If the relation (vii) holds, then (3.5) reduces to the identity

$$
a_{1} a_{4} e^{4 L^{\circ} h}+\left(\gamma^{\prime}+\delta^{\prime}\right) a_{3} a_{4} e^{3 L \circ h}+(1+c) a_{4} a_{5} e^{2 L \circ h}+c\left(\gamma^{\prime}+\delta^{\prime}\right) a_{5} \alpha_{7} e^{L \circ h}+c a_{5} a_{9}=0 .
$$

However this is a contradiction by lemma 2. The case (viii) also contradicts lemma 2. If $\gamma^{\prime}+\dot{o}^{\prime}=0$, then we have similarly a contradiction unless $a_{1} a_{2} a_{4} a_{5} a_{8} \equiv 0$.
Thus we have completed our proof.
§ 4. Proof of Theorem C. In order to prove theorem C, it suffices to show the impossibility of an identity of the form

$$
\begin{gather*}
\int^{* 2}\left(e^{I I}-\gamma\right)\left(e^{H}-\delta\right)=\tilde{G} ; \tag{4.1}\\
\tilde{G}=1-2 \beta_{1} e^{H H_{1}}-2 \beta_{2} e^{H_{2}}+\beta_{1}{ }^{2} e^{2 H_{1}}-2 \beta_{1} \beta_{2} e^{I I_{1}+H_{2}}+\beta_{2}{ }^{2} e^{2 H_{2}}, \\
\beta_{1} \beta_{2} \gamma \delta(\gamma-\delta) \neq 0, \quad H(0)=H_{1}(0)=H_{2}(0)=0
\end{gather*}
$$

provided that

$$
\begin{equation*}
m\left(r, e^{H_{1}}\right)=o\left(m\left(r, e^{I I_{2}}\right)\right) \tag{4.2}
\end{equation*}
$$

outside a set of finite logarithmic measure, where I, H_{1} and H_{2} are non-constant entire functions and $\gamma, \delta, \beta_{1}$ and β_{2} are constants and f^{*} is a meromorphic function which has poles and zeros at most at the multiple zeros of $\left(e^{I I}-\gamma\right)\left(e^{I I}-\tilde{\delta}\right)$ and \tilde{G}, respectively.

We put

$$
\begin{array}{cl}
\tilde{G}=F_{1} \cdot F_{2} \cdot F_{3} \cdot F_{4} ; \\
F_{1}=1+\sqrt{\beta_{1}} e^{I_{1} / 2}+\sqrt{\beta_{2}} e^{H_{2} / 2}, & F_{2}=1+\sqrt{\beta_{1}} e^{I_{1} / 2}-\sqrt{\beta_{2}} e^{H_{2} / 2} \\
F_{3}=1-\sqrt{\beta_{1}} e^{H_{1} / 2}+\sqrt{\bar{\beta}_{2}} e^{I_{2} / 2}, & F_{4}=1-\sqrt{\bar{\beta}_{1}} e^{H_{1} / 2}-\sqrt{\bar{\beta}_{2}} e^{I_{2} / 2}
\end{array}
$$

Since F_{\imath} and $F_{\jmath}(i \neq j ; i, j=1,2,3,4)$ have no common zero and

$$
m\left(r, e^{H_{1} / 2}\right)=o\left(m\left(r, e^{H_{2} / 2}\right)\right)
$$

outside a set of finite logarithmic measure, by lemma 4 we have

$$
N_{2}(r ; 0, \tilde{G})=\sum_{\imath=1}^{4} N_{2}\left(r ; 0, F_{2}\right) \sim 4 m\left(r, e^{H_{2} / 2}\right) \sim 2 m\left(r, e^{I I_{2}}\right)
$$

and

$$
N_{1}(r ; 0, \tilde{G})=\sum_{\imath=1}^{4} N_{1}\left(r ; 0, F_{i}\right)=o\left(m\left(r, e^{\left.I_{e}\right)}\right)\right)
$$

outside a set of finite logarithmic measure. Thus we have

$$
2 m\left(r, e^{H}\right) \sim N_{2}\left(r ; 0,\left(e^{I I}-\gamma\right)\left(e^{I I}-\delta\right)\right) \sim N_{2}(r ; 0, \tilde{G}) \sim 2 m\left(r, e^{H^{2}}\right)
$$

outside a set of finite logarithmic measure, so that

$$
\begin{equation*}
m\left(r, e^{H}\right) \sim m\left(r, e^{H_{2}}\right) \tag{4.3}
\end{equation*}
$$

Further clearly we have

$$
T\left(r, f^{*}\right)=O\left(T\left(r, e^{H}\right)+T\left(r, e^{H_{1}}\right)+T^{\prime}\left(r, e^{I I_{2}}\right)\right)
$$

Thus we have

$$
\begin{aligned}
& T\left(r, f^{*} / \mid f^{*}\right)=m\left(r, f^{*} \mid f^{*}\right)+N\left(r ; \infty, f^{*} / \mid f^{*}\right) \\
\leqq & O\left(\log \left(r m\left(r, f^{*}\right)\right)\right)+N\left(r ; 0, f^{*}\right)+N\left(r ; \infty, f^{*}\right) \\
= & o\left(m\left(r, e^{H}\right)+m\left(r, e^{H 2}\right)\right)
\end{aligned}
$$

outside a set of finite logarithmic measure, so that

$$
\begin{equation*}
T\left(r, f^{*} \mid f^{*}\right)=o\left(m\left(r, e^{I}\right)\right)=o\left(m\left(r, e^{\left.H^{*}\right)}\right)\right) \tag{4.4}
\end{equation*}
$$

By differentiation of both sides of the equation (4.1) we have

$$
\begin{aligned}
& f^{* 2}\left[2 \frac{f^{* \prime}}{f^{*}}\left(e^{2 H}-(\gamma+\delta) e^{H}+\gamma \delta\right)+H^{\prime}\left(2 e^{2 I I}-(\gamma+\delta) e^{H}\right)\right]=\tilde{G}^{\prime} \\
\equiv & -2 \beta_{1} H_{1}^{\prime} e^{\prime} e^{H_{1}}-2 \beta_{2} H_{2}^{\prime} e^{H_{2}}+2 \beta_{1}^{2} I I_{1}^{\prime} e^{2 H_{1}}-2 \beta_{1} \beta_{2}\left(H_{1}^{\prime}+H_{2}^{\prime}\right) e^{H_{1} \vdash H H_{2}}+2 \beta_{2}^{2} T I_{2}^{\prime} e^{2 I_{2}},
\end{aligned}
$$

and, using (4.1), we finally have

$$
\begin{align*}
a_{1} e^{2 H+2 H_{2}} & +a_{2} e^{2 H+H_{2}}+(\gamma+\delta) a_{3} e^{H+2 H_{2}}+a_{4} e^{2 H}+a_{5} e^{2 H_{2}} \\
& +(\gamma+\delta) a_{6} e^{H+H 2}+(\gamma+\delta) a_{7} e^{H}+a_{8} e^{H 2}+a_{9}=0, \tag{4.5}
\end{align*}
$$

where

$$
\begin{aligned}
& a_{1}=2 \beta_{2}{ }^{2}\left(f^{* \prime} \mid f^{*}+H^{\prime}-H_{2}{ }^{\prime}\right) \text {, } \\
& a_{2}=-2 \beta_{2}\left[\left(2 f^{*}{ }^{\prime} / f^{*}+2 H H^{\prime}-H H_{2}^{\prime}\right)\left(\beta_{1} e^{H^{\prime}}+1\right)-\beta_{1} H_{1}{ }^{\prime} e^{I I^{\prime}}\right] \text {, } \\
& a_{3}=-\beta_{2}{ }^{2}\left(2 f^{*}{ }^{\prime} \mid f *+H^{\prime}-2 H_{2}{ }^{\prime}\right) \text {, } \\
& a_{4}=2\left(f^{*}{ }^{\prime} / f^{*}+H^{\prime}\right)\left(\beta_{1}{ }^{2} e^{2 H H_{1}}-2 \beta_{1} e^{H_{1}}+1\right)-2 H_{1}{ }^{\prime}\left(\beta_{1}{ }^{2} e^{2 H_{1}}-\beta_{1} e^{I I_{1}}\right) \text {, } \\
& a_{5}=2 \beta_{2}{ }^{2} \gamma \delta\left(f^{*}{ }^{\prime} / f^{*}-H_{2}{ }^{\prime}\right) \text {, } \\
& a_{6}=2 \beta_{2}\left[\left(2 f^{*} \mid f *+H^{\prime}-H_{2}^{\prime}\right)\left(\beta_{1} e^{H_{1}}+1\right)-\beta_{1} H_{1}^{\prime} e^{H^{H}}\right] \text {, } \\
& a_{7}=-\left(2 f^{*} / f^{*}+H^{\prime}\right)\left(\beta_{1}^{2} e^{2 H_{1}}-2 \beta_{1} e^{H_{1}}+1\right)+2{H_{1}}^{\prime}\left(\beta_{1}{ }^{2} e^{2 H_{1}}-\beta_{1} e^{H_{1}}\right) \text {, } \\
& a_{8}=-2 \beta_{2} \gamma \delta\left[\left(2 f^{*} / / f^{*}-H_{2}^{\prime}\right)\left(\beta_{1} e^{H_{1}}+1\right)-\beta_{1} H_{1}^{\prime} e^{H_{1}}\right] \text {, } \\
& a_{9}=2 \gamma \delta\left[\left(f^{*} / f f^{*}\right)\left(\beta_{1}{ }^{2} e^{2 H_{1}}-2 \beta_{1} e^{H_{1}}+1\right)-H_{1}{ }^{\prime}\left(\beta_{1}{ }^{2} e^{2 H_{1}}-\beta_{1} e^{H_{1}}\right)\right] .
\end{aligned}
$$

If $(\gamma+\delta) a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7} a_{8} a_{9} \neq 0$, then by (4.2), (4.3) and (4.4) the identity (4.5) contradicts lemma 3.

If $a_{1} \equiv 0$, then we have

$$
f^{*}=c e^{-I I+H z}
$$

with a non-zero constant c, and (4.1) reduces to the equation

$$
c^{2} e^{2 H_{2}}-c^{2}(\gamma+\delta) e^{-I I+2 H_{2}}+c^{2} \gamma \delta e^{-2 I I+2 I I_{2}}=\tilde{G},
$$

which contradicts Borel's theorem.
If $a_{2} \equiv 0$, then we have

$$
f^{* 2}=c\left(\beta_{1} e^{H_{1}}+1\right) e^{-2 H+H_{2}}
$$

with a non-zero constant c. However this equation is absurd, since the right hand term has simple zeros.

If $a_{3} \equiv 0$, then we have

$$
f^{* 2}=c e^{-I I+H 2}
$$

with a non-zero constant c, and (4.1) reduces to the equation

$$
\left.c e^{H+H_{2}}-c(\gamma+\delta)\right) e^{H_{2}}+c \gamma \grave{\delta} e^{-H+H_{2}}=\tilde{G},
$$

which contradicts Borel's theorem.
If $a_{4} \equiv 0$, then we have

$$
f^{*}=c\left(\beta_{1} e^{I I_{1}}-1\right) e^{-I I}
$$

with a non-zero constant c. Then (4.1) reduces to the equation

$$
c^{2}\left(\beta_{1} e^{H_{1}}-1\right)^{2}\left(e^{H}-\gamma\right)\left(e^{H}-\delta\right)=e^{2 I I} \tilde{G} .
$$

However by Borel's theorem we arrive at a contradiction.
If $a_{5} \equiv 0$, then we have

$$
f^{*}=c e^{H_{3}}
$$

with a non-zero constant c. Then (4.1) reduces to the equation

$$
c^{2} e^{2 H+2 H_{3}}-c^{2}(\gamma+\delta) e^{H+2 H_{2}}+c^{2} \gamma \delta e^{2 H_{2}}=\tilde{G} .
$$

This is also untenable by Borel's theorem.
If $a_{6} \equiv 0$, then we have

$$
f^{* 2}=c\left(\beta_{1} e^{H_{1}}+1\right) e^{-H+H 2}
$$

with a non-zero constant c. However this equation is absurd, since the right hand term has simple zeros.

If $a_{7} \equiv 0$, then we have

$$
f^{* 2}=c\left(\beta_{1} e^{H_{1}}-1\right)^{2} e^{-H}
$$

with a non-zero constant c. Then (4.1) reduces to the equation

$$
c\left(\beta_{1} e^{H_{1}}-1\right)^{2}\left(e^{I I}-\gamma\right)\left(e^{H}-\delta\right)=e^{H I} \tilde{G} .
$$

However by Borel's theorem we arrive at a contradiction.
If $a_{8} \equiv 0$, then we have

$$
f^{* 2}=c\left(\beta_{1} e^{H_{1}}+1\right) e^{H_{2}}
$$

with a non-zero constant c. However this equation is absurd, since the right hand term has simple zeros.

If $a_{9} \equiv 0$, then we have

$$
f^{*}=c\left(\beta_{1} e^{H_{1}}-1\right)
$$

with a non-zero constant c. Then (4.1) reduces to the equation

$$
c^{2}\left(\beta_{1} e^{H_{1}}-1\right)^{2}\left(e^{I I}-\gamma\right)\left(e^{I I}-\delta\right)=\tilde{G} .
$$

However by Borel's theorem we arrive at a contradiction.
If $\gamma+\delta=0$, then (4.5) reduces to the equation

$$
a_{1} e^{2 I I+2 H_{2}}+a_{2} e^{2 H+H z}+a_{4} e^{2 I I}+a_{5} e^{2 H 2}+a_{5} e^{H_{2}}+a_{9}=0
$$

In this case we may assume that $a_{1} a_{2} a_{4} a_{5} a_{8} a_{9} \neq 0$. However we arrive at a contradiction by a similar argument as in (3.5).

Thus we have the desired result.
§5. Let R be an ultrahyperelliptic surface defined by an equation

$$
y^{2}=G(x),
$$

where

$$
\begin{gathered}
G(x)=1-2 \beta_{1} e^{\alpha_{1} x}-2 \beta_{2} C^{\alpha_{1} x}+\beta_{1}{ }^{2} e^{2 \alpha_{1} x}-2 \beta_{1} \beta_{2} e^{\left(\alpha_{1}+\alpha_{2}\right) x}+\beta_{2}{ }^{2} e^{2 \alpha_{2} x}, \\
\beta_{1} \beta_{2} \alpha_{1} \alpha_{2} \neq 0 .
\end{gathered}
$$

If R satisfies $P(R)=4$, then by the argument explained in $\S 1$ we have

$$
g(z)^{2} G(z)=f(z)^{2}\left(e^{H(z)}-\gamma\right)\left(e^{H(z)}-\delta\right), \quad \gamma \delta(\gamma-\delta) \neq 0, \quad H(0)=0
$$

for suitable entire functions g, f and H. Here we may assume that $g(z)$ and $f(z)$ have no common zero. By the lemma given in [5], we have

$$
N_{2}\left(r ; 0, e^{I}-r\right) \sim N_{2}\left(r ; 0, e^{H}-\delta\right) \sim m\left(r, e^{H}\right)
$$

outside a set of finite logarithmic measure. Since all simple zeros of $\left(e^{I I}-\gamma\right)\left(e^{I I}-\hat{\rho}\right)$ are the zeros of $G(z)$, we have

$$
2 m\left(r, e^{I I}\right) \sim N_{2}\left(r ; 0,\left(e^{I I}-\gamma\right)\left(e^{I I}-\delta\right)\right) \leqq N_{2}(r ; 0, G) \leqq m(r, G)
$$

outside a set of finite logarithmic measure. If H is a transcendental entire function or a polynomial of degree greater than one, then we have

$$
\rho_{G}=\varlimsup_{r \rightarrow \infty} \frac{\log m(r, G)}{\log r} \geqq \varlimsup_{r \rightarrow \infty} \frac{\log m\left(r, e^{H}\right)}{\log r} \geqq 2,
$$

which is absurd, since $\rho_{G}=1$. Thus H must have the form αz. Then we have

$$
f(z)^{2}\left(e^{\alpha z}-\gamma\right)\left(e^{\alpha z}-\delta\right)=g(z)^{2} G(z) .
$$

Let z_{n} be

$$
\frac{1}{\alpha} \log \gamma+\frac{1}{\alpha} 2 n \pi i, \quad n=0, \pm 1, \cdots
$$

then these are simple zeros of $e^{\alpha z}-\gamma$. Therefore $G\left(z_{n}\right)=0$. Let

$$
u=e^{\left(\alpha_{1}^{\prime} \alpha\right) 2 \pi \eta}, \quad v=e^{\left(\alpha_{1} / \alpha\right) 2 \pi i}, \quad A=\beta_{1} e^{\left(\alpha_{1}^{\prime} \alpha\right) \log \gamma}=\beta_{1} \gamma^{\left(\alpha_{1}^{\prime} / \alpha\right)}, \quad B=\beta_{2} e^{\left(\alpha_{2}^{\prime} \alpha\right) \log \gamma=\beta_{2} \gamma^{\left(\alpha_{2}^{\prime} / \alpha\right)} . . . ~}
$$

Then for all integers n we have

$$
0=G\left(z_{n}\right)=1-2 A u^{n}-2 B v^{n}+A^{2} u^{2 n}-2 A B u^{n} v^{n}+B^{2} v^{2 n} .
$$

By the lemma given in [4] we have

$$
u=1 \text { and } v=1
$$

This implies that

$$
\alpha_{1}=p_{1} \alpha \quad \text { and } \quad \alpha_{2}=力_{2} \alpha
$$

for some suitable non-zero integers p_{1} and p_{2}.
Putting $e^{\alpha z / 2}=\chi$, we have

$$
\begin{aligned}
& G(z)=F\left(e^{\alpha z^{2} / 2}\right) ; \\
& F(\chi)=1-2 \beta_{1} \chi^{2 p_{1}}-2 \beta_{2} \chi^{2 p_{2}}+\beta_{1}^{2} \chi^{4 p_{1}}-2 \beta_{1} \beta_{2} \chi^{2\left(p_{1}+p_{2}\right)}+\beta_{1}^{2} \chi^{4 p_{4}}
\end{aligned}
$$

Since $e^{\alpha z / 2}-\chi_{0}, \chi_{0} \neq 0$ has no zero other than an infinite number of simple zeros and $e^{\alpha z / 2}$ has no zero, every multiple zero of $G(z)$ occurs at a suitable multiple zero of $F(\chi)$ and vice versa. Thus $F(\chi)$ has only four simple zeros $\sqrt{\gamma},-\sqrt{\gamma}, \sqrt{\delta}$ and $-\sqrt{\delta}$.

In the first place we assume that $0<p_{1}<p_{2}$. Evidently we have

$$
F(\chi)=F_{1}(\chi) \cdot F_{2}(\chi) \cdot F_{3}(\chi) \cdot F_{1}(\chi) ;
$$

$$
\begin{array}{ll}
F_{1}(\chi)=1-\sqrt{\beta_{1}} \chi^{p_{1}}-\sqrt{\beta_{2}} \chi^{p_{2}}, & F_{2}(\chi)=1-\sqrt{\beta_{1}} \chi^{p_{1}}+\sqrt{\beta_{2}} \chi^{p_{2}}, \\
F_{3}(\chi)=1+\sqrt{\beta_{1}} \chi^{p_{1}}-\sqrt{\beta_{2}} \chi^{p_{3}}, & F_{4}(\chi)=1+\sqrt{\beta_{1}} \chi^{p_{1}}+\sqrt{ } \overline{\beta_{2}} \chi^{p_{2}} .
\end{array}
$$

Since no two members of F_{1}, F_{2}, F_{3} and F_{4} have common zero, we may seek for all the multiple zeros of each function $F_{j}(j=1,2,3,4)$. Then, since there is no triple zero in each factor F_{j}, every multiple zero is a double zero. From the equations

$$
\left\{\begin{array} { l }
{ F _ { 1 } (\chi) = 0 , } \\
{ F _ { 1 } ^ { \prime } (x) = 0 , }
\end{array} \quad \left\{\begin{array} { l }
{ F _ { 2 } (\chi) = 0 , } \\
{ F _ { 2 } ^ { \prime } (\chi) = 0 , }
\end{array} \quad \left\{\begin{array} { l }
{ F _ { 3 } (\chi) = 0 , } \\
{ F _ { 3 } ^ { \prime } (\chi) = 0 , }
\end{array} \quad \left\{\begin{array}{l}
F_{4}(\chi)=0 \\
F_{4}^{\prime}(\chi)=0
\end{array}\right.\right.\right.\right.
$$

we have

$$
\left\{\begin{array} { l }
{ \chi ^ { p _ { 1 } } = X , } \\
{ \chi ^ { p _ { 2 } } = Y , }
\end{array} \quad \left\{\begin{array} { l }
{ \chi ^ { p _ { 1 } } = X , } \\
{ \chi ^ { p _ { s } } = - Y , }
\end{array} \quad \left\{\begin{array} { l }
{ \chi ^ { p _ { 1 } } = - X , } \\
{ \chi ^ { p _ { s } } = Y , }
\end{array} \quad \left\{\begin{array}{l}
\chi^{p_{1}}=-X, \\
\chi^{p_{2}}=-Y,
\end{array}\right.\right.\right.\right.
$$

respectively, where $X=p_{2} /\left(p_{2}-p_{1}\right) \sqrt{ } \overline{\beta_{1}}$ and $Y=p_{1} /\left(p_{1}-p_{2}\right) \sqrt{ } \overline{\beta_{2}}$. Thus every double zero is a common point between p_{1}-th roots of X and p_{2}-th roots of Y or that of X and of $-Y$ or that of $-X$ and of Y or that of $-X$ and of $-Y$, respectively. Let $E(l, p)$ be the set of $|l|^{1 / p} e^{(\arg l) / p+2 n \pi \imath / p}, n=0,1, \cdots, p-1$. If $E\left(X, p_{1}\right) \cap E\left(Y, p_{2}\right) \neq \phi$, then there are d common points of $E\left(X, p_{1}\right)$ and $E\left(Y, p_{2}\right)$, where d is the greatest common measure of p_{1} and p_{2}.

If there is no double zero in $F(\chi)$, then we have $4 p_{2}=4$, that is

$$
0<p_{1}<p_{2}=1 .
$$

This is untenable. Therefore we may without loss of generality assume that $E\left(X, p_{1}\right) \cap E\left(Y, p_{2}\right) \neq \phi$.

If $E\left(-X, p_{1}\right) \cap E\left(Y, p_{2}\right)=\phi \quad$ and $\quad E\left(X, p_{1}\right) \cap E\left(-Y, p_{2}\right)=\phi \quad$ and $\quad E\left(-X, p_{1}\right) \cap$ $E\left(-Y, p_{2}\right)=\phi$, then we have $4 p_{2}-2 d=4$, that is,

$$
2 p_{1}<2 p_{2}=2+d \leqq 2+p_{1} .
$$

This implies that

$$
p_{1}=d=1 .
$$

Thus we have $2 p_{2}=3$. This is untenable.
If $E\left(-X, p_{1}\right) \cap E\left(Y, p_{2}\right) \neq \phi$ but $E\left(X, p_{1}\right) \cap E\left(-Y, p_{2}\right)=\phi \quad$ and $\quad E\left(-X, p_{1}\right) \cap$ $E\left(-Y, p_{2}\right)=\phi$, then $E\left(-X, p_{1}\right) \cap E\left(Y, p_{2}\right)$ contains just d points and hence we have

$$
4 p_{2}-4 d=4, \quad \text { i.e. } \quad p_{2}=1+d
$$

Therefore we have

$$
p_{1}<p_{2}=1+d \leqq 1+p_{1} .
$$

Thus we have $d=1, p_{1}=1$ and $p_{2}=2$. Then $\beta_{1}{ }^{2}=16 \beta_{2}$ holds.
If further $E\left(X, p_{1}\right) \cap E\left(-Y, p_{2}\right) \neq \phi$, then $E\left(-X, p_{1}\right) \cap E\left(-Y, p_{2}\right) \neq \phi$ and these two sets contain just d points, respectively. Thus we have

$$
2 d \leqq p_{1} \quad \text { and } \quad 4 p_{2}-8 d=4 .
$$

And hence we have

$$
p_{1}<p_{2}=1+2 d \leqq 1+p_{1} .
$$

This implies that $d=1, p_{1}=2$ and $p_{2}=3$. This is untenable, since $E(-X, 2) \cap$ $E(-Y, 3)=\phi$.

Next we assume that $p_{1}<0<p_{2}$. Then, putting $p_{1}=-q_{1}$, we get

$$
F(\chi) \frac{\chi^{4 q_{1}}}{\beta_{1}{ }^{2}}=1-2 \frac{\beta_{2}}{\beta_{1}} \chi^{2\left(p_{1} ; q_{1}\right)}-2 \frac{1}{\beta_{1}} \chi^{2 q_{1}}+\frac{\beta_{2}{ }^{2}}{\beta_{1}{ }^{2}} \chi^{4\left(p_{2}+q_{1}\right)}-2 \frac{\beta_{2}}{\beta_{1}{ }^{2}} \chi^{2 p_{2} \mid 4 q_{1}}+\frac{1}{\beta_{1}{ }^{2}} \chi^{4 q_{1}} .
$$

Since $0<q_{1}<p_{2}+q_{1}$, we can make use of the above result. Then we have

$$
p_{2}+q_{1}=2 q_{1}=2
$$

This implies that $p_{2}=q_{1}=1$ and hence $p_{1}=-1, p_{2}=1$ and $16 \beta_{1} \beta_{2}=1$.
If $p_{2}<p_{1}<0$, we put $p_{1}=-q_{1}$ and $p_{2}=-q_{2}$. Then we have

$$
F(\chi) \frac{\chi^{4 q_{2}}}{\beta_{2}{ }^{2}}=1-2 \frac{1}{\beta_{2}} \chi^{2 q_{2}}-2 \frac{\beta_{1}}{\beta_{2}} \chi^{2\left(q_{2}-q_{1}\right)}+\frac{1}{\beta_{2}{ }^{2}} \chi^{4 q_{2}}-2 \frac{\beta_{1}}{\beta_{2}{ }^{2}} \chi^{4 q_{2}-2 q_{1}}+\frac{\beta_{1}{ }^{2}}{\beta_{2}{ }^{2}} \chi^{4\left(q_{2}-q_{1}\right)} .
$$

Since $0<q_{2}-q_{1}<q_{2}$, we can again apply the above fact. Then we have

$$
q_{2}-q_{1}=1, \quad q_{2}=2 \quad \text { and } \quad \beta_{1}^{2}=16 \beta_{2} .
$$

And hence we obtain

$$
p_{1}=-1, \quad p_{2}=-2 \quad \text { and } \quad \beta_{1}{ }^{2}=16 \beta_{2} .
$$

In the last case we assume that $p_{1}=p_{2}$. Then we have

$$
\begin{aligned}
G(z) & =1-2 \beta_{1} e^{\alpha p_{1} z}-2 \beta_{2} e^{\alpha p_{1} z}+\beta_{1}^{2} e^{2 \alpha p_{1} z}-2 \beta_{1} \beta_{2} e^{2 \alpha p_{1} z}+\beta_{2}^{2} e^{2 \alpha p_{1 z}} \\
& =1-2\left(\beta_{1}+\beta_{2}\right) e^{\alpha p_{1} z}+\left(\beta_{1}-\beta_{2}\right)^{2} e^{2 \alpha p_{1} z} \\
& =\left(1-M e^{\alpha p_{1} z}\right)\left(1-N e^{\alpha p_{1 z}}\right)
\end{aligned}
$$

where $M=\left(\sqrt{\beta_{1}}+\sqrt{\overline{\beta_{2}}}\right)^{2}$ and $N=\left(\sqrt{\beta_{1}}-\sqrt{\overline{\beta_{2}}}\right)^{2}$. This implies that

$$
g(z)^{2} G(z)=g(z)^{2} M N\left(e^{\alpha p_{1} z}-\frac{1}{M}\right)\left(e^{\alpha p_{1} z}-\frac{1}{N}\right), \quad M N(M-N) \neq 0
$$

if we assume that $\beta_{1} \neq \beta_{2}$. Further $p_{1}=1$ holds. If $\beta_{1}=\beta_{2}$, then either M or N is equal to zero but one of them does not vanish. Thus $G(z)$ has a form $A\left(e^{\alpha p_{1 z}}-1 / A\right)$. This implies that $p_{1}=2$.

Thus we have all the possible cases for which $P(R)=4$, which can be listed as follows:
(1) $p_{1}=2, \quad p_{2}=1, \quad \beta_{2}{ }^{2}=16 \beta_{1} ;$
(2) $p_{1}=1, \quad p_{2}=2, \quad \beta_{1}{ }^{2}=16 \beta_{2}$;
(3) $p_{1}=1, \quad p_{2}=-1, \quad 16 \beta_{1} \beta_{2}=1$;
(4) $p_{1}=-1, \quad p_{2}=1, \quad 16 \beta_{1} \beta_{2}=1$;
(5) $p_{1}=-2, \quad p_{2}=-1, \quad \beta_{2}{ }^{2}=16 \beta_{1}$;
(6) $p_{1}=-1, \quad p_{2}=-2, \quad \beta_{1}^{2}=16 \beta_{2}$;
(7) $p_{1}=p_{2}=1, \quad \beta_{1}, \beta_{2}$ are free but $\beta_{1} \neq \beta_{2}$;
(8) $p_{1}=p_{2}=2$ and $\beta_{1}=\beta_{2}$.

Evidently in the first six cases we have

$$
G(z)=f(z)^{2}\left(e^{\alpha z}-\gamma\right)\left(e^{\alpha z}-i\right), \quad \gamma \delta(\gamma-\delta) \neq 0
$$

with a suitable entire function f and two suitable constants γ and δ. Therefore $P(R)$ is equal to 4 for all eight cases.

Summing up these results, we have
Theorem D. Let R be an ultrahyperelliptic surface defined by an equation

$$
y^{2}=1-2 \beta_{1} e^{\alpha_{1} x}-2 \beta_{2} e^{\alpha_{2} x}+\beta_{1}{ }^{2} e^{2 \alpha_{1} x}-2 \beta_{1} \beta_{2} e^{\left(\alpha_{1}+\alpha_{3}\right) x}+\beta_{2}{ }^{2} e^{2 \alpha_{1} x},
$$

with $\beta_{1} \beta_{2} \alpha_{1} \alpha_{2} \neq 0$. Then $P(R)$ is equal to 3 excepting the following four cases:
(1) $\alpha_{1}=2 \alpha_{2}, \quad \beta_{2}{ }^{2}=16 \beta_{1}$;
(2) $\alpha_{2}=2 \alpha_{1}, \quad \beta_{1}^{2}=16 \beta_{2} ;$
(3) $\alpha_{1}=-\alpha_{2}, \quad 16 \beta_{1} \beta_{2}=1$;
(1) $\alpha_{1}=\alpha_{2}, \beta_{1}, \beta_{2}$ are free
for which we have $P(R)=4$.
§6. Let R be an ultrahyperelliptic surface defined by an equation

$$
\begin{aligned}
y^{2}= & G(x) ; \\
G(x)= & 1-2 \beta_{1} e^{\alpha_{1} x^{2}+r_{1} x}-2 \beta_{2} e^{\alpha_{2} x^{2}+r_{2} x}+\beta_{1}{ }^{2} e^{2 \alpha_{1} x^{2}+2 r_{1} x} \\
& -2 \beta_{1} \beta_{2} e^{\left(\alpha_{1}+\alpha_{1}\right) x^{2}+\left(r_{1}+r_{2}\right) x}+\beta_{2}^{2} e^{2 \alpha_{1}, x^{2}+2 r_{3} x}, \quad \beta_{1} \beta_{2}\left(\left|\alpha_{1}\right|+\left|\alpha_{2}\right|\right) \neq 0 .
\end{aligned}
$$

Then it is evident that R satisfies $P(R) \geqq 3$.
Suppose that $P(R)=4$. By the argument explained in $\S 1$, we have

$$
\begin{equation*}
g(z)^{2} G(z)=f(z)^{2}\left(e^{H(z)}-\gamma\right)\left(e^{H(z)}-\grave{\delta}\right), \quad \gamma \delta(\gamma-\grave{\delta}) \neq 0 \tag{6.1}
\end{equation*}
$$

with suitable entire functions g, f and H. Further by the same argument as in $\S 5, H(z)$ has the form $\alpha z^{2}+\beta z$, because

$$
\rho_{G}=\varlimsup_{r \rightarrow \infty} \frac{\log m(r, G)}{\log r}=2 .
$$

Then we have two possibilities $\alpha \neq 0$ and $\alpha=0$.
I. Case of $\alpha \neq 0$. Replacing z by $z-\beta / 2 \alpha$, (6.1) reduces to an equation

$$
\begin{align*}
& \left.\left.g(z-\beta / 2 \alpha)^{2} \tilde{G}(z)=\tilde{f}(z)^{2}\left(e^{\alpha z^{2}}-\tilde{\gamma}\right)\right) e^{\alpha z^{2}}-\tilde{\delta}\right) ; \tag{6.2}\\
& \tilde{G}(z)=1-2 \tilde{\beta}_{1} e^{\alpha_{2} z^{2}+\tilde{r}_{1} z}-2 \tilde{\beta}_{2} e^{\alpha_{2} z^{2}+\tilde{\tilde{y}}_{2} z}+\tilde{\beta}_{1}^{2} e^{2 \alpha_{1} z^{2}+2 \tilde{r}_{1} z}-2 \tilde{\beta}_{1} \tilde{\beta}_{2} e^{\left(\alpha_{1}+\alpha_{3}\right) z^{2}+\left(\tilde{r}_{1}+\tilde{\gamma}_{2}\right) z}+\tilde{\beta}_{2}^{2} e^{2 \alpha_{1} z^{2}+2 \tilde{r}_{2} z}, \\
& \tilde{f}(z)=e^{\beta^{2} / 4 \alpha} f\left(z-\beta^{2} / 2 \alpha\right), \quad \tilde{\gamma}=\gamma / e^{\beta^{2} / 4 \alpha}, \quad \tilde{\delta}=\delta / e^{\beta^{2} / 4 \alpha}, \\
& \tilde{\beta}_{1}=\beta_{1} e^{\alpha_{1} \beta^{2} / 4 \alpha^{2}-r_{2} \beta^{2} / 2 \alpha}, \quad \tilde{\beta}_{2}=\beta_{2} e^{\alpha_{2} \beta^{2} / 4 \alpha^{2}-r_{2} \beta^{2 / 2 \alpha}}, \\
& \tilde{\gamma}_{1}=-\alpha_{1} \beta / \alpha+\gamma_{1}, \quad \tilde{\gamma}_{2}=-\alpha_{2} \beta / \alpha+\gamma_{2} .
\end{align*}
$$

Let z_{n} and $\check{z}_{n} ; n=0, \pm 1, \cdots$ be

$$
\left(\frac{1}{\alpha} \log \tilde{\gamma}+\frac{1}{\alpha} 2 n \pi i\right)^{1 / 2} \quad \text { and } \quad-\left(\frac{1}{\alpha} \log \tilde{\gamma}+\frac{1}{\alpha} 2 n \pi i\right)^{1 / 2}
$$

respectively. Then these are simple zeros of $e^{\alpha z^{2}}-\tilde{\gamma}$. Therefore $\tilde{G}\left(z_{n}\right)=0$ and $\tilde{G}\left(\tilde{z}_{n}\right)=0$.

Putting

$$
X_{0}=e^{2 \alpha_{1} \pi \nu / \alpha}, \quad Y_{0}=e^{2 \alpha_{3} \pi \nu / \alpha}, \quad A=\tilde{\beta}_{1} e^{\alpha_{1} \log \tilde{\tau} / \alpha}, \quad B=\tilde{\beta}_{2} e^{\alpha_{2} \log \tilde{\tau} / \alpha},
$$

we have

$$
\begin{aligned}
F_{n} \equiv & 1-2 A X_{0}^{n} e^{\tilde{\gamma}_{1} z_{n}}-2 B Y_{0}^{n} e^{\tilde{\gamma}_{1} z_{n}}+A^{2} X_{0}^{2 n} e^{2_{1}^{1} z_{n}} \\
& -2 A B X_{0}^{n} Y_{0}^{n} e^{\left.\tilde{r}_{1}+\tilde{\gamma}_{2}\right) z_{n}}+B^{2} Y_{0}^{2 n} e^{2 \tilde{\tau}_{2}^{2} z_{n}}=0
\end{aligned}
$$

and

$$
\begin{aligned}
\tilde{F}_{n} \equiv & 1-2 A X_{0}^{n} e^{\tilde{r}_{1} \tilde{z}_{n}}-2 B Y_{0}^{n} e^{\tilde{r}_{2} \tilde{z}_{n}}+A^{2} X_{0}^{2 n} e^{2 \tilde{r}_{1} \tilde{z}_{n}} \\
& -2 A B X_{0}^{n} Y_{0}^{n} e^{\left(\tilde{r}_{1}+\tilde{r}_{2}\right) \tilde{z}_{n}}+B^{2} Y_{0}^{2 n} e^{2 \tilde{\tau}_{2}^{2} \tilde{z}_{n}}=0
\end{aligned}
$$

for every integer n.
We use that if a constant χ satisfies $|\chi|<1$, then we have

$$
\chi^{n} e^{c z n} \rightarrow 0 \quad \text { for } n \rightarrow+\infty
$$

and

$$
\chi^{n} e^{c z n} \rightarrow \infty \quad \text { for } n \rightarrow-\infty
$$

with an arbitrary constant c.
At first we conclude that

$$
\left|X_{0}\right|=1 \quad \text { and } \quad\left|Y_{0}\right|=1
$$

In fact, if $\left|X_{0}\right|<1$ and $\left|Y_{0}\right|<1$, then

$$
\lim _{n \rightarrow \infty} F_{n}=1 ;
$$

if $\left|X_{0}\right|>1$ and $\left|Y_{0}\right|>1$, then

$$
\lim _{n \rightarrow-\infty} F_{n}=1 ;
$$

and if $\left|X_{0}\right|>1$ and $\left|Y_{0}\right| \leqq 1$, or if $\left|X_{0}\right| \leqq 1$ and $\left|Y_{0}\right|>1$, then

$$
\lim _{n \rightarrow \infty} F_{n}=\infty .
$$

These all results lead to a contradiction, because $F_{n}=0$.
Next we show that

$$
\tilde{\gamma}_{1}=0 \quad \text { and } \quad \tilde{\gamma}_{2}=0 .
$$

In fact, since

$$
z_{n}=\left(\frac{1}{\alpha}(\log \gamma+2 n \pi i)\right)^{1 / 2}=\sqrt{2 n \pi}\left(\frac{i}{\alpha}\right)^{1 / 2}\left(1+O\left(\frac{1}{n}\right)\right)^{1 / 2}
$$

and

$$
\tilde{z}_{n}=-\left(\frac{1}{\alpha}(\log \gamma+2 n \pi i)\right)^{1 / 2}=-\sqrt{2 n \pi}\left(\frac{i}{\alpha}\right)^{1 / 2}\left(1+O\left(\frac{1}{n}\right)\right)^{1 / 2}
$$

if $\operatorname{Re}\left[(i / \alpha)^{1 / 2} \tilde{\gamma}_{1}\right]>0$ and $\operatorname{Re}\left[(i / \alpha)^{1 / 2} \tilde{\gamma}_{2}\right]>0$, then

$$
\lim _{n \rightarrow \infty} \widetilde{F}_{n}=1
$$

if $\operatorname{Re}\left[(i / \alpha)^{1 / 2} \tilde{\gamma}_{1}\right]<0$ and $\operatorname{Re}\left[(i / \alpha)^{1 / 2} \tilde{\gamma}_{2}\right]<0$, then

$$
\lim _{n \rightarrow \infty} F_{n}=1 ;
$$

and if $\operatorname{Re}\left[(i / \alpha)^{1 / 2} \tilde{\gamma}_{1}\right]>0$ and $\operatorname{Re}\left[(i / \alpha)^{1 / 2} \tilde{\gamma}_{2}\right] \leqq 0$, or if $\operatorname{Re}\left[(i / \alpha)^{1 / 2} \tilde{\gamma}_{1}\right] \leqq 0$ and $\operatorname{Re}\left[(i / \alpha)^{1 / 2} \tilde{\gamma}_{2}\right]>0$, then

$$
\lim _{n \rightarrow \infty} F_{n}=\infty .
$$

These all results lead to a contradiction, because $F_{n}=\widetilde{F}_{n}=0$. Thus we have $\operatorname{Re}\left[(i / \alpha)^{1 / 2} \tilde{\gamma}_{1}\right]=0$ and $\operatorname{Re}\left[(i / \alpha)^{1 / 2} \tilde{\gamma}_{2}\right]=0$.

Similarly from relations

$$
z_{n}=-\sqrt{-2 n \pi}\left(\frac{i}{\alpha}\right)^{1 / 2} i\left(1+O\left(\frac{1}{n}\right)\right)^{1 / 2}
$$

and

$$
\tilde{z}_{n}=\sqrt{-2 n \pi}\left(\frac{i}{\alpha}\right)^{1 / 2} i\left(1+O\left(\frac{1}{n}\right)\right)^{1 / 2}
$$

we have $\operatorname{Re}\left[(i / \alpha)^{1 / 2} i \tilde{\gamma}_{1}\right]=0$ and $\operatorname{Re}\left[(i / \alpha)^{1 / 2} i \tilde{\gamma}_{2}\right]=0$. Consequently we have $(i / \alpha)^{1 / 2} \tilde{\gamma}_{1}=$ $(i / \alpha)^{1 / 2} \tilde{\gamma}_{2}=0$, and hence $\tilde{\gamma}_{1}=\tilde{\gamma}_{2}=0$.

From $\tilde{\gamma}_{1}=\tilde{\gamma}_{2}=0$, we have

$$
1-2 A X_{0}^{n}-2 B Y_{0}^{n}+A^{2} X_{0}^{2 n}-2 A B X_{0}^{n} Y_{0}^{n}+B^{2} Y_{0}^{2 n}=0
$$

for all integer n. By the lemma given in [4], we have

$$
X_{0}=1 \quad \text { and } \quad Y_{0}=1
$$

If $\alpha_{1} \alpha_{2} \neq 0$, this implies that

$$
\alpha_{1}=p_{1} \alpha \quad \text { and } \quad \alpha_{2}=p_{2} \alpha
$$

for suitable non-zero integers p_{1} and p_{2}.
Putting $e^{\alpha z^{2} / 2}=\chi$, we have

$$
\begin{aligned}
& \tilde{G}(z)=\widetilde{F}\left(e^{\alpha z^{2 / 2}}\right) ; \\
& \tilde{F}(\chi)=1-2 \tilde{\beta}_{1} \chi^{2 p_{1}}-2 \tilde{\beta}_{2} \chi^{2 p_{4}}+\tilde{\beta}_{1}^{2} \chi^{4 p_{1}}-2 \tilde{\beta}_{1} \tilde{\beta}_{2} \chi^{2 p_{1}+2 p_{4}}+\tilde{\beta}_{2}^{2} \chi^{4 p_{p}} .
\end{aligned}
$$

Since $e^{\alpha z^{2 / 2}}-\chi_{0}, \chi_{0} \neq 0, z \neq 0$ has no zero other than an infinite number of simple zeros and $e^{\alpha z^{2 / 2}}$ has no zero, every multiple zero of $\tilde{G}(z), z \neq 0$ occurs from a suitable multiple zero of $F(\chi)$ and vice versa. Thus $F(\chi)$ has just four simple zeros $\sqrt{\tilde{\gamma}}$, $-\sqrt{\tilde{\gamma}}, \sqrt{\tilde{\delta}}$ and $-\sqrt{\tilde{\delta}}$.

Then by the same argument as in $\S 5$, we have all the possible cases for which $P(R)=4$, which can be listed as follows:
(1) $p_{1}=2, \quad p_{2}=1, \quad \widetilde{\beta}_{2}{ }^{2}=16 \tilde{\beta}_{1} ;$
(2) $p_{1}=1, \quad p_{2}=2, \quad \widetilde{\beta}_{1}{ }^{2}=16 \tilde{\beta}_{2}$;
(2) $p_{1}=1, \quad p_{2}=-1, \quad 16 \tilde{\beta}_{1} \widetilde{\beta}_{2}=1$;
(4) $p_{1}=-1, \quad p_{2}=1,16 \tilde{\beta}_{1} \tilde{\beta}_{2}=1$;
(5) $p_{1}=-2, \quad p_{2}=-1, \quad \tilde{\beta}_{2}{ }^{2}=16 \tilde{\beta}_{1}$;
(6) $p_{1}=-1, \quad p_{2}=-2, \quad \tilde{\beta}_{1}{ }^{2}=16 \tilde{\beta}_{2} ;$
(7) $p_{1}=p_{2}=1, \quad \tilde{\beta}_{1}, \tilde{\beta}_{2}$ are free but $\tilde{\beta}_{1} \neq \tilde{\beta}_{2}$;
(8) $p_{1}=p_{2}=2$ and $\tilde{\beta}_{1}=\tilde{\beta}_{2}$.

Evidently, in all the cases, we have

$$
\tilde{G}(z)=\tilde{f}(z)^{2}\left(e^{\alpha z^{2}}-\tilde{\gamma}\right)\left(e^{\alpha z^{2}}-\tilde{\delta}\right)
$$

with two suitable constants $\tilde{\gamma}$ and $\tilde{\delta}$ and a suitable entire function \tilde{f}. And hence $P(R)$ is equal to 4 .

If $\alpha_{1} \alpha_{2}=0$, we have

$$
\begin{gathered}
\tilde{G}(z)=\tilde{\beta}_{2}{ }^{2}\left(e^{\alpha_{2} z^{2}}-M\right)\left(e^{\alpha_{2} z^{2}}-N\right) ; \\
M=\left(\sqrt{ } \tilde{\beta}_{1}+1\right)^{2} / \tilde{\beta}_{2}, \quad N=\left(\sqrt{ } \tilde{\beta}_{1}-1\right)^{2} / \tilde{\beta}_{2}
\end{gathered}
$$

or

$$
\begin{gathered}
\tilde{G}(z)=\tilde{\beta}_{1}^{2}\left(e^{\alpha_{1} z^{2}}-M\right)\left(e^{\alpha_{1} z^{2}}-N\right) ; \\
M=\left(\sqrt{ } \widetilde{\beta}_{2}+1\right)^{2} / \tilde{\beta}_{1}, \quad N=\left(\sqrt{ } \tilde{\beta}_{2}-1\right)^{2} / \tilde{\beta}_{1} .
\end{gathered}
$$

And hence $P(R)$ is equal to 4 .
II. Case of $\alpha=0$. Then (6.1) reduces to an equation

$$
\begin{equation*}
g(z)^{2} G(z)=f(z)^{2}\left(e^{\beta z}-\gamma\right)\left(e^{\beta z}-\delta\right) . \tag{6.3}
\end{equation*}
$$

Let $z_{n}, n=0, \pm 1, \cdots$, be

$$
\frac{1}{\beta} \log \gamma+\frac{1}{\beta} 2 n \pi \iota .
$$

Then these are simple zeros of $e^{\beta z}-\gamma$. Therefore $G\left(z_{n}\right)=0$. Since

$$
\begin{aligned}
& G(z)=G_{1}(z) \cdot G_{2}(z) \cdot G_{3}(z) \cdot G_{4}(z) ; \\
& G_{1}(z)=1-\sqrt{\bar{\beta}_{1}} e^{\left(\alpha_{1} z^{2}+\gamma_{2} z\right) / 2}-\sqrt{\bar{\beta}_{2}} e^{\left(\alpha_{2} z^{2}+\gamma_{z} z\right) / 2}, \\
& G_{2}(z)=1-\sqrt{ } \bar{\beta}_{1} e^{\left(\alpha_{1} z^{2} z_{1}+r_{2} z\right) / 2}+\sqrt{ } \bar{\beta}_{2} e^{\left(\alpha_{2} z^{2}+r_{2} z\right) / 2}, \\
& G_{3}(z)=1+\sqrt{ } \bar{\beta}_{1} e^{\left(\alpha_{1} z^{2}+r_{1} z\right) / 2}-\sqrt{ } \bar{\beta}_{2} e^{\left(\alpha_{2} z^{2}+r_{2} z\right) / 2}, \\
& G_{4}(z)=1+\sqrt{ } \bar{\beta}_{1} e^{\left(\alpha_{1} z^{2}+\gamma_{1} z\right) / 2}+\sqrt{ } \beta_{2} e^{\left(\alpha_{2} z^{2}+r_{2} z\right) / 2},
\end{aligned}
$$

we have

$$
1+k_{n} \sqrt{ } \bar{\beta}_{1} e^{\left(\alpha_{1} z_{n}^{2}+r_{2} z_{n}\right) / 2}+l_{n} \sqrt{ } \bar{\beta}_{2} e^{\left(\mu_{2} z_{n}^{2} t_{2} z_{2} z_{n}\right) / 2}=0
$$

where k_{n} and l_{n} are suitable constants and are equal to 1 or -1 .
Putting

$$
\begin{gathered}
X_{1}=e^{-2 \alpha_{1} \pi^{2} / \beta^{2}}, \quad Y_{1}=e^{2 \alpha_{1} \pi \nu(\log \gamma) / \beta^{2}+\gamma_{1 \pi} \pi / \beta}, \\
X_{2}=e^{-2 \alpha_{2} \pi^{2 / \beta} \beta^{2}}, \quad Y_{2}=e^{2 \alpha_{2} \pi \gamma(\log \gamma) / \beta^{2}+\gamma_{2 \pi} \pi / \beta}, \\
A=\sqrt{\bar{\beta}_{1} e^{\alpha_{1}(\log \gamma)^{2} / 2 \beta^{3}+\gamma_{1}(\log \gamma) / 2 \beta}}
\end{gathered}
$$

and

$$
B=\sqrt{\beta_{2}} e^{\alpha_{\mathbf{2}}(\log \gamma)^{2 / 2 \beta^{2}+\gamma_{\mathbf{r}}(\log \gamma) / 2 \beta},}
$$

we have

$$
F_{n} \equiv 1+k_{n} A X_{1}^{n^{2}} Y_{1}^{n}+l_{n} B X_{2}^{n^{2}} Y_{2}^{n}=0
$$

for every integer n.
At first we conclude that

$$
\left|X_{1}\right|=\left|X_{2}\right|=\left|Y_{1}\right|=\left|Y_{2}\right|=1
$$

In fact, by eliminating $X_{2}^{n^{2}}$ on relations

$$
F_{n} \equiv 1+k_{n} A X_{1}^{n^{2}} Y_{1}^{n}+l_{n} B X_{2}^{n^{2}} Y_{2}^{n}=0
$$

and

$$
F_{2 n} \equiv 1+k_{2 n} A X_{1}^{4 n^{2}} Y_{1}^{2 n}+l_{2 n} B X_{2}^{4 n^{2}} Y_{2}^{2 n}=0
$$

we have

$$
\begin{aligned}
\widetilde{F}_{n} \equiv & \left(\frac{k_{2 n} B^{3} Y_{2}^{2 n}}{l_{2 n} A^{3} Y_{1}^{2 n}}+1\right) \frac{A^{4} Y_{1}^{4 n}}{B^{4} Y_{2}^{4 n}} X_{1}^{4 n^{2}}+4 k_{n}^{3} \frac{A^{3} Y_{1}^{3 n}}{B^{4} Y_{2}^{4 n}} X_{1}^{3 n^{2}}+6 \frac{A^{2} Y_{1}^{2 n}}{B^{4} Y_{2}^{4 n}} X_{1}^{2 n} \\
& +4 k_{n} \frac{A Y_{1}^{n}}{B^{4} Y_{2}^{4 n}} X_{1}^{n^{2}}+\left(1+\frac{B^{3} Y_{2}^{2 n}}{l_{2 n}}\right) \frac{1}{B^{4} Y_{2}^{4 n}}=0
\end{aligned}
$$

for every integer n. Suppose first that $\left|X_{1}\right|>1$. If

$$
\overline{\lim }_{n \rightarrow \pm \infty}\left|\frac{k_{2 n} B^{3} Y_{2}^{2 n}}{l_{2 n} A^{3} Y_{1}^{2 n}}+1\right|>0
$$

then

$$
\varlimsup_{n \rightarrow \pm \infty}\left|\tilde{F}_{n}\right|=\infty
$$

This is a contradiction, because $\widetilde{F}_{n}=0$. If

$$
\lim _{n \rightarrow \pm \infty}\left(\frac{k_{2 n} B^{3} Y_{2}^{2 n}}{l_{2 n} A^{3} Y_{1}^{2 n}}+1\right)=0
$$

then, by noting that for two numbers α and $\beta \lim _{n \rightarrow \infty} \alpha \beta^{n}=1$ holds if and only if $\alpha=\beta=1$, we have

$$
\frac{Y_{2}^{4}}{Y_{1}^{4}}=\frac{B^{6}}{A^{6}}=1
$$

Hence we have

$$
K_{n} \equiv \frac{k_{2 n} B^{3} Y_{2}^{2 n}}{l_{2 n} A^{3} Y_{1}^{2 n}}+1=0
$$

for almost all n, because $K_{n}=0$ or 2 for every n. Then we have

$$
\lim _{n \rightarrow \infty} \widetilde{F}_{n}=\infty
$$

This is a contradiction, because $\widetilde{F}_{n}=0$.

Next suppose that $\left|X_{1}\right|<1$. If

$$
\varlimsup_{n \rightarrow \pm \infty}\left|1+\frac{B^{3} Y_{2}^{2 n}}{l_{2 n}}\right|>0
$$

then

$$
\varlimsup_{n \rightarrow \pm \infty}\left|\frac{\tilde{F}_{n}}{X_{1}^{1 n^{2}}}\right|=\infty .
$$

This is a contradiction, because $\tilde{F}_{n}=0$. If

$$
\lim _{n \rightarrow \pm \infty}\left(1+\frac{B^{3} Y_{2}^{2 n}}{l_{2 n}}\right)=0
$$

then we have

$$
Y_{2}^{4}=B^{6}=1 .
$$

Hence we have

$$
\tilde{K}_{n} \equiv 1+\frac{B^{3} Y_{2}^{2 n}}{l_{2 n}}=0
$$

for almost all n, because $\tilde{K}_{n}=0$ or 2 for every n. Then we have

$$
\lim _{n \rightarrow \infty} \frac{\tilde{F}_{n}}{X_{1}^{4^{2}}}=\infty .
$$

This is a contradiction, because $\widetilde{F}_{n}=0$. So we have $\left|X_{1}\right|=1$. Again, by eliminating $X_{1}^{n 2}$ on relations

$$
F_{n}=0 \quad \text { and } \quad F_{2 n}=0
$$

and by reasoning similarly, we deduce $\left|X_{2}\right|=1$. Thus $\left|X_{1}\right|=\left|X_{2}\right|=1$ holds. Further if $\left|Y_{1}\right| \neq\left|Y_{2}\right|$, then

$$
\lim _{n \rightarrow \infty} F_{n}=\infty \quad \text { or } \quad \lim _{n \rightarrow-\infty} F_{n}=\infty ;
$$

and if $\left|Y_{1}\right|=\left|Y_{2}\right|<1$ or $\left|Y_{1}\right|=\left|Y_{2}\right|>1$, then

$$
\lim _{n \rightarrow \infty} F_{n}=1 \quad \text { or } \quad \lim _{n \rightarrow-\infty} F_{n}=1 .
$$

These results lead to a contradiction, because $F_{n}=0$. Consequently we have $\left|X_{1}\right|=$ $\left|X_{2}\right|=\left|Y_{1}\right|=\left|Y_{2}\right|=1$.

Next from $\left|X_{1}\right|=\left|X_{2}\right|=\left|Y_{1}\right|=\left|Y_{2}\right|=1$ we show that $X_{1}^{2}=X_{2}^{2}=Y_{1}^{2}=Y_{2}^{2}=1$. In fact, let

$$
\begin{aligned}
& A=|A| e^{2 a \pi}, \quad X_{1}=e^{\imath x_{1} \pi}, \quad Y_{1}=e^{\imath y_{1} \pi}, \\
& B=|B| e^{i b \pi}, \quad X_{2}=e^{i x_{2} \pi}, \quad Y_{2}=e^{i y_{2} \pi} ; \\
& a, b, x_{1}, x_{2}, y_{1}, y_{2} \text { : real constants, }
\end{aligned}
$$

then

$$
\begin{aligned}
|B| & =\left|B X_{2}^{n^{2}} Y_{2}^{n}\right|=\left|1+A X_{1}^{n^{2}} Y_{1}^{n}+2\left(A X_{1}^{n^{2}} Y_{1}^{n}\right)^{1 / 2}\right| \\
& =1+2|A|^{1 / 2} \cos \left(\frac{n^{2} x_{1}+n y_{1}+a}{2}+\delta\right) \pi+|A|, \quad \delta=0 \text { or } 1 .
\end{aligned}
$$

Thus x_{1} and y_{1} must be integers, and hence $X_{1}^{2}=Y_{1}^{2}=1$. Similarly we have $X_{2}^{2}=Y_{2}^{2}=1$.
From the above fact, we can put

$$
\begin{aligned}
\frac{2 \alpha_{1} \pi^{2}}{\beta^{2}} & =p_{1} \pi i, & \frac{2 \alpha_{1} \pi i}{\beta^{2}} \log \gamma+\frac{\gamma_{1} \pi i}{\beta}=q_{1} \pi i, \\
\frac{2 \alpha_{2} \pi^{2}}{\beta^{2}} & =p_{2} \pi i, & \frac{2 \alpha_{2} \pi i}{\beta^{2}} \log \gamma+\frac{\gamma_{2} \pi i}{\beta}=q_{2} \pi i
\end{aligned}
$$

where p_{1}, p_{2}, q_{1} and q_{2} are integers. And hence we have

$$
\begin{equation*}
-p_{1} \log \gamma+\frac{\gamma_{1} \pi i}{\beta}=q_{1} \pi i, \quad-p_{2} \log \gamma+\frac{\gamma_{2} \pi i}{\beta}=q_{2} \pi i \tag{6.4}
\end{equation*}
$$

On the other hand, by putting

$$
z_{n}=\frac{1}{\beta} \log \grave{o}+\frac{1}{\beta} 2 n \pi i
$$

we must have

$$
\begin{equation*}
-p_{1} \log \delta+\frac{\gamma_{1} \pi i}{\beta}=q_{3} \pi i, \quad-p_{2} \log \delta+\frac{\gamma_{2} \pi i}{\beta}=q_{4} \pi i \tag{6.5}
\end{equation*}
$$

with some suitable integers q_{3} and q_{4}.
From (6.4) and (6.5) we have

$$
\left(\frac{\delta}{r}\right)^{2 p_{1}}=\left(\frac{\delta}{\gamma}\right)^{2 p_{2}}=1 .
$$

Since $\delta / \gamma \neq 1, p_{1}$ and p_{2} are zeros. This is a contradiction, because

$$
i p_{1}=\frac{\alpha_{1} \pi^{2}}{\beta^{2}}, \quad i p_{2}=\frac{\alpha_{2} \pi^{2}}{\beta^{2}}
$$

and

$$
\left|\alpha_{1}\right|+\left|\alpha_{2}\right| \neq 0 .
$$

Consequently the case II does not occur.
Summing up the above results, we have:
Theorem E. Let R be an ultrahyperelliptic surface defined by an equation

$$
\begin{gathered}
y^{2}=1-2 \beta_{1} e^{\alpha_{1} x^{2}+r_{1} x}-2 \beta_{2} e^{\alpha_{2} x^{2}+r_{3} x}+\beta_{1}^{2} e^{2 \alpha_{1} x^{2}+2 r_{1} x}-2 \beta_{1} \beta_{2} e^{\left.e \alpha_{1}+\alpha_{2}\right) x^{2}+\left(r_{1}+r_{2}\right) x}+\beta_{2}^{2} e^{2 \alpha_{3} x^{2}+r_{r} x} ; \\
\beta_{1} \beta_{1} \alpha_{2} \alpha_{2} \neq 0 .
\end{gathered}
$$

Then $P(R)$ is equal to 3 excepting the following four cases:
(1) $\alpha_{1}=2 \alpha_{2}, \quad \gamma_{1}=2 \gamma_{2}, \quad \beta_{2}{ }^{2}=16 \beta_{1}$;
(2) $\alpha_{2}=2 \alpha_{1}, \quad \gamma_{2}=2 \gamma_{1}, \quad \beta_{1}{ }^{2}=16 \beta_{2}$;
(3) $\alpha_{1}=-\alpha_{2}, \quad \gamma_{1}=-\gamma_{2}, \quad 16 \beta_{1} \beta_{2}=1$;
(4) $\alpha_{1}=\alpha_{2}, \quad \gamma_{1}=\gamma_{2}, \beta_{1}, \beta_{2}$ are free
for which we have $P(R)=4$.

§ 7. Remarks.

It should be remarked here that a conjecture stated in the problem (1) in [7] is not exact. By our theorems D and E we are obliged to add a more exceptional case $H_{1}=-H_{2}, 16 \beta_{1} \beta_{2}=1$ in the terminologies in [7]. To solve the problem in its most general form seems to be difficult and to be necessary any other method.

We can give a positive answer to the problem 3 in [7]. In fact, let R and S be two ultrahyperelliptic Riemann surfaces defined by

$$
y^{2}=G(z) \equiv 81 e^{4 z^{2}}-72 e^{3 z^{2}}-2 e^{2 z^{2}}-8 e^{z^{2}}+1
$$

and

$$
u^{2}=g(w) \equiv z\left(81 e^{4 z}-72 e^{3 z}-2 e^{2 z}-8 e^{z}+1\right),
$$

respectively. Then we have $P(R)=3$ and $P(S)=2$ by theorem D and theorem E (cf. [5]). Putting $f \equiv z$ and $h \equiv z^{2}$, we have an identity

$$
f(z)^{2} G(z)=g \circ h(z) .
$$

Thus by theorem A there exists an analytic mapping from R into S.

References

[1] Borel, E., Sur les zéros des fonction entières. Acta Math. 20 (1897), 357-396.
[2] Nevanlinna, R., Einige Eindeutigkeitssätzes in der Theorie der meromorphen Funktionen. Acta Math. 48 (1926), 367-391.
[3] Nevanlinna, R., Eindeutige analytische Funktionen. Berlin (1936).
[4] Ozawa, M., On complex analytic mappings. Ködai Math. Sem. Rep. 17 (1965), 93-102.
[5] Ozawa, M., On ultrahyperelliptic surfaces. Kōdai Math. Sem. Rep. 17 (1965), 103-108.
[6] Ozawa, M., On complex analytic mappings between two ultrahyperelliptic surfaces. Kōdai Math. Sem. Rep. 17 (1965), 158-165.
[7] Ozawa, M., On the existence of analytic mappings. Ködai Math. Sem. Rep. 17 (1965), 191-197.
[8] Rémoundos, G., Extension aux fonctions algébroides multiformes du théorème de M. Picard et de ses généralisations. Mém. Sci. Math. Paris. 1927.

Department of Matmematics, Tokyo Institute of Technology.

