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Introduction.

A structure on an ^-dimensional differentiable manifold given by a non-null
tensor field / of type (1, 1) of a constant rank r and satisfying / 3 + / = 0 is called
an f-structure. If n=rf then an /-structure gives an almost complex structure of
the manifold and n=r is necessarily even. If the manifold is orientable and n—\
=r, then an /-structure gives an almost contact structure of the manifold and n is
necessarily odd and r even.

A submanifold in an almost complex space admits an /-structure if we can
choose a distribution along the submanifold which is invariant by the almost com-
plex operator or, whose transform by the almost complex operator is contained in
the tangent space of the submanifold.

For an orientable hypersurface in an almost complex space, we can choose a
vector field whose transform by the almost complex operator belongs to the tangent
space of the hypersurface, and consequently an orientable hypersurface in an almost
complex space admits an /-structure which is an almost contact structure.

The purpose of the present paper is to study almost contact structures induced
in this way on hypersurfaces in complex and almost complex spaces.

The number between brackets refer to the Bibliography at the end of the paper.

§ 1. Λstructure.

Let there be given, in an ^-dimensional differentiable manifold V of class C°°,
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a non-null tensor field / of type (1, 1) and of class C°° satisfying

(1. 1) / 3 + / = 0 .

We call such a structure an f-structure of rank r when the rank of / is constant
everywhere and is equal to r, where r is necessarily even [14, 15].

If we put
l=-f2, m=f2+l,

we have
=l, I2=l, m2=m, lm==ml=Of

where 1 denotes the unit tensor. These equations show that the operators / and m
applied to the tangent space at each point of the manifold are complementary pro-
jection operators. Thus, there exist in the manifold complementary distributions L
and M corresponding to the projection operators / and m respectively. When the
rank of / is equal to r, L is r-dimensional and M (n—r)-dimensional.

Let / 6

α be components of an /-structure / of rank rP Then its Nijenhuis
tensor NCb

a is by definition

(1. 2) Ncb

a=fcyefba~fbePefca-(f7cfbe~Fbfce)fea,

where ψe denotes covariant differentiation with respect to a symmetric linear con-
nection. The Nijenhuis tensor NCb

a does not depend on the symmetric connection
involved.

In a recent paper [6], we have proved

THEOREM A. A necessary and sufficient condition for the distribution L to be
integrable is that

(1.3) Nfe
dlcflbemd

a=0, or Neb

dma

a=Of

ha and mb

a being components of the projection tensors I and m respectively.

Suppose that the distribution L is integrable and take an arbitrary vector field
v which is tangent to an integral manifold of L. Then the vector field fv is tangent
to the same integral manifold. Since we have

(1.4) P=~l,

if we define an operator / ' by

f'v=fv

in each tangent space of each integral manifold of L, f is an almost complex
structure in each integral manifold of L. When the distribution L is integrable and
the almost complex structure / ' induced from / on each integral manifold of L is
also integrable, then we say that the /-structure is partially integrable. We have
proved in [6] the following

THEOKEM B. A necessary and sufficient condition for an f-structure to be
partially integrable is that

T h e i n d i c e s a, b, c, d, e,f r u n o v e r t h e r a n g e { 1 , 2, •••, n ) .
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(1.5) Nfe
alcflb«=0.

We suppose now that there exists in each coordinate neighborhood a coordinate
system in which an /-structure / has numerical components

/ 0 - 1 T O 0 \

(Λα) = lm 0 0 ,

\ 0 0 0 '

where l m denotes the mxm unit matrix, r=2m being the rank of /. In this case,
we say that the /-structure is inίegrable. We have proved also in [6] the following

THEOREM C. A necessary and sufficient condition for an /-structure to be in-
tegrable is that

(1.6) Ncb

a=0.

§2. Almost contact structure.

Let there be given, in an ^-dimensional differentiable manifold V of class C°°,
a tensor field fb

a of type (1, 1), a contravariant vector field fa and a covariant vector
field fb, all of which are of differentiability class C°°. We suppose that they satisfy
the conditions:

Λ α / 6 = 0 ,
(2.1)

We call the set (fb

a, fa, fb) satisfying (2. 1) an almost contact structure (See for
example [9]). It follows easily from (2. 1) that the rank of fb

a is n—\ everywhere.
Furthermore, (2. 1) implies that fb

a satisfies (1. 1), i.e., that the tensor field fb

a is an
/-structure of rank n—1, where n is necessarily odd.

Sasaki and Hatakeyama [10] have introduced following four tensor fields:

(2.2)

ba=NCb
a

Sc =fe(Fefc-Fcfe),

where Ncb

a is the Nijenhuis tensor of fb

a defined by (1. 2), Lcb a tensor field defined by

(2. 3) Lcb=fce(Fefb-Γbfe),

and {7c denotes covariant differentiation with respect to a symmetric linear con-
nection. All S's and L defined above does not depend on the symmetric connection
involved. We call the tensor field Lcb the Levi tensor of the almost contact structure.

From the first equation of (2. 2), we find
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(2 4) Scb«fa = (Fcfb-Fl>fc)-(Pffe-P

(2.5) Scb«fb=Sc«fea-Scf%

from which

(2.6) Sc = -Sctafbfa.

From the definition of Lc&, we find

Lcbf
b=-fc°Se,

(2.7)

Lfefeffb

e = Lbc

Substituting

fcfb — fefb = —fcfLfb -\-fcShf

obtained respectively from the third and the fourth equations of (2. 7) into (2. 4),
we find

(2. 8) Scb

afa= -fcfLfb~Lcefb

eJrfcSb.

Using (2. 7) and (2. 8), we can easily verify

(2.9) Scb=Sce«Ufa-SfUfb,

from which

(2. 10) Sc=Sfefc
ffe

by virtue of S c / c =0. From the last equation of (2. 7), we find

(2. 11) Scδ +W// δ « =fcSeU-fbSeU.

We next note that

Sc α =Γ/Λ Sc=£fc,

where £ denotes the Lie differentiation [16] with respect to fa. Taking Lie deri-
vatives of (2.1), we find

(2. 12)

From (2. 5) and the first equation of (2. 12), we find
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(2.13) Scb

afb=-fceSea,

from which

(2.14) sc«=Sfe
afcff

e,

(2. 15) Sc = Seafcefa.

From (2. 6), (2. 9) and (2. 14), we see [10] that

S c b

α =0 implies Sc 6=0, S c

α=0, Sc=0.

When the condition SCb
a=O is satisfied, the almost contact structure is said to be

normal [10].
If, in a manifold with an almost contact structure (fb

a, fa, fb), a tensor field,
say, TCb

a has components of the form

(2.16) Tcb

a=fcPba+hQca

with certain tensor fields Pb

a and Qb

a, the tensor TCb
a is said to be congruent to

zero with respect to modulus fc. In such a case, the relation (2. 16) is expressed in
a simplified form as

(2.17) Tcba=0,

and UCb
a-Vcba=0 as

Ucb

a=Vcba.

It is easily seen that (2. 17) is valid if and only if we have

Tcbawcvb=Q

for any vector fields va and wa such that fav
a = 0 and faw

a=0.
Suppose now that S c δ

α=0, then we can put

(2.18) Scba=fcPba-fbPca.

Substituting this into (2. 6), (2. 9) and (2. 14), we find

(2. 19) Scδ =fcPefbe -fbPeU,

Sca=-fcePea

respectively, where P=Pcf
c, Pc = Pcafa.

Thus we have

PROPOSITION 2. 1. //* S c δ

α=0, /^e^ ScδΞ=0, that is,

(2.20) Lcb=Lbc

A necessary and sufficient condition for the distribution M, i.e. fadηa=0, ηa being
local coordinates, to be integrable is

(2.21) ycfb-t7bfc=0,
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and consequently, from the definitions of NCb
a and SCb

a and the third equation of
(2. 7), we have

PROPOSITION 2. 2. A necessary and sufficient condition for the distribution
M, that is, fadηa=0 to be integrable is one of the following:

Scb

a-Ncb

aΞΞθ, (Scb

a-Ncb«)fa=0, fcfLfb=0.

It is well known [9, 10] that, in a manifold with an almost contact structure
(fba,fa,fb), there exists a Riemannian metric gcb such that

(2.22) fcffb

egfe=gcb-fcfb, fb=fcQcb.

We call the set (/δ

α, fa, fb, gcb) of such tensor fields an almost contact metric
structure [9, 10].

Let there be given, in a (2m+l)-dimensional differentiable manifold F, a dif-
ferentiable 1-form f=fadηa such that

fΛdfΛ-Λdf*0

m

everywhere. Such a manifold is called a contact manifold and the covariant vector
field fb is called a contact structure [1, 2, 9]. It is well known [3] that in any contact
manifold there exists always an almost contact metric structure (fb

a, fa, fb, gch)
such that

fcb=fcegeb, fcb — [7cfb — tfbfc

Such an almost contact metric structure is usually called a contact metric structure
[10]. However we shall, in the present paper, call an almost contact metric structure
(/Λ / α , A gcb) satisfying

(2.23) Vcfb-fbfc = 2afcb, fcb=fcegeb,

where a is a non-zero constant, a contact metric structure. It is easily seen that,
if an almost contact metric structure is a contact structure, we have

(2.24) LCb=2a(-gcb+fcfb)

with non-zero constant a.

§3. Hypersurfaces in an almost complex space.

Let V be an («+l)-dimensional differentiable manifold of class C°° and Γft a
symmetric linear connection of class C°° in V.2) Let there be given an n-άimen-
sional orientable submanifold M of class C°° differentiably immersed in V and a
certain vector field Ch along M which does not belong to the tangent space of M
everywhere. The set {M, Ch) is called a hyper surf ace in V, where M and Ch are
respectively called the basic submanifold and the normal vector field of the hyper-

2) T h e indices A, i,j, k, I run over the range {1, 2, •••, w, n+1}.
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surface {Λf, Ch}.
Let the basic submanifold M be expressed by equations

in local coordinates ξh in V, where ηa is a system of local coordinates in Λf. If
we put

(3. 1) A Λ = d6£\ db = dlv\

then i?6

Λ are n local vector fields along M, which are tangent to M and linearly
independent at each point of M. Denoting by (B\f d) the inverse matrix of

( ξ£ ), we have

B«hBb

h=δ%, Ba

hC
h=0,

(3.2)
ChBb

h=0, ChC
h = l,

and

(3.3) BahB\+Cha=δl

We now define the induced connection Γ*b induced on the hypersurface {Λf, Ch]

from the given connection Γft by the equation

(3.4) Γ?b=(dcBb

h+BcJBbΨ&B%

and a vector field U in M by

(3.5) h=<βeC
h+Bc>OΓ}'i)Cκ.

If we define the van der Waerden-Bortolotti covariant derivative j7cBb

h of Bb

h

along the hypersurface by

(3. 6) fcBb

h=^cB^+Bc

jBb

ιΓ^ - βα

ΛΓ^,

then /Zĉ δ71 is proportional to Ch. Therefore we can put

(3.7) VcBb

h=hcbC\

where hcb is the so-called second fundamental tensor of the hypersurface {Λf, Ch).
It is easily seen from (3. 6) that

(3.8) heb=hbc.

If we define the covariant derivative ψcC
h of the normal vector field Ch along

the hypersurface by

(3. 9) fcCh=deC
h+Bc

then we have

(3.10) pcC
h=-hc«

where hc

a is a tensor field of type (1, 1) in the basic submanifold Λf defined by

(3.11) Λcα=--(FcCΛ)£v
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We assume now that the (n-\-l)-dimensional manifold V is an almost complex
space, i.e. that V admits an almost complex structure FΛ The tensor field Fih

satisfies

(3.12) FjΨih = -δ).

Moreover we suppose that the normal vector field Ch of a hypersurface {M,Ch} has
the following property: the vector field FfO is tangent to M at each point. It is
easily seen that there exists such a normal vector field Ch along any orientable
submanifold M of V. In such a case, the hypersurface {M, Ch} is called briefly an
almost contact hypersurface in the almost complex space V.

Let {M, Ch} be an almost contact hypersurface in V. Then we can put

(3.13)

FihO=-f*Ba\

because FihO is tangent to M. It follows easily from (3. 12) and (3.13)

fcbfba=-*S+fcfa, fb

aP=0,
(3. 14)

Λα/α = 0, fafa = h

This means that the basic submanifold M admits an almost contact structure
(fba, fa, /&), which is called the induced almost contact structure of the hypersurface
{M, Ch).

If we differentiate covariantly both members of (3. 13), we obtain, taking
account of (3. 7), (3.10) and (3.13),

{ V i W ( V f f f ) ^
(3. 15)

The Nijenhuis tensor Njih of the almost complex structure Fth is by definition

(3. 16) Nji*=F/FlFih-Filf7iFjh - (f/jFi1 - ϊ/ίFj

ι)Fι

h.

Taking account of (3.13), (3.15) and (3.16), we find

NjihBcWS=[Scb«-fc(hb«fea-fb

ehea)+Mhc

efea^
(3.17)

+ [Scb + (hc«fefb-hb«fefc) ~ (fcfb

e ~fbfc
e)le]Ch +fc(f7jFih)OBb* -f^jF^OBc

(3.18)

where S's are tensor fields in M defined by (2. 2). We have immediately from (3. 17)

THEOREM 3. 1. For an almost contact hypersurface {M, Ch) in an almost com-
plex space V, the vector field (Nji

hBc

3Bci)wcvb is tangent to M at each point of M,
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va and wa being arbitrary vector fields in M satisfying conditions fav
a=0,faw

a=0,
if and only if SCb=O, that is, LCb=LbC.

Taking account of Proposition 2. 1, we have also from (3.17)

THEOREM 3. 2. For an almost contact hyper surf ace {M, Ch) in an almost
complex space, we have (Nji

hBc

jBbί)wcvb=0, va and wa being arbitrary vector fields
in M satisfying fav

a~0,faw
a=0, if and only if SCδα=0.

§4. Hypersurfaces in a complex space.

Let V be a complex space with complex structure FΛ Then the Nijenhuis
tensor Njih of Fi1 vanishes identically. As is well known (Cf. [17]), there exists in
V a symmetric linear connection Γ}t such that

(4.1) p,FiΛ=0.

In the present paper, by a complex space we mean a space admitting a complex
structure Fιh and a symmetric linear connection satisfying (4. 1).

Let there be given an almost contact hypersurface {M, Ch} in V. Then taking
account of (4.1), we have from (3. 15)

Pcfb

a+hcbf
a-hcafb=O,

Vcfb-\-hce

(4.2)
fah«f

On the other hand, since Njih=0, it follows from (3. 17) and (3. 18)

Scba --=fc(hbefea ~fbehea) -fb(hcefea ~fcehβ

a) + (fjb ~fblc)fa,

Scb =fchb -fbhc + (fcfbe -fbfce)le,
(4.3)

Sc=-fcehe-fcfele-\-lc,

where we have put

(4.4) hc=hcep~-=hcrfe

because of the last equation of (4. 2).
From the first equation of (4. 3), we have

PROPOSITION 4.1. For an almost contact hypersurface in a complex space V,
we have SCb

a^0.

From the expression (2. 3) for Lcb and the second equation of (4. 2), we find

(4. 5) Lc
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Thus we have

PROPOSITION 4. 2. For an almost contact hypersurface in a complex space V,
we have the expression (4. 5) for LCb and

(4.6) LCb=Lbc.

(Hermann [4]).

We have, from the second and the third equations of (4. 3),

h c b = (
(4.7)

hca=-(Vcfe)fea+hcf\

the first of which, together with hcb=hbc, implies

(4. 8) (Fcfe)fbe-(Fbfe)fce + hcfb-hbfc = Q.

Substituting (4. 7) in the first equation of (4. 2), we get

(4. 9) l7cfba + (l7cfe)fbefa + (Fcfe)feafb = 0.

We have moreover from (4. 2)

(4.10) (Fc/e)/* = -/c, {Vcfe)fe=L

If we assume that the almost contact hypersurface is normal, that is, S c δ

α=0,
and consequently Sc&=0, then from the second equation of (4. 3), we find

(4.11) hb+fbele=*fb,

where we have put

Thus (4. 5) becomes

(4. 12) Lcb=-

We have thus

PROPOSITION 4. 3. If an almost contact hypersurface in a complex space V is
normal, we have equation (4. 11) and the expression (4. 12) for LCb.

In the normal case, we have from the first and the third equation of (4. 3)

(4. 13) hcefea-fcehe

aJrlcfa=fcp'\

(4. 14) hcaJrhf

dfcff<ia=fcheafe~fcclefa,

where

pa=hcefeafCJrfclcfa.

From (4.14) we find (4. 11) and consequently

(4.15) hc

efea-fcehea+lcfa=fc(hfdffW+plefa),
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which is equivalent to (4.13). Thus we see that (a) Scb

a=0, (b) (4. 13), (c) (4. 14) are
all equivalent to each other.

On the other hand, from the third equation of (4. 2), we have

(4.16) hca=-(i7cfe)fea+hcf*.

Substituting (4. 16) into (4. 13), we find

(4. 17) Pcfa+(Fffd)f/U-fcehef«=fcp«.

Conversely, if (4. 17) is satisfied, we have (4. 13) by virtue of the third equation
of (4. 2). Thus we see that (4. 13) and (4. 17) are equivalent to each other. Thus
we have

THEOREM 4.1. For an almost contact hypersurface in a complex space, the
following conditions are equivalent to each other.

(a) Scb

a=0,

(b) hc

efea-fceh

(C) hc

a + hedfce

Since (b), (c) and (d) above can respectively written as (b') Sc

efea=0, (c') Sc

b=0

and (d') O%(pef
d) = (lc-fcple)fa, Sc=0,

where

(4.18) 05=5J5S+/cβ/dα-/c/βδS,

we have

THEOREM 4. 2. For an almost contact hypersurface in a complex space, the
following conditions are equivalent to each other:

(a) SC6α=0, (bθ Sce/βα=0, (cθ Sca=0,

Coming back to the general case, if we take account of (4. 2), we have from
(2. 2) and (4. 3)

(4. 19) Ncb

a =Mhb«fea -fb

ehea) -Mhcefea ~fc

ehe

a)+(hcefb

c-hbefc
e)fa.

Thus, if Ncb

a=0, then we have from (4. 19)

hcefb

e-hbefce=fc(fb

ehe)-Mfcehe),
(4. 20)

hefafeha

Conversely, if (4. 20) are satisfied, we have Ncb

a=0.
The second equation of (4. 20) is equivalent to
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On the other hand, the first equation of (4. 20) is equivalent to

LCb=0,

if we take account of the expression (4. 5) for Lc&. Thus we have

THEOREM 4. 3. For an almost contact hypersurface in a complex space, a
necessary and sufficient condition for the induced f-structure fba to be integrable is
that

(a) Scb

a=(fcSb~fbSc)fa, (b) L c 6 =0,

We next suppose that the distribution M, i.e. fadya=0 is integrable. A necessary
and sufficient condition for that is Ncb

afa=0. If this is the case, we have from
(4.19) that

(4.21) hcefb

e-hb

efce=0

and consequently Ncb

a=0 which means that the/-structure fb

a is partially integrable.
Conversely, if Ncb

a=0, then we have (4. 21) and consequently Ncb

afa=0. But, if we
take account of (4.12) and (4.19), we see that the three conditions Ncb

a=0, Lcb=0
and hCb+hfefcffbe=0 are equivalent to each other. Thus, we have

THEOREM 4. 4. For an almost contact hypersurface in a complex space, the
following four conditions are equivalent to each other:

(a) The distribution M determined by the projection operator lc

a=—fcbfba is in-

tegrable (NCb
afa = 0).

(b) The induced f-structure fb

a is partially integrable (NCb
a=0).

(c) Lcb=0.

(d) hcb+hfefcffbe=0.

Combining Theorems 4. 2, 4. 3 and 4. 4, we have

THEOREM 4. 5. For a normal almost contact hypersurface in a complex space
(Scb

a=0), the following three conditions are equivalent to each other:

(a) The induced f-structure fb

a is integrable (NCb
a=0).

(b) The induced f-structure is partially integrable (NCb
a = 0).

(c) The distribution M, i.e. fadηa=0 is integrable (Ncb

afa=0).

We see from (4. 7) and (4. 9), taking account of (4. 10), that following three
conditions are equivalent to each other:

(a) pcfba=θ,

(b) pcΛ=-/cΛ, Vcfa=lcf\

(c) hcb=hcfb, hca=hcfa.
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When the condition (c) above is satisfied, we have, from hCb=hbfc, hb=λfb.
Therefore, we have

THEOREM 4. 6. For an almost contact hypersurface in a complex space, the
following three conditions are equivalent to each other.

(a) /7cΛα=0.

(b) pcfb=-lcfυ and f7cf
a=lcf

a.

(c) hcb^tfcfb and hc

a=tfcf
a,

λ being a certain function. When one of these conditions is satisfied, the induced
f-structure fba is integrable.

§5. Hypersurfaces in a locally flat complex space.

We consider in this section a complex space V which is locally flat, i.e. whose
curvature tensor vanishes identically. Taking an almost contact hypersurface {M, Ch)
in such a complex space F, we obtain

(5.1) ydFcBb

h-pcpdBb

h=-RdcbaBah,

(5.2) PdPcCh-pcpdC
h=-O,

as a consequence of the local flatness of F, where

is the curvature tensor of the induced connection Γ?b. Substituting (3. 7) and (3. 10)
in the left hand sides of (5.1) and (5. 2) we have

(7dhcb—ψchdb+hhcb—lchdb=0,
(5.3)

h h h l h l O

We suppose that an almost contact hypersurface {M, Ch} of a locally flat com-
plex space F satisfies

(5.4) hcb=λfcfb,

Substituting these equations in (5. 3), we get

(5.5)

by means of Theorem 4. 6. Summing up, we have

THEOREM 5.1. If, in a locally flat complex space, an almost contact hyper-
surface satisfies one of three conditions (a), (b), (c) mentioned in Theorem 4. 6, the
induced connection is locally flat and the function λ appearing in Theorem 4. 6
satisfy
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Let there be given an almost contact hypersurface {M, Ch) satisfying (5.4)
in a locally flat complex space V. If we suppose M to be simply connected, there
exists in M, by virtur of the second equation of (5. 5), a function a such that
Ob—fbl. On making use of this function σ, we put

(5.6) Ch=p-λCh, p=e°.

We have thus a new hypersurface {M, Ch) having the submanifold M as its basic
submanifold. The induced almost contact structure of the new hypersurface {M, Ch)
is (/δα, fa, fb) as a consequence of (3.13), where fba is the same as the corres-
ponding one of {M, Ch} and

(5.7) 7 α = p / α , Λ = p - 7 i .

The induced connection of {M, Ch} is the same as the induced connection Γ%b of

{M, Ch) because of (3. 4). If we take account of (3.10) and (5. 6), we have

(5.8) VcCh=-hcaBa

h, hca=p-ιhc0',

h being zero, and, if we take account of (3. 7) and (5. 6), we find

(5.9) pcBbh=hcbCh, hcb=ρhcb,

where hCb and hc

a are tensors determined, corresponding to hCb and Ac

α, by the new
hypersurface {M, Ch). We have from (5. 4), (5. 7), (5. 8) and (5. 9)

hcb=λfcfb, hc

a=λfcfa,

where we have put λ = p~1λ. Therefore we have from Theorem 4. 6

Summing up, we have

THENREM 5. 2. If, in a locally flat complex space V there exists an almost
contact hypersurface {M,Ch} with simply connected basic submanifold M, and if the
hypersurface {M, Ch) satisfies

with a certain function λ, then there exists in V an almost contact hypersurface

{My C
h} such that

where (fba, fa, fb) is the induced almost contact structure of {M, C'1} and

fba=fb

a, fa=pfa> Λ = r 1 Λ Ch=p-ιc\
p being a certain function in the common basic submanifold M.

Let CAm be the 2m-dimensional space of m complex numbers (z1, z2, •••, zm), 2m

being equal to n+1. If we put

( α = l , 2, •••, m),
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then (xa, xm+a) are cartesian coordinates in CAm.

Let there be given an almost contact hypersurface {M, Ch) satisfying

FcΛα=0, /7c/α=0, pc/&=0,

hcb = λfafb, hc

a = λfcf
a.

Then, {My Ch) is congruent to a portion of the almost contact hypersurface {M, O1}
under the group of all afϊine transformations operating on CAm and preserving the
complex structure of CAm, where the submanifold M is defined by the equations

(5. 10) Xm = φ(f), X2m

φ(t) and ψit) being certain differentiate functions, and the normal vector field Ch

by the equations

(5.11)

~~ dt } ~~ dt

Thus we have

THEOREM 5. 3. If in the 2m-dimensional space CAm of m complex numbers
za=xa+*/—lxm+a (α=l, 2, ~ ,ni), there is given an almost contact hypersurface {M,Ch}
with simply connected basic submanifold M, and if the hypersurface {M, Ch) satisfies

hc«=λfcf*

with a certain function λ, then the basic submanifold M is conjugate to a submanifold
defined by equations (5. 10) under the group of all affine transformations operating
on CAm and preserving the complex structure.

§6. Hypersurfaces in an almost Hermitian space.

We consider an almost Hermitian manifold V of differentiability C°° with almost
complex structure Fιh and almost Hermitian structure Gμ. Then we have

(6.1) FjΨih=-δl

(6.2) FjΨ%*Gik=Gji

and the tensor

(6.3) Fjt=FjιGu

is skew-symmetric. If the Riemannian connection defined by Gj% satisfies

(6. 4)

then the manifold is called an almost Kάhlerian manifold. If the Nijenhuis tensor
Njih defined by (3.16) vanishes identically, the almost Hermitian manifold is called
a Hermitian manifold and the almost Kahlerian manifold a Kάhlerian manifold. A
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necessary and sufficient condition for an almost Hermitian manifold to be a Kahlerian
manifold is given by

(6.5) p yFiΛ=0.

(Cf. Yano [17])
We now consider an ^-dimensional orientable submanifold M in an almost

Hermitian manifold V, V being (w+1)-dimensional. Denoting by Ch the unit normal
to the submanifold M, we have a hypersurface {M, Ch) and FfO is tangent to M.
Then to any orientable submanifold M of n dimensions there corresponds uniquely
a hypersurface {M,Ch} with the unit normal vector field Ch and consequently the
submanifold M can be identified with the hypersurface {M,Ch}. We call such a
submanifold M briefly an almost contact metric hypersurface.

If we consider a hypersurface M, there exists in M the induced almost contact
structure (/Λ / α , fb) defined by (3. 13) and it satisfies the condition (3.14). On the
other hand the induced Riemannian metric on the hypersurface M is given by

(6.6) ge*=GjiBc*Bb\

Transvecting (6. 2) with BJBtf and taking account of (3. 13), we find

(6.7) fcfΛegfe+fcft>=gcb.

Transvecting (6. 2) with BjQ and taking account of (3. 13), we have

(6. 8) fcffaΰfa=0

or

(6. 9) fcafa = 0,

where

(6. 10) fca=fcfQfa

is a skew-symmetric tensor.
Finally, transvecting (6. 2) with GO and taking account of (3. 13), we find

(6. 11) fefbgCb = l.

Thus, from / α / α = l , (6. 8) and (6.11), we see that

(6. 12) fcgcb=fb.

Summing up, we see from (6. 7) and (6.12) that in a hypersurface M of an
almost Hermitian space V there exists an almost contact metric structure (/&α, fa,
fb, Qcb) composed of the induced almost contact structure (/δ

α, fa, fb) and the induced
Riemannian metric gCb. We call this structure the induced almost contact metric
structure of the almost contact metric hypersurface.

Now the equations of Gauss (3. 7) and those of Weingarten (3. 10) in our metric
case are respectively given by

(6.13) ΓcBb

h=hc,bC\
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(6.14) pcC
h=-hc

aBa\

where

(6. 15) hca=hcbg
ba

and the vector field h defined by (3. 5) vanishes identically.
Thus, differentiating (3. 13) covariantly along the hypersurface, we find the

expressions (3.15) for (pjFih)Bc>Bb

ι and (ψ jF^BjO with vanishing h, which imply
the expressions (3. 17) for NJl

hBc

JBb

l and NjihBcjO with vanishing h.

§7. Hypersurfaces in a Kahlerian space.

We assume now that the enveloping almost Hermitian manifold V is a
Kahlerian space. Then for an almost contact metric hypersurface of V we have
from (3. 15) with vanishing lb

ί7cfba-\-hcbf
a-hc

afb=0,
(7.1)

f7cfb+hcefb

e=0,

because of pjFih=0, where the second equation is equivalent to

f/cfa-hcefea=0.

When the second fundamental tensor hcb has the form

(7. 2) hcb=agcb-{-βfcfb,

we say that the almost contact metric hypersurface is contact umbilic [13]. We
have from (7. 1) and (2. 23)

PROPOSITION 7. 1. When the almost contact metric hypersurface in a Kahlerian
manifold is contact umbilic, we have

fcfl>a= —Oί{gcbfa — Qcafl),

(7.3)
\7cfb = ttfeb

and the hypersurface is contact metric.

The enveloping almost Hermitian manifold being Kahlerian, we have expres-
sions (4. 3) for Scb

a, Scb, Sc

a, Sc with vanishing lb and from (4. 5)

(7.4) Leb=-(hcb+hfbfb'fq°)+fchb.

From the expression (4. 3) for Scb

a with vanishing lb and (7. 2) we have

PROPOSITION 7. 2. When the almost contact metric hypersurface in a Kahlerian
manifold is contact umbilic, then the almost contact metric hypersurface is normal.
(For the totally geodesic case, see Okumura [7, 8], Tashiro [11, 12])

Since the expression (4. 3) for Sc

a can be written as
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(7. 5) Sce9eh=-(hcb-hfefcffbe)+fchb,

we have from (4. 3)

PROPOSITION 7. 3. For an almost contact metric hypersurface in a Kάhlerian
manifold, the condition

(7.6) hc=hc«fa=λfc

with λ=hcf
c=hcbfcfb is equivalent to one of the following conditions

(7.7) S c δ =0, Sc

egeb=Sb

egec, Sc=0.

(Cf. Okumura [7])

We shall now study the case in which the induced almost contact metric
structure is normal, that is, Scb

a=0. We know that in this case all the S's vanish.
Thus from (4. 3) with vanishing 4, we have

(7.8)

from which
he*+hf*fe'fd*=λfef«,

or equivalently

fc(hb«fea -fb

ehea) -fb(hcefea -fcehe

a) - 0,

fchb—hcfb=O,

Conversely, if one of these is satisfied, we have hc — λfc and

U efa fell a — A
rlc J e J c Me — U>

and consequently all S's vanish. Thus we have

PROPOSITION 7. 4. A necessary and sufficient condition for an almost contact
metric hypersurface in a Kάhlerian manifold to he normal is

(7.9) hS+

or equivalently

(7. 10) hc,b-h

If (7. 9) is satisfied, then we have hc

afa=λfc and consequently we have, from
the third equation of (4. 3) with vanishing h, S c

α=0. Conversely, if S c

α=0, then we
see from (7. 5) that hb^λfb and consequently (7. 9) is satisfied because of (7. 8).
Thus we have

PROPOSITION 7. 5. A necessary and sufficient condition for an almost contact
metric hypersurface in a Kάhlerian manifold to he normal is Sc

a=0. (Cf. Okumura [7])



240 KENTARO YANO AND SHIGERU ISHIHARA

Now (7. 8) is equivalent to

(7.11) hcefb

e+hbefc
e = 0

which is, by virtue of the second equation of (7. 1), equivalent to

(7.12) ΓcΛ+Γ6Λ=0.

This means that the vector field fa is an infinitesimal translation, since fa is a
unit vector field. Thus we have

PROPOSITION 7. 6. A necessary and sufficient condition for an almost contact
metric hyper surf ace in a Kάhlerian manifold to be normal is that fa defines an
infinitesimal translation. (Okumura [8])

Now if (7. 10) is satisfied, then we have hc = λfc and consequently (7. 4) gives

which becomes, by virtue of (7. 10)

Lcb=-2hfefcffbe.

Conversely, if Lcb has this form, then Scb=Lcb—Lbc = 0 and Proposition 7. 3
gives hc=λfc, and consequently from (7. 4) and the equation above

Thus we have

PROPOSITION 7. 7. A necessary and sufficient condition for an almost contact
metric hypersurface in a Kάhlerian manifold to be normal is

(7.13) Lcb = -2h

From Propositions 7. 3, 7. 4, 7. 5, 7. 6 and 7. 7, we get

THEOREM 7. 1. A necessary and sufficient condition for an almost contact
metric hypersurface in a Kάhlerian manifold to be normal is that one of the following
equivalent conditions is satisfied.

(a) hc

a<+hf<
ίUfd

a>=λfcf%

(b) hcb-hfefcffb

e=λfcfb,

(c) Sca=0,

(d) p c / 6 + r & / c = 0 ,

(e) L

If we assume now that an almost contact metric hypersurface in a Kahlerian
manifold is contact metric, then we have from (2. 24) and (7. 4)

(7. 14) hcb+hfefcffb

e=2agcb-fc (2afb-hb)
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with a non-zero constant a. Transvecting (7. 14) with / δ , we find

hc=hcbfh=λfc,

which implies together with (7.14)

hch-\-hfefcf he=2agct>+(λ-2a)fcfh.

If we assume moreover for the hypersurface to be normal, then we have from
Theorem 7.1

hcb — hfefcffbe = λfefb.

Adding these two equations, we obtain

Thus, taking account of Propositions 7. 1 and 7. 2, we have

THEOREM 7. 2. A necessary and sufficient condition for an almost contact
hypersurface in a Kάhlerian manifold to be normal and contact metric is that it is
contact umbilic. (Tashiro [11, 12], Tashiro and Tachibana [13])

We now assume that the tensor fb

a is a Killing tensor, that is, it satisfies
(Yano [16])

Then, we have from the first equation of (7. 1)

2hcbf
a-hcafb-hb

afc=Q,
from which

hcb=λfcfb,

and consequently

The converse being evident, we have

PROPOSITION 7. 8. A necessary and sufficient condition for fba of an almost
contact metric hypersurface in a Kάhlerian manifold to be a Killing tensor is

(7. 15) hCb=λfcfb,

or equivalents

(7. 16) Fcfba=0, pcfb=0.

We next assume that the tensor fba is harmonic. Since we have, from the
first equation of (7.1)

fcfbaJrfbfacJrfafcb = OJ

the condition for fba to be harmonic is
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from which

hc=hc

afa = λfc

with
λ=hcbf

cfb=hcbg
cb.

The converse being evident, we have

PROPOSITION 7. 9. A necessary and sufficient condition for fba of an almost
contact metric hypersurface in a Kάhleήan manifold to be harmonic is

(7. 17) hc=hc*fa=λfc, λ=hcbf
cP=hcbg

c\

We next study the case in which fc is harmonic. Since the second equation
of (7. 1) gives gcb[7cfb=0, the condition for fc to be harmonic is

(7.18) ΓcΛ-Γft/c=0.

In this case, we have LCb=0 from the definition of Lc». Conversely, if

Lcb =fΛPefb — fbfe) = 0,

then we have

from which, fbf7bfc=0, and consequently

Thus a necessary and sufficient condition for fe to be harmonic is Lc& = 0. In
this case, we have first of all

Scb=0, Sc=0, he=λfe

and from the second equation of (7.1)

hcefb
e~hbefce = O,

from which

e = λfcfb,

and consequently SCb
a and Sc

a take respectively the forms

Thus we have

THEOREM 7. 3. A necessary and sufficient condition for the vector field fc of
an almost contact metric hypersurface in a Kdhlerian manifold to be harmonic is
Lcb^O and in this case the S's are given by
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Scb

a=2(fchb

e -fbhc*)fea, Scb=0,

(7.19)

S e

α = 2 * / / C ' / Λ Sc=0.

Thus, if fc is harmonic, we have hc=λfc and

Lcb =-(hcb + hfefcffbe) + λfcfb = 0,

from which, transvecting with gcb,

λ=hebf
cfb=hebg

eb.

Thus, from Proposition 7. 9 and Theorem 7. 3, we have

PROPOSITION 7.10. If, for an almost contact metric hypersurface in a Kdhlerian
manifold, the vector field fc is harmonic, then the tensor field fCb is also harmonic.

If we assume finally that the induced /-structure fba of an almost contact
metric hypersurface in a Kahlerian manifold is integrable, i.e. NCb

a=0, then taking
account of lb=0, we find from (4. 20)

(7.20) hcb=fchb+fbhc-λfcfb) λ=hctfeP

which is equivalent to

(7.21) Fcfba=fc(fbha-hI)f-),

or

(7.22) Fcfb=-fcfb

ehe

by virtue of (4. 2) with vanishing lb. Thus we have

PROPOSITION 7. 11. A necessary and sufficient condition for the induced f-
structure fb

a of an almost contact metric hypersurface in a Kahlerian manifold to
be integrable is that one of the conditions (7. 20), (7. 21) and (7. 22) be satisfied.

We assume that S c δ

α=0 and Ncb

a=0. Then SCδα=0 implies Sc=0, from which

we find

hb=λfb.

Therefore, we have
hcb=λfcfb, [7cfb

a=0, j7c/i=0

respectively from (7. 20), (7. 21), (7. 22). We have thus

THEOREM 7. 4. A necessary and sufficient condition that the induced f-structure
be integrable for a normal almost contact metric hypersurface of an Kahlerian
manifold is that one of the following conditions be satisfied:

(a) pcfb
a=0, (b) pc/6=0, (c) hcb=λfcfb.
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§8. Hypersurfaces in a locally flat Kahlerian space.

We suppose that the enveloping manifold V is a Fubini space. Then the
curvature tensor of V is given by (See for example Yano [17])

Fji—FjhFu—2FkjFih)

with a constant k, where Fji=FjιGu. We consider now an almost contact metric
hypersurface in a Fubini space V. Substituting the above expression of Kkjih in the
equations of Gauss and Codazzi

we find

(8.1)

Kfdfcb —fcfdb — 2fdcfb) = ψdhcb —

where KdCba is the curvature tensor of the hypersurface. If we now assume that
the hypersurface is normal and the induced /-structure fb

a is integrable, we have
from Theorem 7. 4

(8.2) ΓcΛ=0, hcb=*fcf,u

If we take account of the well known formula

b — prcf7dfb= —Kdcbafa,

we have by means of the first equation of (8. 2) KdCbafa=0, which implies k=0
and consequently Kkjih=0, KdCba=0 as a consequence of (8. 1) and the second equa-
tion of (8. 2). Thus we have

THEOREM 8.1. In a Fubini space, which is not locally flat, there exists no
normal almost contact hypersurface whose induced f-structure fba is integrable. (Cf.
Theorem 5. 2)

We have, taking account of (8. 2), from Theorem 5. 1

THEOREM 8. 2. //, in the Euclidean space En+1 of even dimensions with the
natural Kahlerian structure, there is given a normal almost contact hypersurface M
such that its induced f-structure is integrable, then the basic submanifold M is
conjugate to a portion of a submanifold defined by (5. 10) under the group of all
motions of En+1 preserving the complex structure.

We now suppose that the enveloping Kahlerian manifold is Euclidean, then we
have equations of Gauss and Codazzi

(8. 3) Kdβba

(8 .4) f7dhcb—i7chdb=0.
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If the almost contact metric hypersurface is normal, the vector field fa is a
Killing vector field and consequently we have (Cf. [16])

(8. 5) PcPb

Substituting (7. 1) and (8. 3) into (8. 5), we find

— Fc(hbefaβ) + (hdakcb ~ hcahdb)fd = 0,

~ (Fchbe)fae - hbe(hcafe ~Kefa) + λffahcb -fbkca) = 0,
or

(Vcfoe)fae -hbehcefa + λhcbfa = 0,

from which, by transvecting fa, we obtain

(8.6) hc«hca=λhc\

and consequently
(PcAΛΛα=0.

The last equation implies together with (8. 4)

(8. 7) Fchba^Afcfbfa,

A being a certain function, since hba=hab-
Differentiating covariantly the both sides of the equation hbefe=Λfb and taking

account of (8. 7), we have

from which, transvecting fb and taking account of (j7c/&)/δ=0, we find

(8.8) Pc^Afc.

Differentiating covariantly the both sides of (8. 8), we have

VdVc* = (fdA)fc + Apdfc,

from which, transvecting /7d/c, we obtain

(8.9) A(r*fcFdfe)=0,

where pdfc=gdepef
c.

Now, we consider the case ^4=0 everywhere. Then the hypersurface being sup-
posed to be connected, (8. 8) implies that the function λ is constant. The equation
(8. 7) implies pchba=0, which means that all proper values of hc

a are constant.
Taking a proper value C of hc

a, we have from (8. 6)

which implies C=λ or C=0. We denote by A the distribution spanned by all
proper vectors with proper value λ and by Do the distribution spanned by all proper
vectors with proper value 0. Then, A and Do are both integrable. In fact, we
take two vector fields va and wa belonging to Dx. From hc

avc=λva we have

hc

a(wdpdv
c)=
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by virtue of j7Λα=0. This equation shows that waψdv
a belongs to A . Therefore,

A is integrable. Similarity, we can show that the distribution A is also integrable.
Now, we have

wdfd{vcBc

h) = (wdpdv
c)Bcfι,

va and wa belonging respectively to A and A , which shows that A is parallel
along the integral manifold of A . We have further

w*pdC
h=0

for any vector field wa belonging to A , which shows that the normal vector field
Ch is parallel along the integral manifold of Do. Therefore, the integral manifold
of A is a portion of a plane.

If va belongs to A and wa belongs to A , supposing that the constant λ is non-
zero, we have

UJr -γCfι) =vcBc

h- -^hc

avcBa

h=0,

~- Ch\ =

that is, if we move along the integral manifold of A , the point ξfι+(llλ)Ch> does
not move and if we move along the integral manifold of A , the locus of the point
ξh+(X/λ)Ch is parallel to the integral manifold of A .

Summing up, we see that in case λ^O, the almost contact metric hypersurface
is a portion of

Sn or SrxEn~r

where Sr denotes an r-dimensional sphere and Es an s-plane. The dimension
number r is necessarily odd. In fact, the vector field fa belongs to A . If we take
a vector va belonging to A and being orthogonal to / α , then we see by making
use of (7.11) that fc

av° belongs to A Thus we see that the distribution A is odd
dimensional.

Suppose next that λ=0. Then, we have

(8.10) hcehea=0.

Let va be a proper vector of hc

a with proper value a. Then, we have, trans-
vecting (8. 10) with va, α=0. Thus, all proper values of hc

a being zero, we have
hc

a=0 and consequently the almost contact metric hypersurface is a portion of a
hyperplane. Summing up, we have

PROPOSITION 8.1. If, for a normal almost contact metric hyper surface} which
is connected, of the Euclidean space En]1 of even dimensions with the natural flat
Kάhlerian structure, the function λ is constant, i.e. if the function A vanishes iden-
tically, then the hypersurface is a portion of the following

Sn, SrxEn~r, En,
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r being an odd number such that l^r<Cn, where Sr is an r-dimensional sphere im-
mbeded naturally in En+1 and Ep is a p-plane.

In the next step, we consider the case in which the function A appearing in
(8. 7) does not vanish somewhere. If this is the case, we find from (8. 9)

in the open set U consisting of all points where the function A does not vanish.
Then, taking account of Theorems 7. 4 and 8. 2, we have

PROPOSITION 8. 2. //, for a normal almost contact metric hypersurface of the
Euclidean space En+1 of even dimensions with the natural flat Kάhlerian structure,
the function A does not vanish somewhere, then the open set U consisting of all
points where A does not vanish is conjugate to a portion of a hypersurface defined
by (5. 10) under the group of all motions of En+1 preserving the complex structure
and the curvature tensor of the hypersurface vanishes identically in U.

Let W be the closed set complementary to the open set U. Then, the function
A vanishes identically in W and consequently the function λ is constant in W
because of (8. 8). Therefore, the set W° of all interior points of W is a portion of
Sn, SrxEn~r or En by virtue of Proposition 8. 1. When W° is a portion of Sn or
SrxEn~r, W° is a symmetric space with non-vanishing curvature tensor, and con-
sequently the curvature tensor of the hypersurface does not vanish in the boundary
of W. On the other hand, by means of Proposition 8. 2, the curvature tensor
vanishes identically in U, and hence vanishes in the boundary of U, that is, in the
boundary of W. This contradicts the fact that the curvature tensor does not vanish
in the boundary of W. Consequently, W° is not a portion of Sn or SrxEn~r and
then it is necessarily a portion of a hyperplane En. Thus, we have

PPOPOSITION 8. 3. If the function A does not vanish somewhere, the hypersurface
is conjugate to a portion of a hypersurface defined by (5. 10).

Combining Propositions 8. 1 and 8. 3, we have

THEOREM 8. 3. If an almost contact metric hypersurface, which is connected, in
the Euclidean space En+1 of even dimensions with the natural flat Kάhlerian structure
is normal, and, if it is complete, then the hypersurface is one of the following

Sn, SrxEn~r, En,

r being an odd number such that l^r<n, or, the hypersurface is conjugate to a
hypersurface defined by (5.10). When the hypersurface is Sn or SrxEn~r, the rank
of the Levi tensor Lcb is equal to n—1 or r~ 1, respectively. In other cases, LCb is
of rank 0. (For analytic case, cf. Okumura [7])

Let there be given, in the Euclidean space En+1, an almost contact metric
hypersurface and assume that its induced /-structure is integrable. Then, substi-
tuting (7. 20) in the expression (8. 3) of the curvature tensor, we find
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Kdcba = {fdhc —fchd)(fbha —fahb).

Thus, Kdcba vanishes if and only if hc=hcbfb=Afc. Therefore, by virtue of
Theorem 4. 3, S c δ

α=0 if KdCba=0. Conversely, if we suppose SCb
a=0, we have hc

=λfc from Theorem 4. 3, and consequently Kdcba=0. Summing up, we have

THEOREM 8. 4. In the Euclidean space of even dimension with the natural

Kdhlerian structure, a necessary and sufficient condition for an almost contact

metric hypersurface to be normal is that its curvature tensor vanish identically, its

induced f-structure being assumed to be integrable.

We consider now an almost contact umbilic hypersurface. It is normal and

contact by virtue of Theorem 7. 2. The hypersurface being contact, the rank of

the Levi tensor LCb is necessarily equal to n—1. Then, we have from Theorem 8. 3

THEOREM 8. 5. //, in the Euclidean space En+1 of even dimensions with the

natural Kahlerian structure, an almost contact metric hypersurface is contact umbilic,

then the hypersurface is a portion of a hyper sphere Sn. (Tashiro [11, 12], Tashiro
and Tachibana [13], Kurita [5])
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