MINIMAL SLIT REGIONS AND LINEAR OPERATOR METHOD

By Kôtaro Oikawa

1. Let Ω be a plane region containing the point at infinity. Let \mathfrak{F}_{Ω} be the family of all the univalent functions f on Ω having the expansion

$$(1) f(z) = z + \frac{c}{z} + \cdots$$

about ∞ . The function maximizing (minimizing) Re *c* in $\mathfrak{F}_{\mathfrak{g}}$ exists and is determined uniquely, which we denote by $\varphi_{\mathfrak{g}}(\psi_{\mathfrak{g}}, \text{ resp.})$.

The image region $\phi_{\varrho}(\Omega)$ ($\phi_{\varrho}(\Omega)$) is a horizontal (vertical) parallel slit plane. Conversely, however, an arbitrary horizontal (vertical) parallel slit plane can not be, in general, the image of an Ω under $\varphi_{\varrho}(\psi_{\varrho})$; in fact the measure of $\varphi_{\varrho}(\Omega)^c$ and $\psi_{\varrho}(\Omega)^c$ vanish. Accordingly, with Koebe, we introduce the following:

DEFINITION. A horizontal (vertical) parallel slit plane Δ is said to be *minimal* if $\Delta = \varphi_{\mathcal{Q}}(\Omega)$ ($\Delta = \psi_{\mathcal{Q}}(\Omega)$, resp.) for an Ω containing ∞ .

The minimality of slit regions is characterized by moduli of quadrilaterals (Grötzsch [2]) or extremal length (Jenkins [3]). From the point of view of the latter a number of interesting properties are derived in Suita's paper in these Reports [8].

The linear operator method due to Sario [6] (see also Chapter III of the book by Ahlfors-Sario [1]) gives us another approach to φ_a and φ_a . From this a characterization of minimality is derived, which is rather similar to the original one due to Koebe [4]. It is the purpose of the present paper to show how to use this method to prove alternatively a part of Suita's results mentioned above.

2. We begin with reviewing the definition of the normal linear operators L_0 and L_1 in Ahlfors-Sario [1].

Let W be an open Riemann surface, let V be a regularly imbedded non-compact subregion with compact relative boundary α . For any real analytic function f on α , consider the problem of constructing the function u such that

(2) harmonic on $V \cup \alpha$, u=f on α .

If V is the interior of a compact bordered surface we can assign the behavior of u on $\beta = (border of V) - \alpha$ so that u may be determined uniquely. For our purpose the following two are necessary:

Received March 22, 1965.

KÔTARO OIKAWA

(L₀):
$$du^*=0$$
 along β ,
(L₁): $du=0$ along β , $\int du^*=0$ for each contour of β ;

here the correspondence $f \rightarrow u$ is expressed by the notations in the left.

Note that the present L_1 is the $(P)L_1$ in Ahlfors-Sario's book with respect to the canonical partition P. (See [1, p. 160].)

If V is arbitrary we may define L_0 and L_1 as the limit through an exhaustion. We can define them also as follows:

DEFINITION. $L_0 f$ is defined as the *u* determined uniquely by the condition (2), $D_v(u) < \infty$, and

(3)
$$\int_{V} (du)(dv)^{*} = \int_{\alpha} v du^{*}$$

for every harmonic function v on \overline{V} with $D_{V}(v) < \infty$. $L_{1}f$ is defined as the u determined uniquely by the condition (2), $D_{V}(u) < \infty$, $\int_{\tau} du^{*} = 0$ for every dividing cycle γ which does not separate components of α , and

(4)
$$\int_{V} (du)\omega = \int_{\alpha} f\omega$$

for every harmonic differential ω on $V \cup \alpha$ such that $||\omega||_{V} < \infty$ and $\int_{\gamma} \omega = 0$ for every γ mentioned above.

We remark the following:

(i) If V is the interior of a compact bordered surface, this definition coincides with the previous.

(ii) In (3), the harmonicity of v may be replaced by the following: v is of $C^{(1)}$ on \overline{V} . In (4) the harmonicity of ω may be replaced by the following: ω is of $C^{(1)}$ and closed on \overline{V} .

(iii) If $V' \subset V$ then

$$L_{0V'}(L_{0V}f) = L_{0V}f, \qquad L_{1V'}(L_{1V}f) = L_{1V}f$$

on V' for any f on α ; here the subscripts V' and V express the region where the operators are considered.

(iv) Conversely, let $V_1, \dots, V_n \subset V$ be mutually disjoint and such that $V - \bigcup_{k=1}^n V_k$ is relatively compact. Given f on α , suppose a u on V satisfy (2) and

$$u = L_{0V_k} u \qquad (u = L_{1V_k} u)$$

on V_k , $k=1, \dots, n$. Then $u=L_0f(u=L_1f, \text{ resp.})$ on V.

3. We find in Ahlfors-Sario [1, p. 176ff] that $\varphi_{\mathcal{Q}}$ and $\psi_{\mathcal{Q}}$ are characterized as functions regular on $\mathcal{Q} - \{\infty\}$, having expansion (1) about ∞ , and such that

(5)
$$L_0(\operatorname{Re} \varphi_{\mathcal{Q}}) = \operatorname{Re} \varphi_{\mathcal{Q}}, \quad L_1(\operatorname{Re} \psi_{\mathcal{Q}}) = \operatorname{Re} \psi_{\mathcal{Q}}$$

2

on $\partial \Omega$; this means the validity of (5) on V_1, \dots, V_n with compact $\Omega - \bigcup_{k=1}^n V_k$, which

188

is independent of the choice of V_k because of the above remarks (iii) and (iv). Therefore

THEOREM 1. A region Δ in the z=x+iy-plane with $\infty \in \Delta$ is a minimal horizontal (vertical) parallel slit plane if and only if

$$L_0 x = x$$
 ($L_1 x = x$, resp.)

on $\partial \Delta$.

It is evident that the condition is equivalent with

$$L_1 y = y \qquad (L_0 y = y, \text{ resp.}).$$

On regarding the definition of L_0 we see that the validity of $L_0x=x$ on a V is equivalent with the following: $\iint_V (\partial v/\partial x) dx dy = \int_x v dy$. Consequently a region Δ with $\infty \epsilon \Delta$ is a minimal horizontal parallel slit plane if and only if

$$\iint_{\Delta} \frac{\partial h}{\partial x} dx dy = 0$$

for every h which is of $C^{(1)}$ in \mathcal{A} , vanishes identically in a neighborhood of ∞ , and has finite $D_{\mathcal{A}}(h)$. This is nothing but the original characterization of minimality due to Koebe [4].

From Theorem 1 and remarks (iii), (iv) of 2°, we obtain the following which is Theorem 12 of Suita [8]:

THEOREM 2. Let $\infty \in \Delta_k$ $(k=1, \dots, n)$ have mutually disjoint Δ_k^c , and let $\Delta = \bigcap_{k=1}^n \Delta_k$. Then Δ is a minimal horizontal (vertical) parallel slit plane if and only if so are all the Δ_k .

4. Circular and radial slit planes are characterized by L_0 and L_1 in the similar way. Slit disks and annuli are the same if the outer (and inner) periphery is assumed to be *isolated from other part of the boundary*. For example

Let Δ be a circular slit annulus with inner and outer radius 0 < Q' and $Q < \infty$, respectively. Let (|z|=Q') and (|z|=Q) be isolated from $E = \Delta^c \cap \{z|Q' < |z| < Q\}$. Then Δ is a minimal circular slit annulus if and only if $L_1(\log |z|) = \log |z|$ on E.

The change of the independent variable in (4) implies the following, which is contained in Theorem 11 of Suita [8]:

THEOREM 3. Let a circular slit annulus Δ and its slits E be as above. Let Δ' be a horizontal parallel slit plane such that $E' = \Delta'^c$ is contained in the interior of a vertical parallel strip with width 2π . Suppose that E is the image of E' under the mapping $z \rightarrow \exp iz$. Then Δ is minimal if and only if Δ' is minimal.

5. Characterizing minimal circular slit annuli by extremal length is easier than that of parallel slit plane. The former is found in, e.g., Reich-Warschawski [5] (for slit disk, though) or Sakai [7], and the latter is in Jenkins [3] as we have mentioned.

The former is as the following:

Let Δ be as in 4°. Let Γ be the family of all the closed rectifiable curves in Δ separating the inner and outer peripheries. Then Δ is minimal if and only if $\log (Q/Q') = 2\pi/\lambda(\Gamma)$.

The following is derived from this:

THEOREM 4. Let Δ be a plane region containing ∞ . Let R be a rectangle whose interior contains Δ^c and sides are parallel to the coordinate axes. Let a and bbe respectively the width and the height of R. Let Γ be the family of all the rectifiable curves in $R \cap \Delta$ joining the both vertical sides of R. (i) If Δ is minimal, then $\lambda(\Gamma)$ =a/b for any R; (ii) If there exists an R with $\lambda(\Gamma)=a/b$, then Δ is minimal.

Concerning (ii), Jenkins [3] assumed the validity of $\lambda(\Gamma) = a/b$ for all sufficiently large square R. The present form the characterization by moduli of quadrilaterals is stated without proof by Grötzsch [2, p. 188]. The above is Theorem 8 of Suita [8].

Proof. (i) With the aid of linear transformation, we may assume in advance that $a=2\pi$. Map R by $\zeta=\text{const}\cdot\exp{iz}$ onto $1<|\zeta|<\exp{b}$ and let the image of Δ^c be \tilde{E} . By Theorem 3 $\tilde{\Delta}=(1<|\zeta|<\exp{b})-\tilde{E}$ is minimal, so that $b=2\pi/\lambda(\tilde{\Gamma})$, where $\tilde{\Gamma}$ is the family of all the closed curves in $\tilde{\Delta}$ separating the inner and outer peripheries. From the general theory of extremal length, it is easy to obtain $2\pi/b\leq\lambda(\Gamma)$, $\lambda(\Gamma)\leq\lambda(\tilde{\Gamma})$. Thus $\lambda(\Gamma)=2\pi/b$.

(ii) We may assume in advance that $a=\pi$. Let \hat{R} and \hat{E} be obtained from Rand E, respectively, by the reflection across the right vertical side of R. Let $\hat{\Gamma}$ be the family of curves obtained from I' by the same reflection. Map \hat{R} by $\zeta = \text{const} \cdot \exp iz$ onto $1 < |\zeta| < \exp b$ and let the image of \hat{E} be \tilde{E} . Consider \tilde{A} and $\tilde{\Gamma}$ as before. From the general theory, we have $2\pi/b \leq \lambda(\tilde{\Gamma}), \ \lambda(\tilde{\Gamma}) \leq \lambda(\hat{\Gamma}), \ \lambda(\hat{\Gamma}) = 2\lambda(\Gamma)$. Thus, by the assumption, $b=2\pi/\lambda(\tilde{\Gamma})$, and, therefore, \tilde{A} is minimal. By Theorem 3 \hat{E}^{c} is minimal, so that, by Theorem 2, A is minimal.

References

- [1] AHLFORS, L. V., AND L. SARIO, Riemann surfaces. Princeton Univ. Press, 1960.
- [2] GRÖTZSCH, H., Zum Parallelschlitztheorem der konformen Abbildung schlichter unendlich-vielfach zusammenhängender Bereiche. Leipziger Berichte 83 (1931), 185–200.
- [3] JENKINS, J. A., Univalent functions and conformal mapping. Springer-Verlag., 1958.
- [4] KOEBE, P., Zur konformen Abbildung uendlich-vielfach zusammenhängender schlichter Bereiche auf Schlitzbereiche. Gött. Nachr. (1918).
- [5] REICH, E., AND S. E. WARSCHAWSKI, On canonical conformal maps of regions of arbitrary connectivity. Pacific J. of Math. 10 (1960), 965-985.
- [6] SARIO, L., A linear operator method on arbitrary Riemann surfaces. Trans. Amer. Math. Soc. 72 (1952), 281–295.
- [7] SAKAI, A., On minimal slit domains. Proc. Japan Acad. 35 (1959), 128-133.
- [8] SUITA, N., Minimal slit domains and minimal sets. Ködai Math. Sem. Rep. 17 (1965), 166–186.

COLLEGE OF GENERAL EDUCATION, UNIVERSITY OF TOKYO.

190