
ON MATCHING METHODS IN TURNING POINT PROBLEMS

BY TOSHIHIKO NISHIMOTO

§ 1. Introduction.

We consider here the asymptotic nature of solutions of linear differential equa-
tions of the form

(1.1) ε^=A(x,e)y

as the parameter ε tends to zero. Here A(x,έ) is 2-by-2 matrix such that

/0 1
(1. 2)

\ χ*+εφ(x,e) 0

where the function φ(x, έ) is holomorphic in the complex variables x and ε in a
domain of the x, ε-space defined by the inequalities

(1.3)

and εφ(x, ε) has a uniformly asymptotic expansion in powers of ε such that

(1.4) εφ(x,e)~Σφv(x)ε»
V = l

as ε tends to zero in the domain (1. 3) with the coefficients φv(x) holomorphic for

\x\ ^^o'

(1.5) Φ»(x)= Σ Φ^* Φ*^*%
μ=mv

where mv^0.
The quantities h and q are positive integers. Thus the equation (1. 1) has a

turning point at the origin. When h=l and q=l or h—\ and q=2, the asymptotic
solutions of the equation (1. 1) were constructed by Langer [3] and Mckelvey [4].
Their methods are the reductions of the given equations to simpler related problems
which can be solved by explicit technique. And for h=l and any positive integers
q, Sibuya [2] found some simpler related equations, but the analyses of them are
seen not to be completed. On the other hand, Wasow [6], [7] claimed that the
matching methods are also fruitful in fairly general cases. He treated the system
(1.1) with h~\ and an n-by-n matrix A(χ, ε). The matrix A(x, ε) has an asymptotic
expansion
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where the coefficieuts Av(x) are holomorphic n-by-n matrices in the domain (1. 3) and

/ 0, 1 \
. 0

0

Here the coefficient A^\x) is holomorphic for | # | ^ # 0 , and the quantities α, αn-u --,(h
are constants. At first he calculated the two types of formal solutions and then
proved that there exist fundamental solutions whose asymptotic expansions coincide
with the formal solutions in some neighborhoods of the turning point which overlap
the full neighborhood of the turning point even for arbitrary small ε.

Now it will be proved here that the equation (1. 1) with (1. 2) can be treated by
the matching methods employed by Wasow. The quantities h and q are arbitrary
positive integers, but it requires the fundamental assumption which will be described
below. We introduce the quantity

(1.6) α- 2k

The fundamental assumption is

(1.7) tn,-q+—>0

Under this condition, we can obtain the asymptotic representations of the
fundamental solutions explicitly.

Sections 2 and 3 contain the calculations of the formal solutions and in Sections
4, 5 and 6, we prove that there exist fundamental solutions whose asymptotic ex-
pansions coincide with the formal solutions in several subdomains which overlap
the full neighborhood of the turning point.

§2.

The

(2.1)

changes

(2.2)

Formal solutions for JC^O.

linear transformation

(1.1) into

£hχ-q/2 du
dx

- (

ί°

1

0

e)χ-

\u
xq/z )

.. :H
1 o,

o, Ίl
q /2 i 1— ε aτ« - J

By (1. 4) and (1. 5) we have
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(2. 3) v~ι μ-mv

oo oo

- 1 + Σ I Σ φvμ[χ-1εa]v/aχrt-*+v/a.

We remark here that by virtue of (1. 7), μ—q+v/aX) for v^l and μ^rnv, and

-γehx ^ 1=-γ[χ-1εa]h/a, εΛΛ?-«/2 = [Λ?-1εα]Λ/αΛ?.

Then (2. 2) can be written

(2. 4)

where

B(x, ε) ~ ( J 0

and #„(#) are holomorphic matrices functions of ^ 1 / α . This means that for every m,

B(x, ε)-

where £,»(#, ε) is bounded in the domain (1. 3).
Here we put

(2. 5) x = τa,

then (2. 4) becomes

(2.6) [ r - y p r ^ - = £ ( τ

where £(r, ε) is holomorphic for τ and ε in the damain defined by the inequalities

(2.7) |τ |^r 0, 0<|ε|=gε0, |argε|^(5o,

and has an asymptotic expansion when ε tends to zero:

(2.8) E(z^)~f]Ev(T)lT-h]\
v=o

The matrices functions Ev(τ) are holomorphic for |r |^r 0 , and

0 a
(2.9) ()

\ a 0

Since the characteristic roots of E0(τ) are distinct, there exists a linear transfor-
mation

(2. 10) u=P(τ, ε)z

which changes the equation (2. 6) into
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[ h γ D ( )[τhγτ=D(τ,ε)z

with the following properties:
a) D(τ, ε) is holomorphic in both variables τ and ε for

- α o l ^ - ^ - , 0<|ε|:gε0,

|argε|:g<50,

for sufficiently small b0 and arbitrary α0.
b) As I -z-~1<s I tends to zero, we have

(2.13) D(τ,ε)~ΣDυ(τ)[τ-hγ,
v=o

uniformly in (2.12).
c) The matrices Dv(τ) are diagonal and holomorphic for | r | ^ τ 0 .

e) The matrix P(τ, ε) is holomorphic in the domain (2.12) and

(2. 14) P(τ, ε) ~ Σ P»(τ)[τ-hY,
v=o

where P0(τ) is nonsigular constant matrix and Pv(τ) holomorphic.
This will be proved as follows. At first, if we transform the equation (2. 6) by

1 - 1

1 1

then (2. 6) becomes

(2. 6)* [τ-^τ—- =E*(τ, ε)u*,
dτ

where E*(τ, ε) has the same properties as E(τ,ε):

a 0

0 -a

Now let us define the matrix 7*(τ, ε) by the formula

Γ*(τ, ε) = /+[τ-1e]Qfc(τ), * = 1 , 2, ••-,

where / is 2-by-2 unit matrix and Qk(τ) is 2-by-2 matrix which is to be determined
successively. The transformation

u*=Tk(τ,ε)uk

changes the equation (2. 6)* into
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L J dτ

where

£*(r,e) =

If we replace {T+lτ'hYQidτ)}-1 by its geometric series, we have

E\τ, ε)~E*{τ) + + [ r ^ s ] * ^ t i ( r )

Since £?(τ) is diagonal and has distinct characteristic values, Q*(r) can be chosen
so as to make the coefficient of [τ~1e]fc diagonal. The infinite product 7\(τ, ε) T2(r, ε)
determines a formal series ΣΓ=o ̂ v(τ)[r-1ε]1' with the holomorphic coefficients. By a
Borel-Ritt theorem, we can construct a matrix function P(τ, μ), μ=τ~ιε, such that

a) P(τtμ) is holomorphic in τ and μ for
| τ | ^ τ 0 , O<|//|^&o, and arbitrary sector 3 of Λ«.

b) As μ tends to zero

where Qv(τ) can be calculated from Pμ(τ) (μ^v) formally.
Thus the transformation

1 - 1 \*
Mτ,μ)z=P(τ,6)z

1 1 /
changes the differential equation (2. 6) into the equation (2. 11) with the desired

properties.
Since all the matrices Dv(τ) of (2.13) are diagonal, it is easy to calculate a

formal series solution of the differential equation (2.11).

THEOREM 1. The differential equation (2. 6) possesses a formal matrix solution
of the form

(2. 15) u~ Σ ε
V=0

with the following properties'.

(2. 16)

Γ Σ ^hFr(τ)
Lr=0
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where the ύv(τ) are polynomials of degree v, at most, in log τ whose coefficients are
holomorphic in | τ | ^ τ 0 , and bounded in the domain (2.12).

(2.17)
Fh(τ)=fhlθgτ+Ph(τ),

where fiv(τ) (y=0,1, ••-,/?) are holomorphic in | r | ^ r 0 , and fu is a constant matrix.

Proof. If the series (2.13) were convergent,

(2.18) 2

with

(2.19) F

would be an actual solution of (2. 12). If the determinations of the integrals (2.19)
are chosen whose series expasions have no constant terms, then Fv(τ) have the
following properties:

(2.20) Fy(r)=rft->i\,(r) if v<h,

(2. 21) F,(r)=/y log τ+τh-ψv(τ) if i^Λ,

where Fv(τ) are holomorphic in | r | ^ r 0 and /„ are constant matrices. Then Fv(τ)
have the properties (2.17).

Also in the convergent case we may write

(2. 22)

= Σ £VGXτ) exp I
V=0 Lr=O

Here

(2. 23) Gv(τ) = τ-vGυ(τ),

where Gv(r) are polynomials of degree v at most in logτ with holomorphic coef-
ficients and Gv(τ) are bounded at τ=0.

Clearly (2. 22) is a formal solution of (2.11). The expression (2.15) is obtained
by multiplying the last member of (2. 22) to (2. 14) from the right and collecting
the same powers of ε. Thus (2.16) follows at once.

§3. Formal solutions in the neighborhoods of JC=O.

The transformation

(I 0
(3.2) y=[

\ 0 ε"
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with p=e1/c*+2\ p>0 for argε=0, takes the differential equation (1. 1) into

(3.3, f(
d s ψ( p) 0

where

Ψ(s, p)-Σ Σ φ,μp
vCq+2)+2hCtί-q)s^.

V=l μ=mv

We notice here that v(q+2)+2k(μ-q)=2h(β-q+va-1)>Q. If we put

then

where c(y) = v/2h-\-q—l/a and df(s) are bounded at 5=00.
Write the equation (3. 3) as

(3.4) ^=H(s,p)v

where

with

If we

then

(3.5)

fli(s)=|

introduce a

the matrix L

/ 0 1 \

•
\& 0 /

matrix Ω(s)

ΐv(s) can be

Hv(s

by

fl(s) =

written

/

H
\

/ 1

(o

0

Λ(s)

0

?(s)iϊ*(

0 \

0 /

\

}
s)Ω(s~1)

1 °
M\ d*(s)

0

0

where H*(s) is bounded at s=oo.
Let us consider the asymptotic properties of H(s, p), and we put

m

H{s, p ) - Σ HAs)?=Em{s, p).

Clearly in the domain (1. 3) and | s |^s 0 for arbitrary s0,

(3.6) Em(s,p) = pm+1E1,m(s,p)

where Eum(s,p) is bounded there. Now if we denote ml(q+2)+αq by d(m),
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0 ( S , P ) - Σ < * . ( S ) P - Σ * Σ * Φ.,.p"<«*n+tk<'-*s'
V=l V^d(w) μScQrrO

+ Σ Σ Φ»μp
vCq+2)*2hCμ-φsv

+ Σ Σ Φ>μp
Cq+2Hv+Ua"-^]χμ

V^cί(m) ju,>c(ra)

+ Σ Σ Φvμp
Cq+2Hvh2Ca-h)]χ^

v>d(m) μ.>c(m)

where Σ * Σ * involves the summation of the terms of powers of p higher than pm.
The first and second sums of the right members of (3. 7) can be written pm+1scΛm)E?>m

in the domain (1.3) and |s |>s 0 , where Ef,m is bounded there, and the remainder
terms can be written pm+1scCm+i:>Eftm in the domain (1. 3), where Ef>m is bounded
there. Then in the domain (1. 3) and |s |>s 0 , we have

(3. 8) Em(s, p)=s«/2-1/aΩ(s)E2m(s, p)Ω(s-1)[sll2hp]m+1

where E2m(s, p) is bounded.
Let

(3. 9) υ~ Σ vXs)p»
v=o

be a formal solution of (3. 4). Then vv(s) must satisfy the following equations:

ώ) I 1
(3.10) -τ-

ds
dv v

(3.11) ~ =Ho(s)o, + Σ Hμ(syv,-,.
US μ=l

The asymptotic solution of (3. 10) can be obtained from a result of Turrittin
[5]. Let S be the sector denned by

( 3 1 2 ) S: ^

Then the differential equation (3. 10) possesses a fundamental matrix solution vύ(s)
of the form

(3.13)

where

(3.14)

(3. 15) Wo(s)~

vo(s)=s"/iΩ(s)wίl(s) exp [Q(s)]t

2 / I 0 \ / î(s)
2 +?° \0 - l H 0 ί :

oo

Σ w0vs'C2+q^/2, as 5 tends to oo
v=o

0

in

where ^Oy are constant matrices and w00 is nonsingular. If ωz+q = l, the matrix

ί )vo(ωs) is a fundamental solution of (3. 10) whenever vo(s) is one. Hence
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there exist 2-\-q fundamental matrices solutions whose asymptotic properties as well
as their stokes multipliers are known in 2-\-q sectors respectively.

Next we calculate the solution of the differential equation (3.11), which is of
the form

(3.16) ^ .

with entire coefficients. The integral

(3.17) t(s)

is a solution of (3.16) if Γ(s) designates a set of paths γjfc(s) in σ-plane ending at
σ=s for every scalar integral contained in (3. 17). The paths will be specified later.

Let us define i(s), vo(s) and F(s) by the relations

(3.18) t(s)=Ω(s)t(s)exv[Q(s)],

(3.19) Vo(s)=Ω(s)vo(s) exp [0(5)],

(3.20) F(5) = 12(5)ίl(5)exp[Q(5)].

Then (3.17) becomes

(3. 21) *(s) = $o(s)ί exp [Q(s)-Q(σ)]vo(σ)-φ(σ) exp [Q(σ)-Q(s)]dσ.
JΓ(s)

Let S(so) be the domain defined by

(3.22) S(50): ssS, and |s |>s o>O.

For the application we have in mind that P(s) satisfies the condition

(3. 23) F(s)s~b is bounded in S(s0).

It follows then that

(3. 24) Vo(s)-1P(s)s-b+^/4 is bounded in S(s0).

With the abbreviations

(3.25) ^

From (3. 21), (3. 24) and (3. 25) every element of the matrix in the integrand of
(3. 21) has the form

(3. 26) pjk(σ)σ*-*" exp [&*(5<2+«>/2-<7<2+«>/2)L

where pjhis) is bounded in S(s0).
We introduce here the auxiliary variables

(3. 27) ζ =

The sector S in the σ-plane corresponds to a half plane Σ in the ζ-plane.
Clearly every line
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has one half line inside Σ. Hence we can draw rays /12 and hi through the origin
into the interior of Σ such that Re (βjkζ) increases monotonically to oo along ijkU^k).
Denote by λjlc{ξ){j^k) the straight half line in Σ which is parallel to ljk and has
one end point at a point ζ of Σ. Then Re (βjkζ) also increases monotonically to oo
along λjk(ξ). We define γjk(s) for j^k as the curve in the sector S of the σ-plane
whose image under (3. 27) is λjk(ξ). Then Re [feO)] grows monotonically to 00 as
σ recedes to 00 along γjk(s).

In order to make sure that all points of γjk(s) lie in the domain S(s0) of the σ-
plane, we must limit s to a domain S(si), where si is sufficiently large. As to the
paths γjj(s), it suffices to take them as segments from some point s2 in S(si) to

), where s2 is so large that these segments lie in S(s0) for all s€S(si).

LEMMA 1. / / the differential equation (3.16) satisfies the condition (3. 23), then
it possesses a solution of the form

(3. 28) t(s)=sb+1Ω(s)t*(s) exp [Q(s)]>

where t*(s) is bounded as s-*oo in S.

Proof. If (3. 26) is integrated along γjk(s), it becomes in terms of ζ and ξ

(3.29) -£- [ exp [βjk(ξ
2 + # h1kφ

Let ζ on λjk(ξ) be expressed in the from

where δjk is a constant of modulus 1 and r is the arc length on ̂ ( f ) . Then (3. 29)
can be written

O poo I- γ Π|2(6-3g/4)/(q-+2)
( 3 ' 3 0 ) Wq ί2Cδ-3<z/4)/C9+2) ) exP [-βj^r]pjk(σ)\l+^~J dr.

If i^F^, then Re (βjkδjk)>0 on ^( f) and thus the integral in (3. 30) is a uniformly
bounded function of ξ for s€S(si). Hence (3. 30) is of the order O(sb~3q/4) as s—>oo
in S(5i). If i=k, βjj=O in (3. 26), and then the integral of (3. 26) along γjj(s) is
O(s&-«/4+1). It follows then that

=sb+1t*(s)

where t*(s) is uniformly bounded as 5-̂ 00 in S, and so Lemma 1 follows from (3. 18).

LEMMA 2. The differential equation (3. 11) possesses a particular solution of
the form

(3. 31) υXs)=s«/i+veΩ(s)wv(s) exp [Q(s)]>

where wv(s) is bounded as s—*oo in the sector S, and
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(3.32) e=1+W + - f — 4
An Δ a

Proof. We prove this by induction. For v=0, the statement in Lemma 2 is
contained in (3.13), (3.14) and (3. 15). Assume it to be true for v<m. For v=m
the μ-ίh term of the summation in (3. 13) has the form

*-μ exp

where

The exponent f(v,μ) in this expression is largest for μ=l, and then for v=m we
can apply Lemma 1 to the equation (3. 11) with

b=f(m} 1).

This leads us to the formula (3.31) for v=m, and Lemma 2 is proved.

Then we get the following theorem.

THEOREM 2. Let k(s) be defined by

0 if
(3.33) () \

/ |5|>5o,

then the differential equation (3. 4) has a formal matrix solution v of the form

(3. 34) v~ Σ β(s* ('0w,,(s)s* ( β )« / 4[s*C β ) ed1' exp [Q(s)]>
v=o

where wv(s) are bounded in the domain (1.3) and | s |^s 0 or | s |>s 0 according to
k(s)=0 or 1.

§4. Existence Theorem (1).

In this section we prove the following theorem.

THEOREM 3. For every sector T of the τ-plane with vertex at the origin and central
angle less than π/h, and for every positive integer m, there exists a domain of ε, r-
plane defined by

(4.1)

(si, δu c\ and c2 are certain constants independent of e) and an actual solution u(τy ε)
of the differential equation (2.6) of the form

(4. 2) «(r, ε) - u(τ, e) exp Γ Σ e l"ΛF,(τ)l,
Lv=o J

which is related to the formal solution (2. 15) as
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m

(4. 3) ώ(r, ε ) - Σ tiv(τ)ε»=Em(τ, e)^]™* 1 ,
v=o

where Em(τ, ε) is a matrix function that is bounded in the domain (4. 1).

Proof. At first we analyze the equation (2.11).
Let

m+h

(4.4) Dn(r,ε)= Σ D,(τ)[τ-^γ,
v=o

Γm+h ~]

(4. 5) Zm(τ, ε) = exp Σ zv~hFv(τ) .

Lv=o J
Then zm(τ, ε) is a fundamental matrix solution of a differential equation

(4.6) [r- 1e]Λr-^=ΛΛ(r,ε)*.
dτ

We write (2.11) in the form

(4. 7) [τ-H\*τ ̂  = [Dm+φ-Dm])z,

(4. 8) (B-2>m) = [r-1e]"+Λ+1£:m(r, ε),

where ^ ( r , ε) is bounded in (2. 12) provided ε is taken small enough.
By the method of variation of constants, any solution of the integral equation

(4. 9) z(τ, e) = zm(τ, ε) + ε'λ zm(τ, ε)zm(σ, ε)-ι[D{σ, ε)-Dm(σ, ε)]z(σ, tήσ^dσ

satisfies the given differential equation (2. 11). Here Γ(τ) designates a set of paths
of integration γjk(τ), (j,k=l,2) in the σ-plane which are described later.

Let

(4.

(4.

(4.

(4.

10)

11)

12)

Then (4.6) becomes

13)

where

Kir,

Zm(τ,

Z(τ,£

h

V=0

e)=z(τ,

)^zm(τ,

r, ε) exp [—ε~hK(

ε) exp [—ε-hK(τ,

e)+L[z(τ,ε)],

*, e)],

L[z(τ, e)]=«-»C zm(τ, ε) exp{ε'h[K(τ, ε)-K(σ, ε)]}zm(σ, ε)"1

(4. 14)
• [D(σ, ε)-Dm(σ, ε)]z{σ, ε) exp {e-*[K(σ, ε)-K(τ, ε)

From (4.10), (4.11) and Theorem 1 (2.17), we have
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[ m+h

[ m+h η

Σ (τ-hy-iFΛτ) \,
\>=h+l Jwhere Pv(τ) are bounded for | τ | ^ r 0 . Hence if, in addition, \T~h\ is small enough,

for instance,

(4.15)

then zm(τ, ε) as well as zm(τ, ε)"1 are bounded. (4. 15) is satisfied if d in (4. 1) is
sufficiently large.

Let Kj(τ,e), j=l, 2 be the diagonal elements of K(τ,ε) and set

(4. 16) μjk(τ, ε) = Kj(τ, ε)-Kk(τ, ε).

Then the j—k element of L[z(τy e)] has the form

(4. 17) L[2(τ, e)]jk= C exp e-*[μJk(τ)-μJk(σ)]LJk[2(σ,
Jrjk

where Ljk[z(τ,ε)] is a linear form of the two components in the k-ίh column of
z(τ, ε). By (4. 8) and boundedness of zm, zή1, the coefficients of this linear form are
bounded if (2. 12) and (4. 15) are satisfied.

Next we choose the path γjk(τ) in such a way that the exponential function in
(4.17) remains bounded as ε tends to zero.

Let

(4. 18) /$(r) = - ί τ M e x p (τri*)-exp (*#)] ( z = V - l ) ,

then after a short calculation we get

(4. 19) ^

The condition

(4.20)

determines a damain H in the τ-plane which depends on ε. For convenience we
introduce auxiliary variables ξ and ζ by

(4.21) ξ=τ\

(4.22) ζ=σ\

Let Σ be the image of H in the f-plane under 4. 21) and in the ζ-plane under
(4. 22). Σ and H are sectors of annuli. Their central angles at the origin are less
than π in the £-plane and less than πjh in the τ-plane.

Let Σ*Z)Σ be an isosceles triangle with the same axis of symmetry as Σ, and
its sides passing through the endpoints of the smaller circlar arc of boundary of
Σ, and its base tangent to the larger circular arc of boundary of Σ. (see Figure 1.)
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Without loss of generality we can assume that the base of Σ* is not parallel
to the imaginary axis of f-plane. Here we choose δλ in (4.1) so small that the
base of I7* is not parallel to any ray through the origin of f-plane on which

(4.23) Re[ε-Λf]=0

for all ε such that |argε |^^i^5 0 .
The size β is to be independent of ε and so small that any direction from the

point ξ2 or f3 into I7* is not parallel to a ray through the origin on which (4.23)
hold for some ε with |argε|^di. (see Figure 1)

If ft and r2 are the radii of the circular arcs that bound Σ, then we have

(4.24) ri=\ciε\h<r2=c2

h.

Since the shape of Σ* is independent of
ε, there exist positive constants ki and k2

depending only on β such that

(4.25) |?l|=&lft, |?2|=Ξ&2?2.

Fig. 1.

Now c\ and c2 in (4.1) must be chosen
such that the inverse image H* of I7* in
the τ-plane lies in the domain where (2. 12)
and (4.15) are satisfied. 27* lies in the ring

(4.26) Ifil^lίl^l

Then we have

(4. 27)

The first of these inequalities implies that

(4.28) I Γ - ^ I ^ Γ ^ Γ 1 .

Then (4. 15) can be satisfied by taking cλ large enough. The condition | τ | ^ τ 0 is
satisfied if c2 is taken sufficiently small. In order to hold |ίi |<|f 2 | , it may be
necessary to take ελ in (4.1) smaller than ε0.

Now let us consider the domain I7* in the ζ-plane and let ζ=£ be some point
in 21*. From the methods that I7* was constructed, the quantity

(4. 29) Re [ε-hμ$(ξ1/h)]=Re\ε~h~jr (e*P πik-exp πij)l

with ζ in place of f, changes monotonically if ζ moves from ζ2 along a straight
segment to ζ and to <f3. Therefore (4. 29) with ζ for ξ decreases along one of the
straight paths ξ2ζ or ζ3ζ. For j^k, let Ajk(ζ) be one of the two segments along
which (4. 29) decreases. The inverse image in the τ-plane of ^( f) will be our path
γjk(τ). For j=k, we may take either of these paths as TV/(Γ).

Finally we choose τ0 and b so small that Re [ε~hμjk(σ, ε)] also decreases along
7V*(τ). If b is decreased, it may be necessary to increase ci and to decrease εly but
this reduction does not destroy any of the inequalities already established.
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We prove the existence of solutions of the integral equation (4. 13) by the
methods of successive approximations. Define the norm of a 2-by-2 matrix
M=(mjk) by

| |M | |=maxΣ I™/*1
3 k=l

Since zm(τ, ε) is bounded in the domain (2. 12) and (4. 15), we can assume

where B is some positive constant.
The successive approximations for (4. 13) are the matrices functions given

recursively by the formulas

(4.30) 2<°>(τ,e)=*m(τ,e),

(4. 31) ^ " ( r , e)=ίm(τ, ε)+L[$<»>(r, ε)], »=0,1, 2, ....

In order to state the existence of solution, it is sufficient to prove that
a) All l ( w )(r, ε) are bounded and holomorphic.
b) The sequence {l(n)(τ, ε)} is uniformly convergent to a bounded and holo-

morphic matrix function z(τ, ε).
c) z(τ, ε) is a solution of integral equation (4. 13).
In proving these statements, we need some estimates of the integral (4. 17).

The Re[ε"hμjk(τ9ε)] is monotonic decreasing along γjk(τ) and the coefficients of
Ljk(z) are bounded, then L[z(τ, ε)], as defined in (4. 17), satisfies an inequality of
the form

(4. 32) |[^)]y*I^Mi|e|T O + 1 sup \\z\\[ σ~

for τ€#*, |ε|^εi, and
The constant Mλ and other constants Mr to be introduced below may depend

on m, βi, δu ci and c2, but not on ε and τ.
Using (4. 22) we have

Jyy*(O j

and prove the following lemma concerning the last integral.

LEMMA 3. There exists a constant M2, depending on β and m but not on ε, b
and τ0 such that

(4.33) [ \ζ\-<m+h+v/hdζ^M2\ξ\-im+Ό/h.
JlikΦ

Proof. To fix the ideas, assume that λjk(ξ) starts at f2. Let θ be the polar
angle in the C-plane. Designate by p and θ the polar coordinates of the end point
of the perpendicular from ζ=0 onto the straight line λjk(ξ) and denote by θς the
polar angle of ξ. Then we have
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(4.34) _ J L + / 5 ^ p - 0 < J L

along λjk(ξ). We note here that the following relations hold on the integral path

|ζ|=/> cos-1 (0,-0),

d\ζ\ = -
sm(θp-θ)dθ

COSa(0p-0)

Now let λ$(ξ) be the part of λjlc(ξ) where

\"v — "I=~7S r
Δ

If λ$(ξ) is not empty,

f |ζ|-Cm + /thl)//tμζ|=iί)-(m-l-l)//tΓ
ξ [COS (0-0p>

J^(O Jθp~π/2 + β

and \0ξ—gp\^π/2—β so that

Hence we have

(4.35) f Iζl-^^'^^IJζl^CsiniS)-0 '1 1 1^!?!-^4-1^^2 ^ [cos0]-CTO"/t+1)/W.

Denote by ^ ( ί ) t n e complement of ^ ( ί ) m ^ ( Ώ anc^ assume it not empty,
then on this segment we have, |dC|<|<i|ζ|| sec/3, and therefore

S h

where ξ* is the left end point of λfl(ζ). Now when λfftζ) is empty, ί*=f, and
when λ$(ξ) is not empty, then |f*|>|f|, so we can replace ξ* in (4.36) by ξ.
Adding (4. 35) to (4. 36) we get Lemma 3.

With this prepapations we prove the properties a), b) and c).
a) From (4. 32) and Lemma 3, we have

(4.37) | | i ^ + 1 ) ( τ , ε ) | | | | p | | ( , ) | |
H*

so that we can conclude that all zCn\τ, ε) are bounded and holomorphic in the
domain 77*.

b) Let Δk be defined by

Λ(r,e) = | | i t t + 1 ) ( r ,e )-^( r , s ) | | .

Then we have
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If the constant b in (4. 15) is taken so small that

(4.38) M*bmV1<l,

then the series Σ&U Δk(τ, ε) is uniformly convergent on //*. Thus the series

2oCO)(τ, e)+ Σ [^α+1)(r, ε)-z«\τ, ε)]
fc=0

is absolutely and uniformly convergent on H*, and consequently the partial sum

io(O)(τ, e)+ nΣ[za+Ό(τ, e)~za\τ, ε)] = z™(τ, ε)

tends uniformly on H* to a bounded and holomorphic limit matrix function z(τ, ε).

c) Since 2(n)(τ,ε) converges uniformly to z{τ, ε), then from (4.31), z(τ,ε) is
clearly a solution of the integral equation (4. 13).

Thus we get a bounded solution of the integral equation (4. 13), and this implies
that the matrix function

z(τ, ε) = z(r, ε) exp [ε~hK(τ, ε)]

satisfies the differential equation (2.11). Moreover wet get an asymptotic property:

(4. 39) | | i(r,e)-fT O(r,6)| |<M4 |r-1e|«+ 1.

To complete the proof of Theorem 3 we have to get a similar inequality as
(4. 39) for a solution of the equation (2. 6). Let us put

(4.40) ώ(r,e) = P(r,e)i(τ,6),

then the matrix function

(4. 41) «(r, e) = ύ(τ, ε) exp Iε~h Σ
L v=o

is a fundamental solution of (2.6). The matrix function P(r, ε) is bounded in the
domain (2.12) which contains the domain (4. 1). Hence we have

(4. 42) \\ύ(τ, ε)-P(τ, ε)zm(τ, ε)\\^

where

[ m+fι -l

V=Λ+1 J

If this quantity is expanded in powers of ε, it coincides with the formal power
series Σ?=o εvGv(τ) of (2. 22) up to the term εmGm(τ). In order to calculate the
difference

[ m+h - | m

Σ e»-hK(τ) - Σ zvGv(τ),
v=/ι-)-l J v=0
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we write for abbreviation,
m+fι m

Remembering (2. 21), we have

where qv is a constant, and then χ(r, ε) has the order of magnitude O(r~h), and hence
exp χ differs from the partial sum ΣΓ=o χθ, ε)7y! by an expression of order of
magnitude O[(τ-1ε)Wi+1]. Since Σf=o ε"G,(τ) is obtained from Σ™ 0 χ(r, ε)7Λ by discarding
a finite number of terms of order of magnitude O[(r-h)m+1], we get in the domain
(4. 1),

If we multiply the matrix P(τ, ε) from the left and replace P(r, e) by its asymptotic
series (2.14), we have

II m II

(4. 43) P(r, e)i«(r, ε)- Σ ^uv{τ)\\^MΊ\τ~ιε\^\
II v=o II

Thus we conbine the inequality (4. 42) with (4. 43) and get

II m II
\\u(τy ε ) - 2 e"« v (r) ^ M 8 | τ - I ε | m + 1 .

This completes the proof of Theorem 3.

§ 5. Existence Theorem (2).

Corresponding to the formal series solution in Theorem 2, we prove the follow-
ing existence theorem.

THEOREM 4. For every positive integer m, there exists a domain of the s, p-
plane defined by

(5.1)

(pi, 2̂ and Cs are certain constants and e is a number defined by (3. 32)) and a
fundamental matrix solution v(s, p) of the differential equation (3. 4) which is related
to the formal series solution (3. 34) by the formula

m

(5. 2) v(s, p)~ Σ uv(s)pv=sUs^/4Ω(sHsηEn(sy p)[sk^ep]miΛ exp [Q(s)],
v=o

where Em(s, p) is a matrix function bounded in the domain (5. 1).

Proof Let
VI

(5. 3) vm(s,p)=Σv»(s)Pv

v=o
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be a finite sum of the series (3. 34). This satisfies a differential equation

(5.4) -j- =v'=Hmv, Hm=v{a'Vή\

where v'm denotes the derivative of vm with respect to 5.
Clearly vQ(s) is a nonsingular matrix and all vv(s) are entire functions. Hence

if So>O is chosen arbitrarily, vTO(s, p)-1 exists for

(5.5)

where po depends on s0 and m. By Lemma 2, for | s |>s 0 and SGS, we have

m

(5. 6) vm(s, p)=Σ s*/4Ω(s)wv(s)[sep]" exp [Q(s)]
v=o

with bounded matrices functions wv(s). The matrix function wo(s) is nonsingular
for s^O from (3. 13) and nonsingularity of υo(s). Then it follows from (5. 6) that
Vmiβj p)~ι exists for s€S and

(5.7) \sep\^yo, \s\>so,

where r/0 is sufficiently small positive number depending on s0.
Define a function wm(s, p) by the equation

(5. 8) vn(s9 p)=sk^«/iΩ(sk^)wm(s, p) exp [Q(s)]9

where k(s) is defined in (3. 33). Then from the above arguments the matrix func-
tions wm(s, p) is bounded and nonsingular if 5 and p satisfy the condition (5. 5) or
(5. 7). We write the given equation (3. 4) in the form

~ =ff(5, p)v=Hm(s, p)v+[H(s, p)-Hm(s, p)]υ

=Hm(s, p)v+[H(s, p)vm{s, p)—v;n(s) p)\vm(s, p)-lo.

Then any solution of the integral equation

(5. 9) v(s, p)=υm(s, p)+ \ vm(s, p)vm(σ, pY^HVm-v^Vmiσ, pYιv{σ, p)dσ
JΓ(8)

satisfies the differential equation (3. 4). As in the proof of Theorem 3, Γ(s) is a
set of paths γjk(s) ending at s.

If w(s, p) is defined by

(5. 10) v(s, p) = sk^HΩ(sUs>Ms, p) exp [Q(s)],

then the equation (5. 9) becomes

/ r , 1N ^fe p) = wm{s, p)Λ wm(s, p) exp [Q(s)-Q(σ)]wm(σ, p)-W(σ-*™)σ-*™*»
(5. 11) Jr(«)

-(Hvm—vin) exp [—Q(σ)]wm(σ, p)~1w(σ, p) exp [Q(σ)-Q(s)]dσ.

In order to solve this equation, we need an estimate of the quantity Hvm—Vm>
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v=o Jv=o

m Γ v η
= ΣPV\Σ Hμυv.μ-υi + Σ*HμΌv-v=o Lμ=o J

where the summation Σ * is for

v—μ^m, v>τn,

and Rm represents the remainder terms in the series expansion of H(s, p). The
first of the three right hand terms in (5. 12) is zero, because vv is a solution of
(3.11). The second summation can be written

(5.13) s*(e)«/4£(s*Ci)) Σ * (r&w*>ϊ>H*wv-.μ exp [Q(s)]

by virtue of (3.5) and (3.31), where g(v, μ)=μl2h+q/2-l/a+(v-μ)e. For each v,
the maximum power of 5 is attained by μ—1, that is

then the summation (5. 13) can be written

(5.14) sk(-sWQ(sk^)E(s, /o)[s*(β)erfTO+15-*(β) exp [Q(s)J,

where E(s, p) is bounded in (5. 5) or (5. 7) respectively, and e is a number given in
Theorem 4. At last, RmVm has the same form as in (5. 14) with a different bounded
matrix function E(s, p) in the domain (1. 3) and (5. 5) or (5. 7), because we have
from (3. 6), (3. 8) and (5. 8),

M)E(s, p)sk^^p^n exp [0(5)],

where i(m)=ql2—l/a+(m+l)l2ht and E(s, p) is a bounded function. If we notice
here that

~T ~ T
then RmVm is seen to have the form (5.14).

Inserting these results into (5. 12), we have

(5. 15) Hmvm-vU=&™q/iΩ{?™)E{s, p)[5*(ί)ep]m+1s-*Cί) exp [0(5)]

with another bounded function E(s, p).

Thus the integral equation (5.11) becomes

w(s, p)=wm(s, p)+wm(s, p)\ exp [Q(s)—Q(σ)]wm(σ, ρ)-Έ(σ, p)
(5.16) Jroo

-wm(σ, pYιw(σ, p) exp [Q(σ)-Q(s)][σk^ep]m+1σ~kMdσ.

Since the matrices functions wm and wΰ1 are bounded in the domain considered,
each element of the matrix which forms the integrand in (5. 16) has the form

(5. 17) exp [qjύs)-qj»{σ)]Ljklw(σ, p)]lσk^ep]m+1σ-k^\
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where qjk{s) is defined in (3. 25) and Ljk[w] is a linear conbination of the components
in 1-st or 2-nd column of w. The coefficients of this linear conbination are functions
of σ and p bounded in (1. 3) and (5. 5) or (5. 7).

Next let us choose the paths of integrations for each element (5. 17).
As in Section|3, we map the sector S of the σ-plane and s-plane into the ζ-plane

and ί-plane respectively by

w ίOJ s — υ > *»— ύ

Let a half plane Σ in the ζ-plane or ζ-plane be the image of the sector S and

let Si be a closed half disk in Σ which satisfies

for each p. On the circular arc of the boundary of Si, there exists for every pair
j , k U*rk) a unique point ζjk at which Re[βjkζ] attains its maximum in Si. (see
Figure 2). The number βjk is defined in (3. 25).

Then the quantity

Re [qAs)-qjk(σ)]=Re [βjk(ξ-ζ)]

increases monotonically when ζ moves from
ζjk to ξ along a straight segment. Here we
limit ξ to the triangular domain Si* whose
vertices are ζjk and two end points of the
diameter of Si. If ξ is any point of Si*,
then the integral path λjk(ξ) is defined by
the segment joining ξ and ζjk. Thus for ζ
on λjk(ζ), there exists a positive constant p,
independent of j , k and p such that

(5.20) Re[βjk(ξ-ζ)]<-p\ζ-ξ\.

We take here the inverse image of λjk(ξ) in
the σ-plane as the integral path γjk(s) for

Fig- 2 j^k, and the path γjΊ{s) is to be the ray
from the origin to s.

Now, we choose the positive constants pi and <52 in (5. 1) so small that the
domain

satisfies the condition (1. 3). Let M(s, p) be some matrix function which is uniformly
bounded in the domain (5. 21) and ξ=sC2+qW2£3i*, and let Mo be the least upper
bound of \\M(s, p)\\ in this domain.

Consider the integral of (5. 17), and write

0
/

///

/ -

^^

-

Λ
—9C \ | ζy>

9ί /

(5. 22)

If we change the variables 5 and σ into ξ and ζ, this integral becomes
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(5. 23) /(Λf)= [ exp

Let us calculate this integral for each case of j^k, and j = k.
(1) j^k. First, when all the points of ?>(s) are in the domain \σ\>s0, then

(5. 23) becomes by virtue of k{σ)=l

(5. 24) I(M)= [ exp

Then, for f€3C*,

(5.25) |/(M)|^|p|»+ 1CiM oί exp [-/>|f-CI]|C|2(m+1)e/(9+2)~VC|,

where d and C» introduced below are some constants which depend on s0, m, η0, px

and δ2, but are independent of p. If the path of integration is extended beyond ζjk

to infinity along a straight ray and if we put

£ - C = r exp[i0] (i=*/=i)

then we have

(5. 26)

Hence, if | s |>s 0 , that is \ξ\>ξo=s$+2y2, then we have from (5.26),

Next if |s|>So and some parts of τ>(s) are contained in |σ | ^ 5 0 , then in this
parts

In the same way, if |s|^ϋso and if 7>(s) is contained in |σ |^5 0 , then I(M)
=O(\p\m+1). And if | s |^s 0 and 7-̂ (5) has the parts on which |σ|>s 0, then the
contributions of this parts are O(\p\m+1).

(2) j=k. In this case we have

(5. 27)

If | ί |gfo, the integral (5. 27) has the order of magnitude O(\p\mΛl), and if | f |>£ 0 , it

is 0[{|f|2e/c«+2V}TO+1].
Then we get in each case

(5. 28) |/(M)| ^C6M0[|5| f c ( s )V]m + 1

Now we solve the integral equation (5. 16) which can be written

(5. 29) w(s, p)=wm(s, p){l+L[w(σ, p)]}
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where 1 is the unit matrix and

m OAX L[w]=\ exp[Q(s)-Q(σ)]wm(σ, p^Eίσ, p)wm(σ, p)-1

(5. 30) Jrcs~)
•w exp [Q(σ)-Q(s)][σkMep]m+1 exp [-k(σ)]dσ.

As in Section 4, we do this by the methods of successive approximations. Let
H* be the inverse image in the s-plane of #C*. Since wm(s, p) is bounded, we can
suppose \\wm(s, p)\\^B for some constant B.

The successive approximations for (5. 29) are

s, p)]}.

(s, p)\\

for some constant C7. Then all wa\s, p) are bounded in (5. 21) and i7*, and are
holomorphic in 5 and p in (5. 12), i7* and s<oo.

Let Λ(s, p) be defined by

Δh{s, /o)
Then

(5.

(5.

3D
32)

Then from (5.

II'

28),

ww(s, p)=w

w<*+1\s9 p)=w<

we have

>(5,^)||<^{l+

m(S, p)

m(S, p)

C7 sup

If pi and 370 are taken so small that we have in the domain (5. 21) and //*

(5.33) BC8\sk^ep\m+1<l,

then the series Σ*U ^(5> (J) ls uniformly convergent and this implies that the
sequence {wa\s, p)} converges absolutely and uniformly to a bounded matrix func-
tion w(s, p) which is clearly a solution of the integral equation (5. 29) in the domain
(5. 21) and H*.

Now if CB in (5.1) is chosen small enough, then the domain (5.1) is contained
in H*, so that the inequalities already established hold in the domain (5. 1). Thus
we have a solution matrix w(s, p) of the differential equation (3. 4) in the domain
(5. 1) and at the same time we get an asymptotic property

(5.34) \\w(s,p)-wm(sfp)\\^C,\sk^ep\m+1,

which proves Theorem 4 from (5. 8) and (5. 10).

§ 6. Conclusions and Remarks.

CONCLUSIONS. From Theorem 3, (2. 1) and (2. 5), it follows that the differential
equation (1. 1) has a fundamental matrix solution in the domain (4. 1) of the form

/ I 0 \
(6.1) y=[ Wτ,ε),

\ 0 x«/2 I



MATCHING METHODS IN TURNING POINT PROBLEMS 221

where te(τ, έ) is defined in (4. 2).
On the other hand, from Theorem 4, (4. 1) and (3. 2), there exists another

fundamental matrix solution in the domain (5. 1) of the form

/ I 0 \
(6.2) y = [ )v(s,p),

0 ε'
h-a

where v(s, p) is defined in Theorem 4. Now in order to state that these two so-
lutions can be patched together, it is sufficient to prove that the domains (4. 1) and
(5. 1) overlap for all sufficiently small e.

The inequality Ci |ε |^ |τ |^c 2 becomes in terms of x and e,

(6.3) c1

a\ε\

and the inequality \sep\^c3 becomes

(6.4) \x\^C31

where

2h 2 a 2h

We remark also that tf-l/£(#+2)>0 if Λ>1, and a—l/e(q+2)=0 if h=l for
any positive integer q. The fact that e>0 assures us that the two domains (6. 3)
and (6. 4) overlap for arbitrarily small ε. Thus for suitable point belonging to both
domains, we can determine the matching matrix of the two solutions (6. 2) and (6.3).

REMARK. If the fundamental assumption (1. 7) is removed, it is more difficult
to analyze the equation (1. 1). According to the results of Iwano and Sibuya [1],
the assumption (1. 7) means that the domain (1. 3) is divided into only two sub-
domains in each of which the solution of the equation (1. 1) moves quite differently
as ε tends to zero. In near future, it will be treated more general equations.
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