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Introduction.

A structure on an #n-dimensional differentiable manifold given by a non-null
tensor field f of type (1, 1) of a constant rank # and satisfying f3+f=0 is called
an f-structure. If n=y, then an f-structure gives an almost complex structure of
the manifold and n=r is necessarily even. If the manifold is orientable and n—1
=7, then an f-structure gives an almost contact structure of the manifold and # is
necessarily odd and 7 even.

A submanifold in an almost complex space admits an f-structure if we can
choose a distribution along the submanifold which is invariant by the almost com-
plex operator or, whose transform by the almost complex operator is contained in
the tangent space of the submanifold.

For an orientable hypersurface in an almost complex space, we can choose a
vector field whose transform by the almost complex operator belongs to the tangent
space of the hypersurface, and consequently an orientable hypersurface in an almost
complex space admits an f-structure which is an almost contact structure.

The purpose of the present paper is to study almost contact structures induced
in this way on hypersurfaces in complex and almost complex spaces.

The number between brackets refer to the Bibliography at the end of the paper.

§1. f-structure.

Let there be given, in an n-dimensional differentiable manifold V of class C=,
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ALMOST CONTACT STRUCTURES 223

a non-null tensor field f of type (1, 1) and of class C* satisfying
1.1 f+f=0.

We call such a structure an f-structure of rank » when the rank of f is constant
everywhere and is equal to », where » is necessarily even [14, 15].
If we put
[=—f13, m=f2+1,
we have
I+m=1, P=l, m?=m, Im=mi=0,

where 1 denotes the unit tensor. These equations show that the operators / and m
applied to the tangent space at each point of the manifold are complementary pro-
jection operators. Thus, there exist in the manifold complementary distributions L
and M corresponding to the projection operators / and m respectively. When the
rank of f is equal to 7, L is 7-dimensional and M (n—r)-dimensional.

Let f»* be components of an f-structure f of rank 7. Then its Nijenhuis
tensor Ne® is by definition

(1. 2) Ney?=fepefor —foPef e — e [t —Fof ) e,

where p. denotes covariant differentiation with respect to a symmetric linear con-
nection. The Nijenhuis tensor N¢* does not depend on the symmetric connection
involved.

In a recent paper [6], we have proved

THEOREM A. A mnecessary and sufficient condition for lhe distribution L lo be
integrable is that
(1. 3) Nfedlcflbemd“=0, or Neimg*= s
L and my® being components of the projection tensors [ and m respectively.

Suppose that the distribution L is integrable and take an arbitrary vector field
v which is tangent to an integral manifold of L. Then the vector field fv is tangent
to the same integral manifold. Since we have

1.4 Si=—,
if we define an operator f’/ by
flo=fv

in each tangent space of each integral manifold of L, f’ is an almost complex
structure in each integral manifold of L. When the distribution L is integrable and
the almost complex structure f’ induced from f on each integral manifold of L is
also integrable, then we say that the f-structure is partially integrable. We have
proved in [6] the following

THEOKEM B. A mecessary and sufficient condition for an f-structure to be
partially integrable is that

The indices @, b, ¢, d, e, f Tun over the range {1, 2, ---, n}.
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(1.5) NiyetlS 16 =0.

We suppose now that there exists in each coordinate neighborhood a coordinate
system in which an f-structure f has numerical components

! 0 _].m O
p9)=| 1m 0 0|
0 0 0

where 1, denotes the m Xm unit matrix, »=2m being the rank of /. In this case,
we say that the f-structure is infegrable. We have proved also in [6] the following

THEOREM C. A necessary and sufficient condition for an f-structure to be in-
tegrable is that
(1. 6) Ncba": .

§2. Almost contact structure.

Let there be given, in an n-dimensional differentiable manifold V of class C>,
a tensor field f,* of type (1, 1), a contravariant vector field f¢ and a covariant vector
field f5, all of which are of differentiability class C*. We suppose that they satisfy
the conditions:

fcbf,,a:._ag_f_fcfa, fbaf":(),

2. 1)
fofa=0,  fofa=L1
We call the set (f»% /9, f) satisfying (2. 1) an almost contact structure (See for
example [9]). It follows easily from (2.1) that the rank of f,* is #—1 everywhere.
Furthermore, (2. 1) implies that f,* satisfies (1. 1), i.e., that the tensor field f, is an
f-structure of rank #—1, where # is necessarily odd.
Sasaki and Hatakeyama [10] have introduced following four tensor fields:

Sev*=Neo* + (e fo—pofe) [

Sev = Les— L,

Se* =fepefet+ SVt —FeS)Sef,

Se =fFefe—pecfe)
where N.¢ is the Nijenhuis tensor of f3¢ defined by (1. 2), Ly a tensor field defined by
@. 3) Lao=fWeSfs—roSe)

and p. denotes covariant differentiation with respect to a symmetric linear con-

nection. All S’s and L defined above does not depend on the symmetric connection

involved. We call the tensor field L., the Levi tensor of the almost contact structure.
From the first equation of (2.2), we find

2.2
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@9 Se® fa=eSo=pof)— W1 fe—pef DI 1,
(2. 5) Sev® [P=Sefe*—Se [ 2
from which
2.6) Se=—S5e%ffa.
From the definition of L, we find
f°Ley=0,
Loy f?=—1c*Se,
@7 S Lpy=—(pcfo—psSe)+SeSh

Leefeo=(psfe—pefs) [l 35
Lyefe! fo*=Lyc+feSe fo'.
Substituting
Vefs—pefo=—Ff/ Lyy+feSh,
Wrfe—peSf ) Sl fot =Leef1

obtained respectively from the third and the fourth equations of (2.7) into (2. 4),
we find

2. 8) Sev?fa=—Ffe!Lys—Leefs*+feSe.
Using (2. 7) and (2. 8), we can easily verify
2.9 Sevs=Sece® [o°fa—SsSe! fbs
from which
2. 10 Se=Srefc/ f¢
by virtue of S.f¢=0. From the last equation of (2.7), we find
2.11) Seo+Srefe! ot =FfeSeS1?—TvSeS

We next note that
Scu’=£fca, Sc:onC’

where £ denotes the Lie differentiation [16] with respect to f*. Taking Lie deri-
vatives of (2. 1), we find

Se® o2 +1 St =S f %,
Se®fa+712Sa=0,
Spaf2=0,
Saf*=0.
From (2. 5) and the first equation of (2. 12), we find

@ 12)
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(2. 13) Ser? [0 =—fe2Se%,
from which

2. 14) Se®=Sreofe! f¢,
(2. 15) Se=Se®fe® fa.

From (2. 6), (2. 9) and (2. 14), we see [10] that
Sev®=0 implies S;=0, S.*=0, S.=0.

When the condition S.;*=0 is satisfied, the almost contact structure is said to be
normal [10].

If, in a manifold with an almost contact structure (f»%, 12, fi), a tensor field,
say, T:* has components of the form

(2. 16) Ter?=FfcPo®+foQc*

with certain tensor fields P¢ and @Q»%, the tensor Tw* is said to be congruent io
zero with respect to modulus f.. In such a case, the relation (2. 16) is expressed in
a simplified form as

2.17) Ter =0,
and U,*— Vep*=0 as
U= Ver®.
It is easily seen that (2. 17) is valid if and only if we have
Teowv?=0

for any vector fields »? and w® such that fov?°=0 and f,uw*=0.
Suppose now that Sg;*=0, then we can put

(2. 18) Sevt=Fc P2 —fo Pt
Substituting this into (2. 6), (2. 9) and (2. 14), we find
Se=—~fcP+ P,
(2.19) Sev=FePefv*—FoPef:",
Set=—fctPo

respectively, where P=P.f°, Po=P.%fu.
Thus we have

ProprOSITION 2. 1. If S.2=0, then S.»=0, that is,
(2; 20) chELbc-

A necessary and sufficient condition for the distribution A, i.e. fody®=0, »* being
local coordinates, to be integrable is

(2 21) chb—becEO,
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and consequently, from the definitions of N* and Se* and the third equation of
(2.7), we have

PROPOSITION 2.2. A mecessary and sufficient condition for the distrvibution
M, that is, fodn®=0 to be integrable is one of the following:

Sep® — Nep? =0, (Sev*— Nev?)fa =0, S/ Lsp=0.

It is well known [9, 10] that, in a manifold with an almost contact structure
(% 12 fv), there exists a Riemannian metric g., such that

(2. 22) Sl %0 re=0ecs—ScSb, Jo=1"Ges.

We call the set (f»% f% fo, 9eo) Of such tensor fields an almost contact metric
structure [9, 10].

Let there be given, in a (2m+1)-dimensional differentiable manifold V, a dif-
ferentiable 1-form f=fad7n® such that

SAAFN- Ndf%0
b‘ﬂ—’

m

everywhere. Such a manifold is called a contact manifold and the covariant vector
field f» is called a contact structure [1, 2, 9]. It is well known [3] that in any contact
manifold there exists always an almost contact metric structure (fu%, 1%, fo, get)
such that

fev=FcGeb, foo=pcfo—pofe.

Such an almost contact metric structure is usually called a contact metric structure
[10]. However we shall, in the present paper, call an almost contact metric structure

(/3% % f1, 9eb) satisfying
(2' 23) chb_‘bec=2£chb, fcb zfcegeb,

where @ is a non-zero constant, a contact metvic structure. It is easily seen that,
if an almost contact metric structure is a contact structure, we have

(2. 24) ch=za(—gcb +fcfb)

with non-zero constant a.

§3. Hypersurfaces in an almost complex space.

Let V be an (n+1)-dimensional differentiable manifold of class C* and '} a
symmetric linear connection of class C* in V.?» Let there be given an »-dimen-
sional orientable submanifold M of class C> differentiably immersed in V and a
certain vector field C* along M which does not belong to the tangent space of M
everywhere. The set {M, C*} is called a Aypersurface in V, where M and C" are
respectively called the basic submanifold and the wnormal vector field of the hyper-

2) The indices 4,1, j, k, { run over the range {1, 2, ---, », n+1}.
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surface {M, C"}.
Let the basic submanifold M be expressed by equations

Eh=En(n%)
in local coordinates & in V, where »* is a system of local coordinates in M. If
we put
3.1 Byt =0,t", 0v=0/7?,

then By are » local vector fields along M, which are tangent to M and linearly
independent at each point of M. Denoting by (B%,C;) the inverse matrix of

( gﬁh ), we have

B Byt =4%, B, Ct =0,
3.2)
CrnBy*=0, CCr=1,
and
3.3 By*Be+ChC, ="

We now define the induced connection I'S induced on the hypersurface {M, C"}
from the given connection I'}; by the equation

(3.4 I'e=6.Bs"+ BByl ;) B*»
and a vector field /. in M by
3.5) le=(0.C"+ B/C:I"&)Ch.

If we define the van der Waerden-Bortolotti covariant derivative p.By* of By*
along the hypersurface by

(3.6) peBst=0.By"+ BByl ,— BJ"I" 8,
then p.By" is proportional to C*. Therefore we can put
(3. 7 VcBb”=hch",

where /., is the so-called second fundamental tensor of the hypersurface {M, C?}.
It is easily seen from (3. 6) that

(3. 8) hcb=hbc.

If we define the covariant derivative p.C* of the normal vector field C* along
the hypersurface by

(3. 9) VCC" = acch + Bcjcir}",;,
then we have
(3. 10) 7eCr= —h 2B+ 1.C",

where 4.® is a tensor field of type (1, 1) in the basic submanifold M defined by
(3.11) he*= —(.C") B%.
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We assume now that the (z-+1)-dimensional manifold ¥V is an almost complex
space, i.e. that V" admits an almost complex structure Fi*. The tensor field F;*

satisfies
3.12) FjiFh=—d%

Moreover we suppose that the normal vector field C* of a hypersurface {M, C*} has
the following property: the vector field F3*C* is tangent to M at each point. It is
easily seen that there exists such a normal vector field C* along any orientable
submanifold M of V. In such a case, the hypersurface {M, C*} is called briefly an
almost contact hypersurface in the almost complex space V.

Let {M, C"} be an almost contact hypersurface in V. Then we can put

Fi*Byr =1y Ba"4-f,C",
(3.13)
FtCr= —faByh,
because Fi*C' is tangent to M. It follows easily from (3.12) and (3. 13)

fcbfbaz—ag“{—foar fbafb:();
(.14
Sy fa=0, fefa=1.

This means that the basic submanifold M admits an almost contact structure
(o2, f% fv), which is called the induced almost contact structure of the hypersurface
{M, C*}.

If we differentiate covariantly both members of (3. 13), we obtain, taking
account of (3.7), (3.10) and (3. 13),

(i) B By = cfo +hev f 4—he® [o) Ba" -+ (e fotce [ + L f0)C",
(7 FBICi= —(pof *—het fu5— Lo f ) Ba+ (et fo—hee fOCP.
The Nijenhuis tensor N;* of the almost complex structure Fi* is by definition
(3.16) Njth=Fip Fr—Fip Fir—(piFi—p k.
Taking account of (3. 13), (3.15) and (3. 16), we find

MithijL: [Scba —fc(hbefea _fbehea) +fb(hcefea "‘fcehea) - (fclb _fblc)fa]Bah
@G.17)

3. 15)

H[Seo (et foSfo—ho® fef o) — (fe oo = o S NIC +f o ;YT Byt —fol(p i Fi)CI Be,

Nyt BIC=[Se%+ (e + by fo! Fa®)—fof o+ (et fo—hee £ ) f & Foclo f 9] Bal
(3.18)
F[Setlref T feo+fele fo—LICH+ Lo i FMCIC (g F N F CIB,,

where S’s are tensor fields in M defined by (2. 2). We have immediately from (3. 17)

TueoreM 3. 1. For an almost contact hypersurface {M, C*} in an almosi com-
plex space V, the vector field (N;*Bys B wev is tangent to M at each point of M,
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v* and w* being arbitrary vector fields in M satisfying conditions f.w*=0, fow*=0,
if and only if Seo=0, that is, Ley=Lpc.

Taking account of Proposition 2.1, we have also from (3. 17)

THEOREM 3. 2. For am almost contact hypersurface {M, C'} in an almost
complex space, we have (Ni*B.By)wwb=0, v* and w* being arbitrary vector fields
in M satisfying fav®=0, farw®*=0, if and only if Scp*=0.

§4. Hypersurfaces in a complex space.

Let V be a complex space with complex structure Fi*. Then the Nijenhuis
tensor Nj* of Fy* vanishes identically. As is well known (Cf. [17]), there exists in
V a symmetric linear connection I'% such that

(4~ 1) VjFih =0.

In the present paper, by a complex space we mean a space admitting a complex
structure F;* and a symmetric linear connection satisfying (4. 1).

Let there be given an almost contact hypersurface {44, C*} in V. Then taking
account of (4.1), we have from (3. 15)

PeSo®Fhen f O —he fo=0,
PeSot-hee s+ f,=0,
pef o —het fo*—1. [ *=0),
R fe—heef0=0.
On the other hand, since N;*=0, it follows from (3. 17) and (3. 18)
Sev®=Follo® fo*—[o°he®) —fo(he® fo* —fethe®) + (fels—Tole) S 4,
Sev=Fehv—Ffohet(feSo*~SoSe)le,
Set=— (et -+ g fS Fa)+Fohs fo—folof o,
Se=—Fothe—fof letle,
where we have put
“.4) he=heof =l"[¢

because of the last equation of (4. 2).
From the first equation of (4. 3), we have

4. 2)

4.3

PropPOSITION 4. 1. For an almost contact hypersurface in a complex space V,
we have Sq*=0.

From the expression (2. 3) for L. and the second equation of (4.2), we find
(4. 5) ch:' —(hcb+hfefcffbe) +fckb_fcelefb-
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Thus we have

ProrosiTION 4. 2. For an almost conlact hypersurface in a complex space V,
we have the expression (4.5) for L and

4.6) Ley=Ly..
(Hermann [4]).
We have, from the second and the third equations of (4. 3),
hev=(pcfe) o'+ hefo,
het=—Fcf)fe*+he S,
the first of which, together with Ac,=/%s., implies
4.8 Wef) ot —pofe) feo+hefo—hyfe=0.
Substituting (4. 7) in the first equation of (4. 2), we get
“.9) Fefoi+Wef) st o+ (e Se) feo [o=0.
We have moreover from (4. 2)
4. 10) Weffe=—l,  Pef)fe=l.

If we assume that the almost contact hypersurface is normal, that is, Sg*=0,
and consequently Sg=0, then from the second equation of (4.3), we find

4. 11) ho+-fole=2f,

where we have put

@7

A=hefe=hsfIfe=he [ fa.
Thus (4. 5) becomes
4. 12) Lev=—(hev+nhyefo! [5°) A e fo.
We have thus

PropOSITION 4. 3. If an almost contact hypersurface in a complex space V is
normal, we have equation (4. 11) and the expression (4.12) for Les.

In the normal case, we have from the first and the third equation of (4. 3)

4. 13) R fet—fethe -l fo=f D",
4. 14) Re®+hpl fol fa=Ffche® fo~fole S
where

pa=hcefea,fc+fclcfa_
From (4. 14) we find (4. 11) and consequently

(4. 15) hcefea_fcehea+lcfa =fc(hfdfffda+felefa);
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which is equivalent to (4.13). Thus we see that (a) S;*=0, (b) (4. 13), (c) (4. 14) are
all equivalent to each other.
On the other hand, from the third equation of (4.2), we have

4. 16) het=—(Fcfo) fet+hef2
Substituting (4. 16) into (4. 13), we find
4. 17) Pef ot Wi f DS fa®—fethef o =fcp.

Conversely, if (4.17) is satisfied, we have (4. 13) by virtue of the third equation
of (4.2). Thus we see that (4. 13) and (4. 17) are equivalent to each other. Thus
we have

THEOREM 4. 1. For an almost contact hypersurface in a complex space, the
following conditions are equivalent to each other:

(@ Se*=0,

0) et fer—fethe +lef o =Fe(hel S fa®+ el f ),

©) herthl fefat=Ffchel fo—flef

@ pefetef e fa—lfo=f(fopefo—Fflef D), htSfotle=2fs.

Since (b), (c) and (d) above can respectively written as (b’) Sc¢f.2=0, (c’) S>=0

and (d’) Ogg(Vefd) =e—TcSle) SO, Se=0,
where

(4. 18) O?}:ag‘jg ’l‘fl:cfda' _fCIcJ(clL’

we have

THEOREM 4. 2. For an almost contact hypersurface in « complex space, lhe
Ffollowing conditions are equivalent to each other:

@ Set=0, () Sefr=0, () Se=0,
) O%(pef=Ue—fefL)f%,  Se=0.

Coming back to the general case, if we take account of (4. 2), we have from
(2.2) and (4. 3)

4.19) Nev?=fe(hs® fe*~Fo°he™) —fo(he® foo —fothe®) + (heeS s —hoe o) f
Thus, if N.,*=0, then we have from (4. 19)

hee fot—hve fot =Fo(fs°he) —So(fche),

het fer—fethe=Fc(he® [ fa®)—(Fehe) f %

Conversely, if (4.20) are satisfied, we have Ng*=0.
The second equation of (4. 20) is equivalent to

Sep®= (fcsb —bec)f"‘.

4. 20)
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On the other hand, the first equation of (4.20) is equivalent to
Lc»=0,
if we take account of the expression (4.5) for L. Thus we have
THEOREM 4. 3. For an almost contact hypersurface in a complex space, a

necessary and sufficient condition for the induced f-structure f»* to be integrable is
that

@)  Sev*=(feSv—/fuSe) (b) chEO,
=(fbfcehe _fcfbe/’le)fa’.
We next suppose that the distribution }, i.e. fud7*=0 is integrable. A necessary

and sufficient condition for that is N%f.=0. If this is the case, we have from
(4. 19) that

4. 21) Ree fo°— Mo fet =0

and consequently Ne*=0 which means that the f-structure f»* is partially integrable.
Conversely, if N*=0, then we have (4. 21) and consequently N.,*f.=0. But, if we
take account of (4.12) and (4.19), we see that the three conditions Ne*=0, Lep=0
and Agp+hsefe’ f»°=0 are equivalent to each other. Thus, we have

THEOREM 4.4. For an almost contact hypersurface in a complex space, the
following four conditions ave equivalent to each other:

(@) The distribution M determined by the projection operator 1,°=—f2Lf® is in-
tegrable (Nep®fo=0).

() The induced f-structure fu* is partially integrable (Ny*=0).

(¢) Lep=0.

d) Zeothrefe f1e=0.

Combining Theorems 4. 2, 4.3 and 4. 4, we have

THEOREM 4. 5. For a normal almost contact hypersurface in a complex space
(Ses2=0), the following three conditions arve equivalent lo each other:

@) The induced f-structure f»® is integrable (N*=0).

(b) The induced f-structure is partially integrable (N*=0).

() The distribution M, i.e. fadp*=0 is integrable (Nop®fa=0).

We see from (4.7) and (4.9), taking account of (4. 10), that following three
conditions are equivalent to each other:

(a) chba:()’
(b) chb'—:—lcfbr cha,:lcfa’
(C) Rev =hcfb, he® :hcfa'
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When the condition (c) above is satisfied, we have, from Zo="rsfe, Ao=21>.
Therefore, we have

THEOREM 4.6. For an almost contact hypersurface in a complex space, the
Sfollowing three conditions are equivalent to each other:

@ pefo®=0.
b)  pefo=—ISo and p.fr=ILf"
(C) hcb:'zfcfb and hcﬂ,—_-]fcf’l,

A being a certain function. When one of these conditions is satisfied, the induced
f-structure f»* is integrable.

§5. Hypersurfaces in a locally flat complex space.

We consider in this section a complex space V" which is locally flat, i.e. whose
curvature tensor vanishes identically. Taking an almost contact hypersurface {M, C"}
in such a complex space V, we obtain

6.1 papeBy" —pepaBy*=—Racv*Ba",

(5.2) papCt—pepaCh=0,

as a consequence of the local flatness of V, where
Raco*=0al'&— 0§+ 1 I — 1817,

is the curvature tensor of the induced connection /"¢. Substituting (3. 7) and (3. 10)
in the left hand sides of (6.1) and (5. 2) we have

Rucv®=ha®heo—h®hau,
Pahev—pehav+Llahes —Lehan=0,
Fahe®—peha®+ha“le—h*la=0,
haehe®—heeha®=pale—pecla.

We suppose that an almost contact hypersurface {M, C*} of a locally flat com-
plex space V satisfies

(5. 4) hsb:'zfcfb, hca:2fcf“.
Substituting these equations in (5. 3), we get
(5- 5) Rdcba': s lec—‘Vcld:O, Vb/{—f-ZleO

by means of Theorem 4.6. Summing up, we have

THEOREM 5. 1. If, in a locally flat complex space, an almost contact hyper-
surface satisfies one of three conditions (a), (b), (¢) mentioned in Theorem 4.6, the
induced connection is locally flat and the function 2 appearing in Theorem 4.6
satisfy poA—+2l=0.
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Let there be given an almost contact hypersurface {M, C*} satisfying (5. 4)
in a locally flat complex space V. If we suppose M to be simply connected, there
exists in M, by virtur of the second equation of (5.5), a function ¢ such that
oy=psl. On making use of this function o, we put

(5. 6) Cr=p"'C",  p=e.
We have thus a new hypersurface {M, C*} having the submanifold M as its basic

submanifold. The induced almost contact structure of the new hypersurface {M, C*}

is (fo, 7% f») as a consequence of (3.13), where f»* is the same as the corres-
ponding one of {M, C*} and

6.7 fe=ofe  fo=p"'fn

The induced connection of {M,C"} is the same as the induced connection I'¢ of
{M, C*} because of (3.4). If we take account of (3.10) and (5. 6), we have

(5- 8) Vcéh: _EcaBah’ Hc“ZP—lkc“y
I, being zero, and, if we take account of (3.7) and (5. 6), we find
(.9) 7eB=haC"  hev=phes,

where /e and he* are tensors determined, corresponding to Ae and /%, by the new
hypersurface {M, C*}. We have from (5. 4), (5. 7), (5. 8) and (5. 9)

Ecb:i]?c]?b; Eca:i]?cfa»
where we have put 2=p-'2, Therefore we have from Theorem 4.6
chb:(), ch_a:().
Summing up, we have

THENREM 5. 2. If, in a locally flat complex space V there exists an almos!
contact hypersurface {M, C*} with simply connected basic submanifold M, and if the
hypersurface {M, C*} satisfies

kcb——_—/zfcfb, thZchfa'

with a certain function 2, then there exists in V an almost contact hypersurface
{M, C*} such that

pefor=0,  pef*=0,  pefr=0,
where (F4, 7 fv) is the induced almost contact structure of {M, C"} and
for=f,  Fo=of%  Fo=pfi, Ch=pT'Ch,
o being a certain function in the common basic submanifold M.

Let CA™ be the 2m-dimensional space of m complex numbers (2%, 2% -+, 2™), 2m
being equal to #+1. If we put

z"=x”+«/:ixm+", (a:1; 2: Tty m)’
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then (xe, xm+e) are cartesian coordinates in CA™.
Let there be given an almost contact hypersurface {M, C"} satisfying

chba: y cha:(), chb:()’
hcbZZfafb, heo=AfcfC

Then, {M, C*} is congruent to a portion of the almost contact hypersurface {A7[, 6”}
under the group of all affine transformations operating on CA™ and preserving the
complex structure of CA™, where the submanifold M is defined by the equations

5. 10) xm=(),  2"=¢(),
o(®) and ¢() being certain differentiable functions, and the normal vector field Cr
by the equations

Cr=...=Cm1=, Cmit=...=Cm-1=(),
(5. 11)
e _ A9 n_ 49
Cr==r T odt

Thus we have

THEOREM 5. 3. If, in the 2m-dimensional space CA™ of m complex numbers
=gt/ —1 2" (a=1, 2, -+, m), there is given an almost contact hypersurface { M, C"}
with simply connected basic submanifold M, and if the hypersurface {M, C*} satisfies

hev=A~Fcfb, het=Afcf

with a certain function 2, then the basic submanifold M is conjugate to a submanifold
defined by equations (5. 10) under the group of all affine transformations operating
on CA™ and preserving the complex structure.

§6. Hypersurfaces in an almost Hermitian space.

We consider an almost Hermitian manifold V of differentiability C* with almost
complex structure F;* and almost Hermitian structure G;i. Then we have

6.1) FpFr=—a,

6.2 FiF}Gu=Gji

and the tensor

(. 3) Fyu=F;'Gy,

is skew-symmetric. If the Riemannian connection defined by Gj; satisfies
6. 4) ViFintpiFnitprlii=0,

then the manifold is called an almost Kahlevian mawmfold. 1If the Nijenhuis tensor
Nj* defined by (3. 16) vanishes identically, the almost Hermitian manifold is called
a Hermitian manifold and the almost Kahlerian manifold a Kéahlerian manifold. A
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necessary and sufficient condition for an almost Hermitian manifold to be a Kiahlerian
manifold is given by

(Cf. Yano [17])

We now consider an #n-dimensional orientable submanifold M in an almost
Hermitian manifold V, V being (n+1)-dimensional. Denoting by C" the unit normal
to the submanifold M, we have a hypersurface {M, C*} and F*C' is tangent to M.
Then to any orientable submanifold M of » dimensions there corresponds uniquely
a hypersurface {M, C*} with the unit normal vector field C* and consequently the
submanifold M can be identified with the hypersurface {M, C*}. We call such a
submanifold M briefly an almost contact metric hypersurface.

If we consider a hypersurface JM, there exists in M the induced almost contact
structure (f»% f¢, f») defined by (3. 13) and it satisfies the condition (3.14). On the
other hand the induced Riemannian metric on the hypersurface M is given by

(6. 6) 9eoo=Gj: B/ By
Transvecting (6. 2) with B/B,* and taking account of (3. 13), we find
6.7 Sl fo°q retSefo=0co.
Transvecting (6. 2) with B.Ct and taking account of (3. 13), we have
6.8 S 9 r0=0
or
6.9) Seaf*=0,
where
(6. 10) Sea=Ifc'9ra

is a skew-symmetric tensor.
Finally, transvecting (6. 2) with C/C* and taking account of (3. 13), we find

6. 11) fefger=1.
Thus, from f*f,=1, (6. 8) and (6. 11), we see that
6.12) feqeo=1,s.

Summing up, we see from (6.7) and (6.12) that in a hypersurface M of an
almost Hermitian space V there exists an almost contact metric structure (f»%, f¢,
Jv, 9es) composed of the induced almost contact structure (3%, ¢, f) and the induced
Riemannian metric gee. We call this structure the induced almost contact metric
structure of the almost contact metric hypersurface.

Now the equations of Gauss (3. 7) and those of Weingarten (3. 10) in our metric
case are respectively given by

(6' 13) VcBbh:hcbch,
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(6. 14) Vcch: _hcaBah;
where
(6. 15) hca:hcbgba

and the vector field /s defined by (3. 5) vanishes identically.

Thus, differentiating (3. 13) covariantly along the hypersurface, we find the
expressions (3. 15) for (p;F*)B’By* and (y;Fi*)B.C* with vanishing /,, which imply
the expressions (3. 17) for N,,*B.By and N;*B.C' with vanishing /.

§7. Hypersurfaces in a Kahlerian space.

We assume now that the enveloping almost Hermitian manifold V is a
Kihlerian space. Then for an almost contact metric hypersurface of V we have
from (3. 15) with vanishing /,

chba’{‘hcbfu"‘hcafb:oy
7.1
chb ‘[‘/lcefbe:(),

because of p;F*=0, where the second equation is equivalent to
VCfa*‘hcefea: .
When the second fundamental tensor /., has the form
7. 2) hev=0agco+B e fo,
we say that the almost contact metric hypersurface is contact umbilic [13]. We

have from (7.1) and (2. 23)

ProrosiTION 7. 1. When the almost contact metric hypersurface in a Kdhlerian
manifold is contact umbilic, we have

chba: ”“a(gcbfu_g('afl)),
(7. 3)
chb:a_fcl)

and the hypersurface is contact metric.

The enveloping almost Hermitian manifold being Kihlerian, we have expres-
sions (4. 3) for Sc%, Ses, S¢%, Se with vanishing /, and from (4. 5)

(7. 4) Lev=—~(heo+hsufo” [4°)+Scho.

From the expression (4.3) for S.¢ with vanishing /, and (7. 2) we have

PROPOSITION 7. 2. When the almost contact metric hypersurface in a Kihlerian
manifold is contact wmbilic, then the almost contact metric hypersurface is normal.
(For the totally geodesic case, see Okumura [7, 8], Tashiro [11, 12])

Since the expression (4. 3) for S.* can be written as
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(7.5) Seen=— (hcb_‘hfefcffbe) +feh,
we have from (4. 3)

ProposITION 7. 3. For an almost contact metric hypersurface in a Kdhlerian
manifold, the condition

(7. 6) hc=hcafa,:2fc
with A=hef=heff" is equivalent lo one of the following conditions
7.7 Ses=0, Sefev=Ss*¢ec, Se=0.

(Cf. Okumura [7])

We shall now study the case in which the induced almost contact metric
structure is normal, that is, S;;%=0. We know that in this case all the S’s vanish.
Thus from (4. 3) with vanishing /,, we have

Se(hot fer—fo*he®) —folhe fo —fethe®) =0,
Sehs—hefo=0,
he+hi f fa*=fh ",
hefet=0,

(7. 8)

from which
R Ryt fof fat =21 S,
or equivalently
heo—hygefed [t =AfcSs.
Conversely, if one of these is satisfied, we have z.=Aaf, and
hcefea' —fcekea’zo,
and consequently all S’s vanish. Thus we have

ProrosITION 7.4. A necessary and sufficient condition for an almost contact
metric hypersurface in a Kdhlerian manifold to be normal is

(7.9) R +hrtfol fat=Afof"
or equivalently
(7. 10) hnb—}lfefcffbﬂ:/?fnfb-

If (7.9) is satisfied, then we have #k.%f.=A4f. and consequently we have, from
the third equation of (4.3) with vanishing 7, S.¢=0. Conversely, if S.*=0, then we
see from (7.5) that %4,=Aafy and consequently (7.9) is satisfied because of (7. 8).
Thus we have

ProposiTiON 7.5. A mecessary and sufficient condition for an almost contact
metric hypersurface in a Kahlerian manifold to be normal is S.*=0. (Cf. Okumura [7])
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Now (7. 8) is equivalent to

(7. 11) Reefoo~+vefe*=0
which is, by virtue of the second equation of (7. 1), equivalent to
(7 12) chb+7bfc:0

This means that the vector field f¢ is an infinitesimal translation, since f* is a
unit vector field. Thus we have

ProOPOSITION 7.6. A necessary and sufficient condition for an almost contact
metric hypersurface in a Kihlerian manifold to be normal is that f* defines an
infinitesimal translation. (Okumura [8])

Now if (7.10) is satisfied, then we have Z.=4f. and consequently (7.4) gives
Ley=—(hev+hrefe! 1)+ Afefs
which becomes, by virtue of (7. 10)
L= —2hs.f fre.

Conversely, if Le has this form, then Sey=Le—Liy.=0 and Proposition 7.3
gives h.=Af., and consequently from (7. 4) and the equation above

hcb—hfefcffbe :)‘fcfb-
Thus we have

ProOPOSITION 7.7. A necessary and sufficient condition for an almost contact
metric hypersurface in a Kdahlerian manifold to be normal is

(7. 13) Lev=—2hscfc' fre.
From Propositions 7.3,7.4,7.5,7.6 and 7.7, we get

THEOREM 7. 1. A mnecessary and sufficient condition for an almost contact
metric hypersurface in a Kdahlerian manifold to be normal is that one of the following
equivalent conditions is satisfied.

(2) het+hifed fat=2fcf*

o) hev—hsefd fir=21fr,

© Set=0,

(d) pefotpofe=0,

© Lov=—2hsef! 1.

If we assume now that an almost contact metric hypersurface in a Kihlerian
manifold is contact metric, then we have from (2. 24) and (7. 4)

(7. 14) hcb‘l"hfefcffbezzagcb —fc (Zafb”“'hb)
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with a non-zero constant @. Transvecting (7. 14) with f?, we find
he=her [P=2fe,
which implies together with (7. 14)
hevt-hrefe fr0=2age+(A—20) fefo.

If we assume moreover for the hypersurface to be normal, then we have from
Theorem 7.1

heo—hyefe fot=Af:fo.
Adding these two equations, we obtain
hey=ages+(A—a) fefo.
Thus, taking account of Propositions 7.1 and 7. 2, we have
THEOREM 7. 2. A mecessary and sufficient condition for an almost contact

hypersurface in a Kdhlerian manifold to be normal and contact metrvic is that it is
contact umbilic. (Tashiro [11, 12], Tashiro and Tachibana [13])

We now assume that the tensor f,* is a Killing tensor, that is, it satisfies
(Yano [16])

Fefo2+pufe?=0.
Then, we have [rom the first equation of (7. 1)
2hen f2—he fo—M® fe=0,
from which
hey=2fcfo,
and consequently
Fefs*=0,  pefo=0.
The converse being evident, we have

ProOPOSITION 7.8. A necessary and sufficient condition for fy* of an almost
contact metric hypersurface in a Kdhlerian manifold to be a Killing tensor is

(7. 15) hev=2fcfs,
or equivalently
(7. 16) Pefs®=0,  pefo=0.

We next assume that the tensor fi, is harmonic. Since we have, from the
first equation of (7.1)

chbu+l76fac+7afcb:0,
the condition for f;« to be harmonic is
QCchfba: _QCb(hcbfa_hcafb) =Oy
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from which

}lc =hcafa = Xfc
with
A=heo [ fP=heg.

The converse being evident, we have

ProrosITION 7.9. A wnecessary and sufficieni condition for fi* of an almost
contact metrvic hypersurface in a Kdihlevian manifold to be harmonic is

(7.17) he=h"fo=2f:,  A=haff'=hag®.
We next study the case in which f. is harmonic. Since the second equation
of (7. 1) gives g°p.f»=0, the condition for f. to be harmonic is
(7.18) pefo—psfe=0.
In this case, we have L.=0 from the definition of L.. Conversely, if
Los=f(pefo—psfe)=0,
then we have
JILpp=—cfo—pofo)+fef Fefs=0,
from which, f°p,f.=0, and consequently
Fefo—pufe=0.

Thus a necessary and sufficient condition for f. to be harmonic is Ls=0. In
this case, we have first of all

Scb:()y ScZO, hczzfc
and from the second equation of (7. 1)

hcefbe _hbefce = Oy
from which

hevthpefel foe=2Fcfs,
het fe+Fethe* =0,
he*—hptfo! fa®=Afcf"
and consequently Sq* and S.® take respectively the forms
Sev?=2(fehs® —fohe) S,
Sev=2hsfo fa®.
Thus we have

THEOREM 7.3. A necessary and sufficient condition for the vector field fc of
an almost contact metric hypersurface in a Kdhlerian manifold to be harmonic is
Ley=0 and in this case the S's are given by
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Scba::z(fchbe —fbhce)fea, Scb: O,
(7.19)
Set=2hs*fc7 fa?, Se=0.
Thus, if f. is harmonic, we have A.=1f, and
ch= —(}lcb‘!"hfefcffbe) ’l‘ /chfh :0,
from which, transvecting with g¢¢,
zzhcbfcfb:hcbgcb_
Thus, from Proposition 7.9 and Theorem 7. 3, we have

ProposiTioN 7.10. If, for an almost contact metric hypersurface in a Kahlerian
manifold, the veclor field f. is harmonic, then the tensor field feo is also harmonic.

If we assume finally that the induced f-structure f»* of an almost contact
metric hypersurface in a Kihlerian manifold is integrable, i.e. N,*=0, then taking
account of /,=0, we find from (4. 20)

(7. 20) ha=Ffcho+fohe—Afefo,  A=hafef?
which is equivalent to

(7. 21) Pefot=f(foh*—mf*),

or

(7. 22) VeSo=—fcfs%he

by virtue of (4.2) with vanishing /. Thus we have

ProrosiTION 7.11. A mecessary and sufficient condition for the induced f-
structure fv® of an almost contact metric hypersurface in a Kdhlerian manifold to
be integrable is that one of the conditions (7. 20), (7. 21) and (7. 22) be satisfied.

We assume that Se,%=0 and N,*=0. Then S;;*=0 implies S.=0, from which
we find
hy=2fs.
Therefore, we have
hcb:/zfcfby chbazoy chb:()

respectively from (7. 20), (7. 21), (7. 22). We have thus

THEOREM 7.4. A necessary and sufficient condition that the induced f-structure
be integrable for a mnormal almost contact metric hypersurface of an Kdihlerian
manifold is that one of the following conditions be satisfied:

@ pefo®=0, (B pefp=0, (© ha=2ifcS
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§8. Hypersurfaces in a locally flat Kahlerian space.

We suppose that the enveloping manifold ¥V is a Fubini space. Then the
curvature tensor of V is given by (See for example Yano [17])

Kijin=k(GnGji—GjnGrit+ FinFji— FinFri—2F i Fin)
with a constant k, where F;;=F;G;;. We consider now an almost contact metric

hypersurface in a Fubini space V. Substituting the above expression of Ky in the
equations of Gauss and Codazzi

KkjithchijlBah =chba— (hdahl'b - hcahdh),

K;jinBi* B By'Ch = ahev— [ chas,
we find
E(Qaa9er—9cafar+Saafeo—SeaSao—2f scfoa) = Kacva— (Baaltcr—Fcatar),
@81

k(fafeo—fefav—2facfo)=p alico— [ cav,
where Kqca is the curvature tensor of the hypersurface. If we now assume that

the hypersurface is normal and the induced f-structure f,* is integrable, we have
from Theorem 7. 4

(8- 2) Vc,szoy }lch :chfl)-
If we take account of the well known formula
Vchfb_Vchfb: —Kaea®fu,

we have by means of the first equation of (8.2) Kacsaf*=0, which implies £=0
and consequently Kijin=0, Kscso=0 as a consequence of (8. 1) and the second equa-
tion of (8.2). Thus we have

THEOREM 8.1. In a Fubini space, which is not locally flat, there exisls no
normal almost contact hypersurface whose induced f-structure f,* is integrable. (Cf.
Theorem 5. 2)

We have, taking account of (8. 2), from Theorem 5.1

THEOREM 8. 2. If, in the Euclidean space Em™*' of even dimensions with the
natural Kdhlerian structure, there is given a normal almost contact hypersurface M
such that its induced f-structure is integrable, them the basic submanifold M is
conjugate to a portion of a submanifold defined by (5.10) under the group of all
motions of E™*' preserving the complex structure.

We now suppose that the enveloping Kédhlerian manifold is Euclidean, then we
have equations of Gauss and Codazzi

(8~ 3) chba,:/”lda/’lcb_hcahdby
(8 4) thcb—Vchdb:0~
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If the almost contact metric hypersurface is normal, the vector field f¢ is a
Killing vector field and consequently we have (Cf. [16])
8.5) PepsfatKaosa S 2=0.
Substituting (7. 1) and (8. 3) into (8. 5), we find
—Pe(hvefat)+ (haakecs—Reahian) f =0,

- (Vchbc)fae _hbe(hcafe _hcefa) + Z(fahcb ‘fbhca) =0,
or
(Vchbe)fae —}lbehcefa‘l' lhcbfu = 0,

from which, by transvecting f¢, we obtain
8.6) hethe® = Ah.®,
and consequently

(Pehs?) fet=0.
The last equation implies together with (8. 4)
8.7 Vehoa=Afcfofu

A being a certain function, since %pa="Fas.
Differentiating covariantly the both sides of the equation /s.f¢=4fs and taking
account of (8.7), we have

AfeSfothvepef* =G A ot e S
from which, transvecting f°® and taking account of (p.fs»)f*=0, we find
8. 8) pA=Afe..
Differentiating covariantly the both sides of (8. 8), we have
Vapeh=FaA) fetApate,
from which, transvecting p¢f¢, we obtain
8.9 AWaferf)=0,

where pife=gip.fe.

Now, we consider the case A=0 everywhere. Then the hypersurface being sup-
posed to be connected, (8. 8) implies that the function 4 is constant. The equation
(8.7) implies pohoa=0, which means that all proper values of A.* are constant.
Taking a proper value C of 4.% we have from (8. 6)

C*=1C,
which implies C=2 or C=0. We denote by D, the distribution spanned by all
proper vectors with proper value 4 and by D, the distribution spanned by all proper

vectors with proper value 0. Then, D, and D, are both integrable. In fact, we
take two vector fields »* and w® belonging to D;,. From #A.%0°=4v* we have

R Wiy av®) = Al qv®
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by virtue of pefia=0. This equation shows that wipw® belongs to D,. Therefore,
D, is integrable. Similarily, we can show that the distribution D, is also integrable.
Now, we have

wdpd(chch) — (dedvc)Bch.’

ve and w* belonging respectively to D, and D, which shows that D, is parallel
along the integral manifold of D,. We have further

dean =0

for any vector field w® belonging to Do, which shows that the normal vector field
C" is parallel along the integral manifold of D,. Therefore, the integral manifold
of D, is a portion of a plane.

If v belongs to D, and w* belongs to D,, supposing that the constant 2 is non-
zero, we have

vpe (Eh + _}‘ Ch> :UCB(:IL-* */]2;‘ /lc(LU(’Bu,’L:O,

w(er (51:. _,_ %_ Ch) :chU/L]

that is, if we move along the integral manifold of D,, the point &*+(1/2)C" does
not move and if we move along the integral manifold of D,, the locus of the point
Er-(1/A)C" is parallel to the integral manifold of D..

Summing up, we see that in case 4=0, the almost contact metric hypersurface
is a portion of

S or STXE"T A=r<m,

where S7 denotes an 7-dimensional sphere and £* an s-plane. The dimension
number 7 is necessarily odd. In fact, the vector field f* belongs to D;. If we take
a vector »* belonging to D, and being orthogonal to f¢, then we see by making
use of (7.11) that f.%° belongs to D,. Thus we see that the distribution D, is odd
dimensional.

Suppose next that 2=0. Then, we have

(8.10) heth.t=0.

Let v be a proper vector of 4.2 with proper value a«. Then, we have, trans-
vecting (8. 10) with »%, a=0. Thus, all proper values of %.% being zero, we have
h.*=0 and consequently the almost contact metric hypersurface is a portion of a
hyperplane. Summing up, we have

ProposiTION 8. 1. If, for a normal almost contact metvic hypersurface, which
is commected, of the Euclidean space E™'' of even dimensions with the natural flat
Kdhlerian structure, the function A is constant, i.e. if the function A vanishes iden-
tically, then the hypersurface is a portion of the following

Sn, S7x En-—r’ En’
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v being an odd number such that 1<r<n, where S” is an r-dimensional sphere im-
mbeded naturally in E™* and E, is a p-plane.

In the next step, we consider the case in which the function A appearing in
(8. 7) does not vanish somewhere. If this is the case, we find from (8. 9)

pefs=0

in the open set U consisting of all points where the function .4 does not vanish.
Then, taking account of Theorems 7.4 and 8.2, we have

ProrosiTioN 8. 2. If, for a normal almost contact metric hypersurface of the
Euclidean space E™* of even dimensions with the natural flat Kihlevian structure,
the function A does not vamish somewhere, then the open set U comnsisting of all
boints wheve A does not vanish is conjugate to a portion of a hypersurface defined
by (5. 10) under the group of all motions of E™*' preserving the complex structure
and the curvature tensor of the hypersurface vanishes identically in U.

Let W be the closed set complementary to the open set U. Then, the {function
A vanishes identically in W and consequently the function 2 is constant in W
because of (8.8). Therefore, the set W° of all interior points of W is a portion of
S, STXE™ " or E™ by virtue of Proposition 8. 1. When W? is a portion of S or
S*x E™r, W° is a symmetric space with non-vanishing curvature tensor, and con-
sequently the curvature tensor of the hypersurface does not vanish in the boundary
of W. On the other hand, by means of Proposition 8.2, the curvature tensor
vanishes identically in U, and hence vanishes in the boundary of U, that is, in the
boundary of W. This contradicts the fact that the curvature tensor does not vanish
in the boundary of W. Consequently, W° is not a portion of S* or S"X E"~" and
then it is necessarily a portion of a hyperplane E». Thus, we have

ProPOSITION 8.3. If the function A does not vanish somewhere, the hypersurface
is conjugate to a portion of a hypersurface defined by (5. 10).

Combining Propositions 8.1 and 8. 3, we have

THEOREM 8. 3. If an almost contact metric hypersuvface, which is connected, in
the Euclidean space E™' of even dimensions with the natural flat Kéhlerian structure
is normal, and, if it is complete, then the hypersurface is one of the following

Sn’ S x En—'r, En’

v being an odd number such that 1<r<m, or, the hypersurface is conjugate to a
hypersurface defined by (5.10). When the hypersurface is S* or Srx Er", the rank
of the Levi tensor Ley is equal to n—1 or r—1, respectively. In other cases, Lev is
of rank 0. (For analytic case, cf. Okumura [7])

Let there be given, in the Euclidean space E"*!, an almost contact metric
hypersurface and assume that its induced f-structure is integrable. Then, substi-
tuting (7. 20) in the expression (8. 3) of the curvature tensor, we find
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chba: (fdhc _fchd)(fbha _fahb)~

Thus, Kaese vanishes if and only if /c=hef?=14f.. Therefore, by virtue of
Theorem 4. 3, See*=0 if Ks0a=0. Conversely, if we suppose S.*=0, we have /7,
=2Af. from Theorem 4.3, and consequently Kao=0. Summing up, we have

THEOREM 8. 4. In the FEuclidean space of even dimension with the natural
Kaihlerian structure, a mnecessary and sufficient condition for an almost contact
metric hypersurface to be normal is that its curvature temsor vanish identically, its
induced f-structure being assumed to be integrable.

We consider now an almost contact umbilic hypersurface. It is normal and
contact by virtue of Theorem 7.2. The hypersurface being contact, the rank of
the Levi tensor L. is necessarily equal to —1. Then, we have from Theorem 8. 3

THEOREM 8. 5. If, in the FEuclidean space E™ of even dimensions with the
natural Kahlerian structure, an almost contact metvic hypersurface is contact umbilic,
then the hypersurface is a portion of a hypersphere S*. (Tashiro [11, 12], Tashiro
and Tachibana [13], Kurita [5])
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