ON THE EXISTENCE OF ANALYTIC MAPPINGS BETWEEN
TWO ULTRAHYPERELLIPTIC SURFACES

By GeExko Hiromi AND MrTsuru OzAawA

§1. Introduction. Let R and S be two ultrahyperelliptic surfaces defined by
two equations y*=G(z) and #?=g¢(w), respectively, where G and ¢ are two entire
functions having no zero other than an infinite number of simple zeros. Then one
of the authors [6], [7] established the following perfect condition for the existence
of analytic mappings from R into S.

THEOREM A. If there exists an analytic mapping ¢ from R into S, then there
exists a pair of two entire functions h(2) and f(z) satisfying an equation
S R?G(2)=g°h(z)
and vice versa.

Let M(R) be a family of non-constant meromorphic functions on R. Let f be
a member of M(R). Let P(f) be the number of Picard’s exceptional values of f,
which we say a a Picard’s value of /' when « is not taken by f on R. Let P(R)
be a quantity defined by
Supremcry P(J)

(cf. [4]). Let P(S) be the corresponding quantity attached to S.

In the present paper we shall give a perfect condition for the existence of
analytic mappings from R into S in a case of P(R)=P(S)=4, which is more direct
than theorem A, and shall give some characterizations of the surfaces R with
P(R)=3 by the forms of defining functions G.

By a characterization, which was given in [5], of R with P(R)=4 by G(z) we
can put
F(2)2G(z)=(eI® — ) (T —0), H(z)=const.,
H(0)=0, 70(r—0)=0
with two suitable entire functions F and /7 and two constants y and d. Similarly
if P(S)=4, we can put
S @)*g(w)=(e*—y")(e**—0d’"),  L(w)=const.,
L(0)=0, 70 (7’ —0") %0
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with two suitable entire functions fand L and two constants ¢ and ¢’. Then our
result is:

THEOREM B. Let R and S be two ultrahyperelliptic surfaces defined by (1.1)
and (1. 2), respectively. Then there exists an analylic mapping ¢ from R into S if
and only if there exists an entire function h(z) such that either

@) Leh(z)—Loh©)=H(),  pelt@=y,  delt® =g
or
) Loh(@)—Loh©)=—I(),  77/=cb®, 3§/ =elr®,

A proof of this theorem B will be given in §3.
Next if the surface R satisfies P(R)=3, then its defining function G(z) satisfies

F2G=1—2/31€H’—ZﬂzeH‘+ﬁ1262H‘~2,81/326H‘+H’+,32262H’,

1.3
13 Hi(z)=const., Hy(z) =const., Hi(0)=H(0)=0, B1Bx0

with three suitable entire functions F, I, and H, and two constants B; and .

For completeness we shall give here a brief exposition of this fact. Since
P(R)=3, there exists a two-valued entire algebroid function 7 of z which is regular
on R and whose defining equation is

F(z, ))=F"—2A2)f +/1(2)*—12(2)*G(2)=0

with two single-valued entire functions fi(z) and f2(z) of z. Further we may assume
that 0, 1 and oo are three exceptional values of f . Then, by Rémoundos’ reasoning

[8] pp. 25-27, we have three possibilities
F(z,0) c Pe™ Bie®
[F(z, 1)]:[ﬁeH] [ p ] o [ﬁge”’]
where ¢, B, fi and B, are non-zero constants and [, H; and H, are non-constant

entire functions of z satisfying H(0)=FH,(0)=I1(0)=0. However we may put aside
the first and the second cases. In fact, from the equations

{ fiP—f?G=c, { JiE=12"G=pe",
1—2fitfi—fiG=per O \1—2fitr2—f2G=c,

we have
Af2G=(Be™ —(1+A/c)?)(Be" —(1—a/c)?).

By the characterization of surfaces with four Picard’s values, we have P(R)=4.
This is a contradiction. Therefore if P(R)=3, then we have the third case and
obtain a representation

4f22G:1_Zﬁlelln_2ﬁ26111+ﬁlzezfll___2ﬁ1ﬁ2€}11+1h+/32282ﬂa_
Conversely, the surface R defined by (1. 3) satisfies P(R)=3. In fact,



EXISTENCE OF ANALYTIC MAPPINGS 283

F@= & At e + - VGG

is an entire function on R which is two-valued for z, where
G(2)=1—2B,eH— 28,00 B,2e?H2 — 2, Bye™i+Hs — B 202,
Then
F(z, )= 72—+ pre™ = Boc™) -+ pre™
satisfies
F(z,00=pe™ and  F(z,1)=Re™.

This shows that 70, 1 and co on R.
However we did not succeed to determine all ultrahyperelliptic surfaces R with
P(R)=3 (cf. [5], [7]). Here we shall show the following

THEOREM C. The surface R defined by (1.3) satisfies P(R)=3 if
m(r, e™)=o(m(r, e™))
outside a set of finite logavithmic measure.
A proof of this theorem C will be given in §4.

Further in §5 we shall determine all the surfaces R with P(R)=3 when 71,
and I in (1.3) are polynomials of degree 1 (Theorem D), and in §6 we shall
determine all the surfaces R with P(R)=3 when [, and F; in (1. 3) are polynomials
of degree 2 (Theorem E).

§2. Lemmas. We need some preparatory lemmas in order to prove our results

introduced in §1. The notations 7, m, N, N; and N are used in the sense of
Nevanlinna [3]. The notation N(7; a,f) is the N-function of simple a-points of f.
The following lemma is a generalization of Borel’s theorem [1] and its proof de-
pends essentially on Nevanlinna’s formulation [2].

LEMMA 1. Let ao(2), a1(2), -+, an(2) be meromorphic functions and let 91(2), -+, 02(2)
be entive functions. Further suppose that

T(, a;)zo(él m(r, er)>, 7=0,1,---,n,
holds outside a set of finile logarithmic measure. If an identity
@1 i 0.(2)en D =ay(2)
holds, then we have an identity

(2.2) i €., (2)e1 P =0
v=1
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with the exception of a case for which all the conslants c, reduce to zevo.
Proof. Let G,(2) be a,(2)e*®. Then we have
2.1 2. GuD)=ay(2).
v=1

By differentiating both sides of (2. 1/), we have

n

2.3) 2 GP () =af(2);
, . GP@ _ . e
@.39) yszlGu(Z) ) =a(z), p=1-,n-1

On the other hand, we have
GE,F)(Z):P#((Z,,, Cl,{, E) asp), g:» Tty giﬂ))eou(z)

with a suitable polynomial P, of indicated functions a,, al, -, @*,gl, -, 9. Thus
we have

) n

T<r, ((;; )éO(T(r, a.)+T(r, gv))=0<Z] m(, e"v))
v v=1

outside a set of finite logarithmic measure. Suppose that the determinant of the

simultaneous equations (2.1’) and (2.3") 4x0. By solving (2. 3’) with respect to

Gy, j=1, -, n, we have

64
where
1 1 1 1 o 1 1
Gi Gr G{ -1 o Gju G,
Zl: Gl Gn , A]—— Gl G]—l 0 G]+1 Gn
G(n—l) G(n-l) G(n—l) B G;zrl) a(n_l) G;Zl-;]) G(n'l)
G Gn G, Gy ‘ Gi Gn

Since 7@, G¥|G,)=0(% "1 m(r, ¢9)), we have
T(r,A)=o(§m(r,egv)>, T(y,A;»)zO(élm(r,egv)), =1,
outside a set of finite logarithmic measure. Thus we have
m(r, e)=T(r,e)=T(r,a)+T(r, G.)
=T, a)+ T, )+ T, 4)= o(é m, ev»)),

and hence
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é}l m(r, ea»):o(él m(r, em))

outside a set of finite logarithmic measure. This is a contradiction. Consequently
we obtain 4=0 and we complete the proof.

By lemma 1 we can immediately conclude:

LemMa 2. Let ai(2), -+, an(2) be mevomorphic functions and let 9(z) be an entire
Sunction. Further suppose that

T, a))=o(m(r, e?)), j=1,--, n,
holds outside a set of finite logarithmic measure. Then an identity of the following

Sform
®
21 a (2)e” P =0
y=1

is impossible unless a:1(z)=---=an(2)=0.

Further we shall prove the following lemma which is fundamental to the proofs
of theorem B and theorem C.

LemmA 3. Let ai(2), -+, as(2) be meromorphic functions and let H(z) and L(z)
be entire functions. Further suppose that

T(1’, a.f) :0(7}’[(7’, eH))y ,7:1) ) 9
and
m(r, e )~m(r, e*)

hold outside a set of finile logarithmic measure. Then an identily of the following
form

2.4 @ @R L 0P L | ol 2 H 0P E o ggetH 4 qpel TH - anet - age +ay =0
is impossible, if the product of a., -, as does not vanish identically.
Proof. If (2.4) holds, then by lemma 1 we have
C1010° L - 020,02 L - cy@zet V2 H -y 40t - 550 -+ coase™ - craqnet +csase™ =0
with suitable constants c¢;, so that
(2.5) 101 T H - coqae®t eyt A caaqe® L + csase - coaset + craret T - csas=0.
If all cic, (ixj;i,j=1, -+, 7) are zero, then (2.5) reduces to the one of the {ollowing
identities:
(1) 10163 a5 =0, ie. e =c(as/a;)e L,
(ii) C2020°L - csa5=0, ie.  el=ca/aslas;

(iii) csaseH 4-csas =0, ie. eH=c(as/as)e t;
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(iv) a0 ey =0, ic. et =c(aylas)e®;
(v) csaset +csas=0, ic. e =caglas,
(vi) coasel+csas=0, ic. el =caglag

(vii) CrtrelH +csas =0, ie.  e=c(aias)e”

with a non-zero constant c.
If at least one of cic, (ix7j;i,7=1,---,7) is not zcro, then by lemma 1, which is

applicable to (2.5) in this case, we have
¢/ @ ¢y’ aze®t o’ ase P Ao anet Lt Ao ase ! o’ aset oo aqetH == ()
with suitable constants c¢,/, so that
(2.6)  crlaiet 4oyl avet oy @y i aset e dse Ao aget - col ag 0.
If all cic) (@=j,i,j=1,--,6) are zero, then (2. 6) reduces to the one of the following
identities:

(viii) ¢ a et oy ae=0), ie. et=c(as/a)e 1,
(ix) ¢ azet 4o’ aq,=0), ic. e =c(ai/as)e%;
(x) o’ ase*  +co ar=0, ie. el =ca/aijas
(xi) ¢ aset+c ar=0, ie. ct=calas

(xii) cs'ase P o/ a=0, le.  cF=c(as/ar)eY,;
(xiii) ce'ase™ 4-ci'ar=0, ie.  ef=caijas

with a non-zero constant c.

If at least one of ¢./¢,” (i=¢j;4,7=1,+--,6) is not zero, then by using lemma 1
to (2. 6) we have

C1”@1eP ¢y apet T ¢y ase - e aset o5 ase LT - o6 aget =()

with suitable constants ¢,”, so that
2.7 e ar e ase o’ ase e ase P o5 ase -6 ase L =),
If all ¢.”c,” (i%7;i,7=2,---,6) are zero, then (2.7) reduces to the onc of the follow-
ing identities:

(xiv) ¢ ar ¢y aze =0, ic. el'=caslas;
(xv) ci"ar+cy"ase =0, ie. et=casla;;
(xvi) c’artedae =0, ie.  eF=ca/aslay;
(xvii) o ayFes’ase*t=0, ie.  el=ca/aslay
(xviii) ci"ai e’ ase"t"1=0, ie. e =c(agla)e "

with a non-zero constant c.
If at least one of ¢.”c,” (i%j;i,j=2,---,6) is not zero, then by using lemma 1
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to (2. 7) we have
dsaze™ ! +dsase L +daase ™ - dsase - dsase~ L1 =0
with suitable constants d,, so that
2. 8) deas+dsase LY H - dyase " +dsase L - dsage~ L =0).

If all did, (i4;1,5=3, -+, 6) are zero, then (2. 8) reduces to the one of the following
identities:

(xix) dotts+dsaze~ L=, ie. e =c(as/as)et;
(xx) daatz+diase~ =0, ie. e =caay;
(xxi) datts+dsase L1 =0, ie. e =c(a,las)e*r;
(xxii) da@2+dsaseL=0, ie. el=casla,

with a non-zero constant c.

If at least one of did, (i=7s;i,7=3,---,6) is not zero, then by using lemma 1 to
(2. 8) we have

ds' ase P - dy ase™ "+ dy ase™ - ds aseE =0

with suitable constants ./, so that
2.9 ds'as+dy ase* 1 {-dy' ase 4 ds’ aseH =0.
If all d./d,’ (i>j;i,j=4,5,6) are zero, then (2. 9) reduces to the one of the following
identities:

(xxiii) dy’ as+dy aet 1 =0, ie. ert=c(as|as)e*;
(xxiv) dy’az+ds’ ase~L=0, ie. el=caslas;
(xxV) ds’as+de’ ase =0, Le. eH=casla,

with a non-zero constant c.
If at least one of d.'d,’ (i=J;i,7=4,5,6) is not zero, then by using lemma 1 to
(2.9) we have
d4//a4eL~ZII+d5//d5e—L+d6//dGe—ll :0

with suitable constants d,”, so that

(xxvi) di"a* E I - dy" a1 - ds" a5 =0.

All the relations (i), ---, (xxvi) give contradictions. In fact, since we have
T, ap)=o0(m(r, e"))=o0(m(r, e*)), j=1,--+,9,

the cases (ii), (v), (vi), (%), (xi), (xiii), (xiv), (xVv), (xvi), (xvii), (xx), (xxii), (xxiv) and
(xxv) are all absurd. The cases (), (iv), (viii), (xii), (xxi) and (xxiii) contradict
that m(r, e¥)~m(r, e%). If (vii) or (xix) holds, we can put

el =qgel, T'(r, @)=o0(m(r, e*))

with a meromorphic function @, and hence the equation (2. 4) has the form
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a@’e't +(a:+asa)ae’t +(as+asa® +asa)e +(antas@)et + @y =0.

This is absurd by lemma 2. Similarly if (iii) or (ix) or (xviii) holds, by putting
ed=qge L, (2.4) reduces to the form

aett+(aa+an)e*l +(a1a* + asa + av)e*t +(asa+as)ae +asa =0,
which is also a contradiction by lemma 1. In the remaining case (xxvi) we have
m(r, e~ )= o(m(r, e")).
Then, by writing (2. 4) in the form of
(@1e* L2 )e - (@pe® - aze~)eP !
(@ a5+ aset )t - (aret 1 - as)e 4wy =0,

we can apply lemma 2. Then we arrive at a contradiction.
Thus we have completed our proof of this lemma.

Let L(z) be an entire function. Then almost all zeros of eX®—a are simple
zeros (cf. [6]). Involving this fact we obtain:

LemMA 4. Under an assumption on the growlh of an entire funclion y
m(r, g)=o(m(r, e*))
outside a set of finite logarithmic measure, we have
Ny(r; 0, eL—g)~mr, eL)

and
Ni(#; 0, et —g)=0(m(r, e*))

outside a set of finite logarithmic measure.

Proof. Let ¢ be a meromorphic function defined by

el—y

-0

Then we have

N(7; 00, 9)=N(r; 0, 9) =m(r, 9)=0(m(r, ")),

N@; 1, 9)=N(r; 0, e")=0,

N(r; 00, ") <2N(#; 0, 9)=0(m(r, e™)),

T, =T e+ T 9)+ T 1/0)+0Q)=m(r, e)+o(m(r, e-))
and

m(r, er)=m(r, et—g)+m(r, ) +OL) = T'(r, p)+o(m(r, e-))

outside a set of finite logarithmic measure. By the second fundamental theorem
for ¢, we have

T, ©)=N@; 0, ©)+N(r; 00, 0)+N#; 1, 0)— Ni(#, 0)+0(og (#T'(7, ¢)))
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outside a set of finite logarithmic measure. Since
Ni(7, ¢) =N(; 00, 1/¢")+2N(¥; o0, p)— N(r; co, ¢’)
=N(#; 0, ¢")+o(m(r, e")),
we have
T(r, ) =N; 0, ©)—N(r; 0, ¢")+00og (rm(r, e*)))+o(m(r, b))
=N@; 0, 9)+o(n(r, ¢1))
=Nu7; 0, ©)+Ni(7; 0, ¢) +0(m(r, b))
=Nu(7; 0, e — )+ Nu(7; 0, e —g) -+ 0o(m(r, ¢*))
outside a set of finite logarithmic measure. On the other hand we have
Nu(#; 0, e2—g)+Nu(; 0, e— )+ No(r; 0, 2 —g)
=N(; 0, e*—¢)=N; 0, p) = T'(r, ©)-+O(1)
=N(r; 0, - —g) -+ Ni(r; 0, e —g)+o(m(r, e*))
outside a set of finite logarithmic measure. Thus we obtain
Ni(r; 0, 2 — ) = Ni(1; 0, e —g) = 0(m(r, ¢-))
and
Ny(r; 0, e —g)=mr, e")+o(m(r, e-))
outside a set of finite logarithmic measure, since 7', ¢)=m(r, e¥)+o(m(r, ¢~)). These

imply the desired result.

§3. Proof of Theorem B. The sufficicncy part is evident by theorem A. In
fact, since G(z) has no multiple zero, we have

{ F(2)
Jeoh(z)
where F(2)/fh(z) is an entire function.

In order to prove the necessity part, using again thcorem A it suffices to con-
sider an equation of the following form:

@.D eI =) eH—d') = (e —p)e" —d)

where f* is a meromorphic function which has poles and zeros at most at the
multiple zeros of (eX*—7/)(er?—d’) and (e —71)(e? —3d), respectively. By lemma 4
we have

2G(z) =¢ofi(z)

2m(r, e-")~Ny(; 0, (X" —7") (et —0"))
~Nu(r; 0, (e —7)(e" —0))~2m(r, ¢)

outside a set of finite logarithmic measure, so that
3.2) m(r, e ~m(r, e™).

Further we have
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T, f¥=0(T(@, e+ T(r, 1))
and
N@; 0, f*)+N(#; 00, f*)
=Ni(; 0, (eFr—7")(e**—0") - Ni(7; 0, (e —7)(e™ —0))
=N@; 0, (L) )+N(r; 0, H')<m(r, (Loh))+m(r, H)+O(1)
=m(r, Loh)+m(r, H)+O(log (rm(r, Lo iym(r, H)))
=o(m(, e=")+mr, eX))
outside a set of finite logarithmic measure. Thus we have
T, f*[f*)y=m@, f* [[*)+N(r; o, [ [[*)
(3.3) =0(og (rm(r, £*)))+N; 0, £ )+ N(r; 00, [ *)
=o(m(r, e")+m(r, ™))

outside a set of finite logarithic measure.
By differentiation of both sides of (3.1), we have

*/
f*2[2 f (eZLah_(r/+5/)eLoh_{_rlal)__l_(Lo/l)/(zezL.n_(Tl_{_(y)ez,un)]:}’[/(zeuu_(r+5)ell),

7317
and again by using 3. 1)

*

’
[2)}—*(e“°"~(r’+5’)eL“"+r’5’)+(L°/1)’(2¢“°"—~(r’+<>")e“")] [e2t —(r-+d)et+79)
= H/(26¥ —(p+8)eM) (e — (' +' et "+,

so that we have

aleszlu-Z}I_|_(r_|_5)a232L°h4 H +(T/_|_(j/)a3(;L°IL-| 2H +a402L=IL +d5(}2H

@D )+ )ase P (3 Y D)+ =0
where
G PR —H, @ — QPP ALY — I,
Gy — Q¥R Loy 2, ay=2p( ¥ A L)),
as=23 (F¥|f*— 1T, a=2 ¥ [F* Lok 1T,
Q= =P Q¥R L)), as=— S AL
and

ag=2y07"0" [*'| [*.
By (8. 2) and (3. 3) we can apply lemma 3 to (3.4). Thus we can deduce that
(r+0)(’ 40" arazasa.a5a5a:a5

vanishes identically.
If @,=0, then we have

[r=co-Lohill
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with 4 non-zero constant ¢, and (3. 1) reduces to the equation
(CZ_1)82L°h+2}1+(7,+6)82L°7H—}I_C‘z‘.(rl+5/)eL=h+ZI[_rae2L°IL+CZT/()‘/eZH ;0_

Hence by Borel’s theorem [1] this is impossible unless LeA(z)— Lo/(0)=/1(z), which
is the desired result (@) in our theorem.
If @,=0, then we have

fRe=cotLloni il
with a non-zero constant ¢, and (3. 1) reduces to the cquation
eZL"h-i 2II__(T_|_5+ 6)62L°h, }11+7,.(‘562L°IL+C(T/ +5/)eL°IL+Il_cr/b‘/ell :O.

However this is a contradiction by Borel’s theorem. Similarly if @,=0, we arrive
at a contradiction.
If @s=0, then we have

f* —_ (;e—bn
with a non-zero constant ¢, and (3. 1) reduces to the equation
e2L°h V2H __ (r+5)eZL°h+11_|_ (),5_ CZ)eZL"IL __[_02(7./ _I_ﬁl)eLﬂL p— CZ — 0.

Hence by Borel’s theorem we have the desired result (b) in our theorem. If ¢;=0,
then we have similarly the desired result (b) in our theorem.
If @¢=0, then we have

[*= o Lontll
with a non-zero constant ¢, and (3. 1) reduces to the cquation
CeZL°h+H_eL'h+2H+((r+5)_c(rl+5l))el,°h %Il_raeL“h_!_c),/a/eI[:O.

Hence by Borel’s theorem we have the result (@) and the resull () in our theorem
according as Los—H=const. and Le4+I/=const., respectively.
If @:=0, then we have

fHE=ce~ Lot
with a non-zero constant ¢, and (3. 1) reduces to the equation
CezL°h—eL°h+2H+(r+5)eL°h+2”—‘()’5+C()”—|—5'))el‘°h+()r’ﬂ/=0.

However this is a contradiction by Borel’s theorem. Similarly if «y=0, we arrive
at a contradiction.
If y4-0=0, then we have

3.5) @ @2 (! -0 ) age o - gt Lt aset (7 0 ) ane - ay =),

We may assume that ¢.@sa.asa:%0. Then by using lemma 1 to (3.5) we have
C10:€* LM B - cyggeo A PH - 044020 - Coase* - crare ™t =0

with suitable constants ¢,, so that

(3. 6) Cra1eX M 2 coqe® 4 cyqiel - csase LR - g =0,
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If all cic; (67;4,7=1,3,4,5) are zero, then (3. 6) reduces to the one of the following
identities:

(i) craelm 2 o crgr=0), ie. et =c(ar/a,)e 24,
(ii) Cs@30*H +Cra7 =0, ic.  ef=cNaias;

(iii) gl P+ cqar =0, ie. et =carlay

@iv) csase” LR e =), ie. el =c(aslaqr)e!

with a non-zero constant c.
If at least one of cic, (G=7;7,7=1, 3,4,5) is not zero, then by using lemma 1 to

(3. 6) we have
¢ a et oy aueP o ase b o age o 1 B =)
with suitable constants c¢,’, so that
3.7 clae* ey’ ase L R o qpe e 2 oy =),
If all ¢/¢,” (i>7;i,7=1,3,5) are zero, then (3.7) reduces to the one of the following
identities:

(v) a4y as=0, ie. el ==cn/aslas,
(vi) ¢y’ ase LM o)/ gy =), ie. et =c(asla)e,;
(vii) cs'ase 2L 4oy gy =), ie. el'h=cn/aslas e

with a non-zero constant c.
If at least one of ¢./¢,” (i=7;i,7=1,3,5) is not zero, then by using lemma 1 to

(3.7) we have

61//016211+C3”a;}e——L0h+211+(;5”Cl5072LGIL 12l —()
with suitable constants ¢,”, so that
(viii) ¢ @i - c" ase - cs” as =0).
These relations (i), ---, (viii) lead to a contradiction. Indeed, the cases (ii), (iii) and
(v) are evidently untenable. The cases (i), (iv) and (vi) contradict (3.2). If the
relation (vii) holds, then (3.5) reduces to the identity

@110t 4 (7' +0")asa’F 4 (L4-c)asase® L +c(r’ 0" )asare ™" +casay =0.

However this is a contradiction by lemma 2. The case (viii) also contradicts lemma 2.
If 7/4-6’=0, then we have similarly a contradiction unless @;@:@iasas=0.
Thus we have completed our proof.

§4. Proof of Theorem C. In order to prove theorem C, it suffices to show
the impossibility of an identity of the form
4D SR —ple” —0)=G;
521__213161‘1:_21828Ha+‘31282}11__2[31‘82817”Hz_'_‘BzzeZHz’
B1Beyd(yr—0) =0, H(0)=H,(0)= F;(0)=0
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provided that
4. 2) m(r, e™)=o(m(r, e™))

outside a set of finite logarithmic measure, where I, [, and H; are non-constant
entire functions and 7, d, 8, and 8, are constants and f* is a meromorphic function
which has poles and zeros at most at the multiple zeros of (e—y)(e””—4) and G,
respectively.

We put

G=F-Fy- I Ty
Pl oo b/ B, Fy=1hn/fre =/ fuc™,
F=1—Biem 4 e, Fi=1—n/Fiem =/ ™.
Since F, and F, (i%xj;i,7=1,2,3,4) have no common zero and
m(, e®'%)=o(m(r, ef*'?))

outsi‘de a set of finite logarithmic measure, by lemma 4 we have
Ny, 0,G)= ﬁl Nu(r; 0, F)~dm(r, ™2 ~2m(r, ™)
and
Nu(#;0,6)= i}l Nu(7; 0, )= o(m(r, ™))

outside a set of finite logarithmic measure. Thus we have
2m(r, e1)~Ny(r; 0, (e —7)(e™ —0))~Na(r; 0, G)~2m(r, e*)
outside a set of finite logarithmic measure, so that
4. 3) m(r, e™)~m(r, e,
Further clearly we have
T, [*)=0(T(r, ™)+ T(r, ™)+ T(r, ™).
Thus we have
T, f¥[f*)=mr, f*|*)+N; 00, [*[1%)
=0(log (rm(r, f*)))+N(r; 0, %)+ N(r; 00, /%)
=o(m(r, e™)+m(r, e™))
outside a set of finite logarithmic measure, so that
@49 T(r, f¥[f*)=o0(m(r, e™))=o(m(r, e')).
By differentiation of both sides of the equation (4.1) we have

¥ 5
ree[ 2L @ ven o) + @ — e | =6

= — 28,y et — 2B, 1y ™ - 23,2 IT €21 — 28, Bo(ITy -+ ITy e -1 - 28,2 [T, eI,
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and, using (4. 1), we finally have
4. 5) a0 gt T A (p -0) s+ que* T+ ase™™
+(+0)ase™ ' +-(r +-0)are” +ase™+a, =0,
where
a=2B"(f*|f*+H' —I1'),
@oy=—2B,[F* | [*+2IT' — I, )(pre™ +1)— B [T ™),
ay=—B Q¥ | f*+H'—2I),
as=2(f¥[[*+H")(BPe*™ —2p:e™ +1)—=2I1/ (B:*e*™ — fre™),
as=2B"y0(S*' | f*— '),
ac=2B[CS¥ [ f*+H'—H,)(pre™ +1)—p:Hy ],
ar=— Q¥ [ *+ )2 — 28,07 + 1)+ 2H, (B2 — ret™),
as=—2Pop0[ @S [ f*—H,)(Bre™+1)—p ) e,
@o=273[(f*| f*)(B:2e*H —2p1™ 1) — I}/ (512> — Bre™M)].

If (r+0)aiaeasaiasasaiasa, =<0, then by (4.2), (4.3) and (4.4) the identity (4. 5)
contradicts lemma 3.
If @,=0, then we have

JE=ce- 1+
with a non-zero constant ¢, and (4. 1) reduces to the equation
c2e?H CZ(T o) IveHs CZT Se—2+eIl — G’
which contradicts Borel’s theorem.
If a,=0, then we have
f*2=c(‘81ellx+1)e—211+7h
with a non-zero constant ¢. However this cquation is absurd, since the right hand

term has simple zeros.
If @;=0, then we have

f*2=ce—II+Hz
with a non-zero constant ¢, and (4. 1) reduces to the equation

CelI+Hz_C(r_l_B)eIIz_l_Cr(‘je—II-!-]Iz: G’

which contradicts Borel’s theorem.
If @4=0, then we have

F*=c(prem—1)e 1
with a non-zero constant ¢. Then (4. 1) reduces to the equation

(e —1)2(eH —7) (e —d) = Pl e
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However by Borel’s theorem we arrive at a contradiction.
If @;=0, then we have

f*=ceH1
with a non-zero constant ¢. Then (4. 1) reduces to the equation
6262H+2H’—62(7*—1-5)81”2”’-]—(:27’5(32"’=6.

This is also untenable by Borel’s theorem.
If @s=0, then we have

f*2= (:(ﬁle”' + 1)8—H+m

with a non-zero constant ¢. However this equation is absurd, since the right hand
term has simple zeros.

If a;=0, then we have
FF=c(prem—1ye "
with a non-zero constant ¢. Then (4. 1) reduces to the equation
c(BieF— 1 e —7) (e —0)=e"G.

However by Borel’s theorem we arrive at a contradiction.
If a;=0, then we have

f*2=c(‘81€H‘+1)eII’

with a non-zero constant ¢. However this equation is absurd, since the right hand
term has simple zeros.
If a,=0, then we have

f*=C(‘B1€H"—1)
with a non-zero constant ¢. Then (4. 1) reduces to the equation
cH(re™ —1)e" —p)(e —0)=G.

However by Borel’s theorem we arrive at a contradiction.
If y4+0=0, then (4.5) reduces to the equation

@, TV g PV L 02T g™ - gge™ -+ 0y =0
In this case we may assume that ai@.¢.asasasx0. However we arrive at a con-
tradiction by a similar argument as in (3. 5).
Thus we have the desired result.
§5. Let R be an ultrahyperelliptic surface defined by an equation
y*=G(x),
where
G(@)=1—2p1e%%— 2P+ B2 0= — 23, faelmtar T |- B, %0 @,
B1feaiay 0.
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If R satisfies P(R)=4, then by the argument explained in §1 we have
9R1GR)=f ()" -—y)e"®—0d), yir—0=x0, H(0)=0

for suitable entire functions ¢, f and 7. Here we may assume that ¢(z) and /f(2)
have no common zero. By the lemma given in [5], we have

Na(7; 0, eI — )~ Ny(r; 0, T — ) ~m(, e'l)

outside a set of finite logarithmic measure. Since all simple zeros of (¢ —y)(e” —d)
are the zeros of G(z), we have

2m(r, eM)~Ny(7; 0, (eT—7) (e —0)) = Nu(; 0, G) =m(r, G)

outside a set of finite logarithmic measure. If /7is a transcendental entire function
or a polynomial of degree greater than one, then we have

H
po— i 0870 G) - g logmlr, o)
(el lOg 4 700 log v

=2,
which is absurd, since pg=1. Thus H must have the form az. Then we have
F @ e —7)e—0)=g(2)°G(2).

Let z, be
1 1 .
w log r+ 7211711, n=0, =1, -,

then these are simple zeros of e*—y. Therefore G(z,)=0. Let
s=ela/wm p=plou/w2m, A:,Ble“'x/") k)gy:ﬁlr(a,/u)’ B=Bze(a,/n) 1og7:‘32r<«,/a)_
Then for all integers » we have
0=G(zn)=1—2Au"—2Bv"+ A%u*"—2A Bumv" -+ %,
By the lemma given in [4] we have
=1 and ov=L
This implies that
ay=pa¢ and a,=pox

for some suitable non-zero integers p. and p..
Putting e=/2=%, we have

Gla)=F(er+;
F)=1—2pi 2™+ By = 25sB PP i ™

Since e**'2—y,, 7030 has no zero other than an infinite number of simple zeros and

¢222 has no zero, every multiple zero of G(z) occurs at a suitable multiple zero of

F(z) and vice versa. Thus F(3) has only four simple zeros a/7, —a/7, /9 and —A/4.
In the first place we assume that 0<p,<p.. Evidently we have

F=FQ) - I() - FsG) - I(0;
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B =1—n By =B  Fa()=1—a/Bix" +a/ Bt
FB()=14+nBix? —nBor?,  Fi()=1+~Bix +n/Bex®.

Since no two members of Fy, Fs, Fy and F, have common zero, we may seek for
all the multiple zeros of each function Fj(j=1,2,3,4). Then, since there is no
triple zero in each factor F),, every multiple zero is a double zero. From the
equations

{Fl(x)=0, {Fz(x)=0, ‘F:s(x)T—O, ‘Fa(x)=0,

1(0) =0, Fi(0)=0, (0 =0, F{()=0,

we have
{XplzX, {xp’:X) ‘Xp':_Xr lxpl:-X)
=Y, ==Y, =Y, =-Y,

respectively, where X=p,/(p—p)a/B1 and Y=p,/(pr—ps)a/Bz. Thus every double
zero is a common point between p;-th roots of X and p.-th roots of Y or that of
X and of —Y or that of —X and of Y or that of —X and of —Y, respectively.
Let E(, p) be the set of |/|V/re@rev/prtns/s =0, 1,...,p—1. If EX, p)NE(Y,p:)*¢,
then there are d common points of E(X,p,) and E(Y,p.), where d is the greatest
common measure of p; and p.

If there is no double zero in F(x), then we have 4p,=4, that is

0<P1 <P2=1-

This is untenable. Therefore we may without loss of generality assume that
EX, p)NE(Y, ps) % ¢.

If E(-X,p)NEX,p)=¢ and EX,p)NLE-=Y,p)=¢ and E(=X,p)N
E(—Y,p:)=¢, then we have 4p,—2d=4, that is,

201 <2py=2+d=2+p:.
This implies that
p1 =d= 1

Thus we have 2p,=3. This is untenable.
If E(-X,p)NEY,p)x¢ but EX,p)NE=Y,p)=¢ and E(—=X,p)N
E(—Y, p)=¢, then E(—X, p1) NE(Y, p:) contains just d points and hence we have

4p,—4d=4, ie.  p.=1-+d.
Therefore we have
1'71 <pz=1+d§1+]51-

Thus we have d=1, p;=1 and p,=2. Then B,2=168, holds.
If further E(X, p)NE(—Y, p)x¢, then E(—X, p)NE(—Y, p2)¥ ¢ and these two
sets contain just d points, respectively. Thus we have

2d=p, and 4p,—8d=4.
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And hence we have
D1<pe=14+2d=1+p:.

This implies that d=1, p.=2 and p,=3. This is untenable, since E(—X,2)N
E(—-Y,3)=¢.
Next we assume that p,<0<p.. Then, putting py=—q, we get

x'e B . 1 B’ . B 1
F)L—o=1—-2—"92Pia) 0 20 2yt @Piq) 9 15 2P 0da | ytay
0 X 5 X RS + FER X + X
Since 0<g:<p.+¢:, we can make use of the above result. Then we have
])2+(I1:26]1:2.

This implies that p,=¢;=1 and hence p,=—1, p,=1 and 168,8,=1.
If p,<p<0, we put pp=—q: and p,=—¢q,. Then we have

X' 1 B - 1 B . Bi®
F =12 20— 2 L %) i — 2yt T a4(—g)
(03] BiF B ¥ R + R AR + R

Since 0<g.—¢:<q;, wWe can again apply the ahove fact. Then we have
Q2—Q1:1, q3:2 and ‘812:16ﬂg.

2
2

And hence we obtain
plz-—l, ])2:—2 and ﬁ12:16ﬂ2.
In the last case we assume that p,=p.. Then we have

G(Z) — 1 _Zﬂleal’,z _2‘828011’,2 +‘812€2ap,z —2‘81/3282“?‘2 _!_‘822821)(?12
=1=2(B1+ e ”?+ (B1— ) e* "=
= (1—Me?)(1— Ne??)

where M=(n/B1++/B:)* and N=(/Br—~/B)2. This implies that

0@ =a@MN (o= 52 ) (o= ). MNGI=N) %0,
if we assume that fixf,. Further p,=1 holds. If Bi=p,, then either M or N is
equal to zero but one of them does not vanish. Thus G(z) has a form A(e“”*—1/A).
This implies that p,=2.
Thus we have all the possible cases for which P(R)=4, which can be listed
as follows:

(1) 1’1 :2, ﬁ2=1, ,322216@1; (2) pl = 1, ﬁ2=2, ;812:16,82 ’
(3) p1=1, D= —‘1, 165113221; (4) b= -1, P2=1, 16,31,32 :1§
5) p1=—2, p.=—1, B.*=168y 6) pr=—1, p.=-2, B*=16p;

(M) pr=p.=1, Bi, B are free but fixps; (8) pPri=p.=2 and Bi=p..

Evidently in the first six cases we have
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G@R)=r @) e —7)(e—d),  7i(y—a)=0
with a suitable entire function f and two suitable constants y and 4. Therefore
P(R) is equal to 4 for all eight cases.

Summing up these results, we have

THEOREM D. Let R be an wultrahyperelliptic surface defined by an equation
y?:1_2‘Blea11‘__ZBzea,x_l_ﬁlZeZa,z_261‘8280(,—l~a,)x+‘32292a,1"
with Bifeciazx0. Then P(R) is equal to 3 excepting the following [four cases:
1) a1=2a;, B:2=16p; (@) ax=2a;, p:’=16p;
B) ari=—as 168:p.=1; @ ar=as P, B are free
Jor which we have P(R)=A4.

§6. Let R be an ultrahyperelliptic surface defined by an equation
¥’ =G(z);
G(z)=1—2B,e07" 1% QB e0e’t1:z | B 2p2az+2nz
— 2, Brelartane’s (aire | 0 2zt 2z, BiBe(|ts| +|as)) 0.

Then it is evident that R satisfies P(R)=3.
Suppose that P(R)=4. By the argument explained in §1, we have

6.1) 9)°GR)=S ()" —)(e" P —d),  ri(r—0)=0

with suitable entire functions ¢, f and 7I. Further by the same argument as in
§5, H(z) has the form az®+fz, because

— 1 ;
pe=Tm logm@, &) _,
oo log 7

Then we have two possibilities a0 and a=0.
I. Case of ax0. Replacing z by z—p/2«, (6. 1) reduces to an equation

©.2) 02— B/2ayC(2)=J (2) (e ~f))e= ~B);
5(2) =1 _Zﬁlen,z’+ﬁz _Zﬁzea,z’i,—?;z_i_‘glzezmz“ 2tz 2&1‘@'26(«1 Fag)zi+ (ﬂ~!rﬁ)z+ﬁ22e2a,23+23‘;z’
J@=ef @=F[20),  F=plete,  G=0lere,
51 ___‘Blea,ﬁﬁuaﬂ—nﬂ/zu, ‘52 =‘82€uzﬁ’/4a’—nﬂ/2a’
flz“a&ﬁ/a"f'rh f’z::—azﬁ/a‘f'n.

Let z, and Z,; =0, &1, --- be
1/2

1 L1 A2 1 .1 .
(7 log 7+ o 2nm> and — <7log 7+ o 2nm>

respectively. Then these are simple zeros of ¢***—#. Therefore G(22)=0 and C(En)zo.
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Putting
Xo=etmm/a Y, =eglam/a, A=ﬁle"' Iog'?/a’ Bzﬁzea, log'f/a’
we have
W=1—2AX e —2BY Pelen - A2 X gt
—2ABX?Y reitozn | B2y ing?hiin =)
and
fo=1—2AX1elin—2BY 1ehFn |- A2X e
—2ABX 7Y 1e®tofn L BrYinetin=()

for every integer .
We use that if a constant y satisfies |x|<1, then we have

recsn—() for n—-o0
and

xec#n—00 for n——oo

with an arbitrary constant c.
At first we conclude that

| Xo]=1 and |Y,|=1.
In fact, if |Xo|<1 and |Y,|<1, then
lim F,=1,

n—o0

if |Xo|>1 and |Y,o|>1, then
lim F,=1,

and if |Xo|>1 and |Yo|=1, or if | Xo|=1 and |Ye|>1, then

lim F,=co.

n—ro0

These all results lead to a contradiction, because F,=0.
Next we show that

7’:1 :0 and 72 :0.

In fact, since
o (o2 = () (140(1))
a a n
and
e (Lo pm) /i () (140( )
[44 [44 ”n

if Re [(i/a)"?#:]>0 and Re [(i/a)!/?7:] >0, then
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lim £, =1;

n—o0

if Re [(/2)'"*:]1<0 and Re [(i/a)*/%,] <0, then
lim F.=1;

n—o0

and if Re [(f/a)'*#,]>0 and Re[(i/a)*7.]=0, or if Re[(i/a)""*71]1=0 and Re [(G/a)"*#,]>0,
then

lim F,=o0.

n—oo

These all results lead to a contradiction, because F,=F,=0. Thus we have
Re [(i/a)"*#,]=0 and Re [(i/a)"/*#,]=0.
Similarly from relations

P i 1/2. 1 172
Zn=—x/—2nm (7> z(l —[—O<7>>

o — i\ 1\\2
Zn=/\/—2nn:<—a*> Z<1+O<7>>
we have Re[(i/a)"*f]=0 and Re[(i/a)"*7.]=0. Consequently we have (i/a)"%,=

(i/)*#,=0, and hence 7 =F=0.
From #,=%.=0, we have

1-2AX?—2BY "+ A2 X" —2ABX?Y*+B2Y=(
for all integer #. By the lemma given in [4], we have
X0=1 and Y0=]..

and

If aya,20, this implies that
a=pa and a,=pa

for suitable non-zero integers p; and p,.
Putting e*?2=y%, we have
G@)=Fe"y;
F)=1—2B.y2r:—2Bsy*rs+ Bi2y P — 2B, Borov+ 2+ Boy 7.
Since e***2—7y,, %00, 250 has no zero other than an infinite number of simple
zeros and e***/? has no zero, every multiple zero of G(z), 250 occurs from a suitable
multiple zero of F(y) and vice versa. Thus F(y) has just four simple zeros NF,
— 7, V& and —~/5.
Then by the same argument as in § 5, we have all the possible cases for which
P(R)=4, which can be listed as follows:

(1) P1=2a Pz=1y ﬁ22=16.§1; (2) 1-'71=1, P2=2, 51221652;
@) p=1, p.=—1, 16B.:=1; @) p=-1, p.=1, 16B,p:=1;
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6) p==2 p=-1, B*=16B; ©) p=—1, p.=—2, B*=16pB;
(1) pr=p.=1, BB are free but fi=f;  (8) pi=p.=2 and f,=p..
Evidently, in all the cases, we have
() =] (&) e —F)(ew —0)
with two suitable constants # and ¢ and a suitable entire function 7. And hence

P(R) is equal to 4.
If aya,=0, we have

G(2) =By (em? — M)(e — N);
M=(~Bi+1)/B.,  N=(~Bi—1Y/B,

or
G(2)=P(em* — M)(e* —N);

M=(~B.+1)/B,  N=(~B.—1)/B..

And hence P(R) is equal to 4.
II. Case of a=0. Then (6. 1) reduces to an equation

(6. 3) 9(2)°G(2) =/ (2)*(eF* —7)(eF*—0).
Let z,, =0, =1, -+, be

1

B

Then these are simple zeros of ef?—y. Therefore G(z,)=0. Since
G(2)=G1(2)- Gx(2)- Gu(2) Gu(2);
Gi(3)=1—n/Bre@ 1172 /B, plasi*t1id 2,
Gz(2)=1—M,§16(“‘Z" 71z)/2+/\/ﬂ;e(a,z“ iz
Gue) =L/ Frecas 1072 gt mor,
Gi@)=1+4a/ Prefes 124 / B olas* 102,

1
log r+ — 2nn.
27 E

we have

Lt hun/ B Sl

where k, and /, are suitable constants and are equal to 1 or —1.
Putting
Xl :e—2a,n“/ﬂ’, Yl = glarze(log 1)/p* H,m/ﬁ’

X2:e—2u,n“/p“, Y2=e2a,m(log /8% 7,1rl/ﬁ,
A=«/:3—1 (108 1)2/25%4 1,Clog ) /28

and
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B: Jﬁ; ea,(log P/26% 11, log 7)/25’
we have
]Fnzl‘{"knAXl"zYI"_{_["BX;:Y{,:O

for every integer .
At first we conclude that

[ X1 =1Xe|=|Yi|=|Ys|=1.
In fact, by climinating X7* on relations
Fo=14+k AXY Y 41, BX P Y =0

and
Fon=1+ko AXT Y +1,, BX$M Y0 =0,

we have

s _f RaB*YH AYY AYye AYge

Pn_—=<w12,;}l3ymf- 1) Sy Xk, e e v

AY?E . BYin I
+4kn B4Y4n X +<1+ lz” ) 1))4Y;" -—0
for every integer z. Suppose first that [X,|>1. If
kan Yn
Jim, mr+1|>0’

then
Iim |£,)=c0

n—stoo
This is a contradiction, because F,=0. If
. konB3Y "
1 Sl =
nii“w< L AT “) 0,

then, by noting that for two numbers « and § lim,.. af?=1 holds if and only if
a=pB=1, we have

B
i A®
Hence we have
K,= % +1=0
for almost all #, because K,=0 or 2 for every n. Then we have
fim oo,

This is a contradiction, because F,=0.
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Next suppose that | X;|<1. If

— By
lim |1+ Y >0,
n—t oo 2n
then
Tim | oo,
TN~ + oo ‘X-4
This is a contradiction, because F,=0. If
3 n
lim <1+ B'Y; >:o,
n—rtoo 2n
then we have
Yi=B¢=1.
Hence we have
KnEl—|— ]3"an -0
127L

for almost all #, because K,=0 or 2 for every n. Then we have

This is a contradiction, because Fr,=0. So we have |X;|=1. Again, by climinating
?* on relations
Fr=0 and F;,=0
and by reasoning similarly, we deduce [X;|=1. Thus |Xi|=|X.|=1 holds. Further
if |Yi|=|Y2|, then

lim Fro=c0 or lim Fj,==00;

and if |Yi|=|Y:|<1 or |Yi|]=]|Y,|>1, then
lim F,=1 or lim F,=1.

n—o0 n—s—00

These results lead to a contradiction, because Fr=0. Consequently we have |X;|-=
| Xe|=|Y:1|=]Yz|=L.
Next from |Xi|=|X:|=|Y1|=[Y:]=1 we show that X?=X:=YVi=Vi=1. In

fact, let
=|Aleror, X, =e, Yi=ewss,
B=|Blei™,  Xy=ews,  Y,=ew
a, b, 1, x2, y1, Y21 real constants,

then
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|Bl=BX7" V7| =14+ AX Y I+ 2AXE Vi)

n'ri+nyt+a
2

Thus z; and y, must be integers, and hence X:= ¥?=1. Similarly we have Xi= Y2=1.
From the above fact, we can put

—142/A[ cos( —I—5)n’+]A[, 5=0 or 1.

2a;? . 20,70 717 .
_[32- =pii, 512 log r+ —iﬁ—— =q17,
2a,? . 2a;7i 77l .
,822 =p,i, TZZ log y+ —zﬁ;— =qumi
where py, p., ¢» and ¢, are integers. And hence we have
6. 4) —pilog r+ hgl =q.7i, —p. log 7+ % =qu7i.
On the other hand, by putting
1 1
Zn=—log 0+ — 2uni
8 B8
we must have
6.5) —pilog o+ 7‘;’ =qmi,  —p.log it “1;” —quni

with some suitable integers g; and g..

From (6. 4) and (6. 5) we have

(-

Since d/r=1, p: and p, are zeros. This is a contradiction, because

ipr= “;fz , ip2=i";’:—z
and
s 4|tz | 0.

Consequently the case II does not occur.

Summing up the above results, we have:

THEOREM E. Let R be an ultrahyperelliptic surface defined by an equation

yr=1—2B,em 2B pne e | B 2plarttine DR B plarta)at (e | B 2otass’ iz

B1fiz0, 0.

Then P(R) is equal to 3 excepting the following four cases:

1) ar=2as, 7:=27: B2=168; @) ay=2a;, 7:=2r1, B.2=168;;

@) ar=—ay, r1=—79, 16,81‘32=1; @) ay=a, r1=72 Py B. are free
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for which we have P(R)=A4.

§7. Remarks.

It should be remarked here that a conjecture stated in the problem (1) in [7]
is not exact. By our theorems D and E we are obliged to add a more exceptional
case Hy=—H, 16B:8:=1 in the terminologies in [7]. To solve the problem in its
most general form seems to be difficult and to be necessary any other method.

We can give a positive answer to the problem 3 in [7]. In fact, let R and S
be two ultrahyperelliptic Riemann surfaces defined by

y*=G(2)=8le'*" —T72¢' —2¢*' —8e*"+1
and
ut=g(w)=2(8le'> —72¢% —2¢**—8e*+ 1),

respectively. Then we have P(R)=3 and P(S)=2 by theorem D and theorem E
(cf. [5]). Putting f=z and £=2z% we have an identity

F(@°G@)=g-h(2).

Thus by theorem A there exists an analytic mapping {rom R into S.
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