MINIMAL SLIT REGIONS AND LINEAR OPERATOR METHOD

By Kôtaro Oikawa

1. Let Ω be a plane region containing the point at infinity. Let $\mathfrak{F} a$ be the family of all the univalent functions f on Ω having the expansion

$$
\begin{equation*}
f(z)=z+\frac{c}{z}+\cdots \tag{1}
\end{equation*}
$$

about ∞. The function maximizing (minimizing) $\operatorname{Re} c$ in \mathfrak{F}_{2} exists and is determined uniquely, which we denote by $\varphi_{\Omega}\left(\psi_{\Omega}\right.$, resp.).

The image region $\psi_{\Omega}(\Omega)\left(\psi_{\Omega}(\Omega)\right)$ is a horizontal (vertical) parallel slit plane. Conversely, however, an arbitrary horizontal (vertical) parallel slit plane can not be, in general, the image of an Ω under $\varphi_{\Omega}\left(\psi_{\Omega}\right)$; in fact the measure of $\varphi_{\Omega}(\Omega)^{c}$ and $\psi_{\Omega}(\Omega)^{c}$ vanish. Accordingly, with Koebe, we introduce the following:

Definition. A horizontal (vertical) parallel slit plane Δ is said to be minimal if $\Delta=\varphi_{\Omega}(\Omega)\left(\Delta=\psi_{\Omega}(\Omega)\right.$, resp.) for an Ω containing ∞.

The minimality of slit regions is characterized by moduli of quadrilaterals (Grötzsch [2]) or extremal length (Jenkins [3]). From the point of view of the latter a number of interesting properties are derived in Suita's paper in these Reports [8].

The linear operator method due to Sario [6] (see also Chapter III of the book by Ahlfors-Sario [1]) gives us another approach to φ_{Ω} and ψ_{Ω}. From this a characterization of minimality is derived, which is rather similar to the original one due to Koebe [4]. It is the purpose of the present paper to show how to use this method to prove alternatively a part of Suita's results mentioned above.
2. We begin with reviewing the definition of the normal linear operators L_{0} and L_{1} in Ahlfors-Sario [1].

Let W be an open Riemann surface, let V be a regularly imbedded non-compact subregion with compact relative boundary α. For any real analytic function f on α, consider the problem of constructing the function u such that

$$
\begin{equation*}
\text { harmonic on } V \cup \alpha, \quad u=f \text { on } \alpha \text {. } \tag{2}
\end{equation*}
$$

If V is the interior of a compact bordered surface we can assign the behavior of u on $\beta=$ (border of V) $-\alpha$ so that u may be determined uniquely. For our purpose the following two are necessary:

Received March 22, 1965.

$$
\begin{aligned}
& \left(L_{0}\right): \quad d u^{*}=0 \text { along } \beta, \\
& \left(L_{1}\right): \quad d u=0 \text { along } \beta, \quad \int d u^{*}=0 \text { for each contour of } \beta ;
\end{aligned}
$$

here the correspondence $f \rightarrow u$ is expressed by the notations in the left.
Note that the present L_{1} is the $(P) L_{1}$ in Ahlfors-Sario's book with respect to the canonical partition P. (See [1, p. 160].)

If V is arbitrary we may define L_{0} and L_{1} as the limit through an exhaustion. We can define them also as follows:

Definition. $L_{0} f$ is defined as the u determined uniquely by the condition (2), $D_{V}(u)<\infty$, and

$$
\begin{equation*}
\int_{V}(d u)(d v)^{*}=\int_{\alpha} v d u^{*} \tag{3}
\end{equation*}
$$

for every harmonic function v on \bar{V} with $D_{V}(v)<\infty . \quad L_{1} f$ is defined as the u determined uniquely by the condition (2), $D_{V}(u)<\infty, \int_{V} d u^{*}=0$ for every dividing cycle γ which does not separate components of α, and

$$
\begin{equation*}
\int_{V}(d u) \omega=\int_{\alpha} f \omega \tag{4}
\end{equation*}
$$

for every harmonic differential ω on $V \cup \alpha$ such that $\|\omega\|_{\nu}<\infty$ and $\int_{\gamma} \omega=0$ for every γ mentioned above.

We remark the following:
(i) If V is the interior of a compact bordered surface, this definition coincides with the previous.
(ii) In (3), the harmonicity of v may be replaced by the following: v is of $C^{(1)}$ on \bar{V}. In (4) the harmonicity of ω may be replaced by the following: ω is of $C^{(1)}$ and closed on \bar{V}.
(iii) If $V^{\prime} \subset V$ then

$$
L_{0 V^{\prime}}\left(L_{0 v} f\right)=L_{0 V} f, \quad L_{1 V^{\prime}}\left(L_{1 v} f\right)=L_{1 v} f
$$

on V^{\prime} for any f on α; here the subscripts V^{\prime} and V express the region where the operators are considered.
(iv) Conversely, let $V_{1}, \cdots, V_{n} \subset V$ be mutually disjoint and such that $V-\cup_{k=1}^{n} V_{k}$ is relatively compact. Given f on α, suppose a u on V satisfy (2) and

$$
u=L_{0 V_{k}} u \quad\left(u=L_{1 V_{k}} u\right)
$$

on $V_{k}, k=1, \cdots, n$. Then $u=L_{0} f\left(u=L_{1} f\right.$, resp.) on V.
3. We find in Ahlfors-Sario [1, p. 176ff] that φ_{Ω} and ψ_{Ω} are characterized as functions regular on $\Omega-\{\infty\}$, having expansion (1) about ∞, and such that

$$
\begin{equation*}
L_{0}\left(\operatorname{Re} \varphi_{\Omega}\right)=\operatorname{Re} \varphi_{\Omega}, \quad L_{1}\left(\operatorname{Re} \psi_{\Omega}\right)=\operatorname{Re} \psi_{\Omega} \tag{5}
\end{equation*}
$$

on $\partial \Omega$; this means the validity of (5) on V_{1}, \cdots, V_{n} with compact $\Omega-\cup_{k=1}^{n} V_{k}$, which
is independent of the choice of V_{k} because of the above remarks (iii) and (iv). Therefore

Theorem 1. A region Δ in the $z=x+i y$-plane with $\infty \in \Delta$ is a minimal horizontal (vertical) parallel slit plane if and only if

$$
L_{0} x=x \quad\left(L_{1} x=x, \text { resp. }\right)
$$

on $\partial \Delta$.
It is evident that the condition is equivalent with

$$
\begin{equation*}
L_{1} y=y \quad\left(L_{0} y=y, \text { resp. }\right) \tag{7}
\end{equation*}
$$

On regarding the definition of L_{0} we see that the validity of $L_{0} x=x$ on a V is equivalent with the following: $\iint_{V}(\partial v / \partial x) d x d y=\int_{\alpha} v d y$. Consequently a region Δ with $\infty \in \Delta$ is a minimal horizontal parallel slit plane if and only if

$$
\iint_{\Delta} \frac{\partial h}{\partial x} d x d y=0
$$

for every h which is of $C^{(1)}$ in Δ, vanishes identically in a neighborhood of ∞, and has finite $D_{\Delta}(h)$. This is nothing but the original characterization of minimality due to Koebe [4].

From Theorem 1 and remarks (iii), (iv) of 2^{0}, we obtain the following which is Theorem 12 of Suita [8]:

Theorem 2. Let $\infty \in \Delta_{k}(k=1, \cdots, n)$ have mutually disjoint Δ_{k}^{C}, and let $\Delta=\cap_{k=1}^{n} \Delta_{k}$. Then Δ is a minimal horizontal (vertical) parallel slit plane if and only if so are all the Δ_{k}.
4. Circular and radial slit planes are characterized by L_{0} and L_{1} in the similar way. Slit disks and annuli are the same if the outer (and inner) periphery is assumed to be isolated from other part of the boundary. For example

Let Δ be a circular slit annulus with inner and outer radius $0<Q^{\prime}$ and $Q<\infty$, respectively. Let $\left(|z|=Q^{\prime}\right)$ and $(|z|=Q)$ be isolated from $E=\Delta^{C} \cap\left\{z\left|Q^{\prime}<|z|<Q\right\}\right.$. Then Δ is a minimal circular slit annulus if and only if $L_{1}(\log |z|)=\log |z|$ on E.
The change of the independent variable in (4) implies the following, which is contained in Theorem 11 of Suita [8]:

Theorem 3. Let a circular slit annulus Δ and its slits E be as above. Let Δ^{\prime} be a horizontal parallel slit plane such that $E^{\prime}=\Delta^{\prime C}$ is contained in the interior of a vertical parallel strip with width 2π. Suppose that E is the image of E^{\prime} under the mapping $z \rightarrow \exp i z$. Then Δ is minimal if and only if Δ^{\prime} is minimal.
5. Characterizing minimal circular slit annuli by extremal length is easier than that of parallel slit plane. The former is found in, e.g., Reich-Warschawski [5] (for slit disk, though) or Sakai [7], and the latter is in Jenkins [3] as we have mentioned.

The former is as the following:
Let Δ be as in 4°. Let Γ be the family of all the closed rectifiable curves in Δ separating the inner and outer peripheries. Then Δ is minimal if and only if $\log \left(Q / Q^{\prime}\right)=2 \pi / \lambda(\Gamma)$.
The following is derived from this:
Theorem 4. Let Δ be a plane region containing ∞. Let R be a rectangle whose interior contains Δ^{C} and sides are parallel to the coordinate axes. Let a and b be respectively the width and the height of R. Let Γ be the family of all the rectifiable curves in $R \cap \Delta$ joining the both vertical sides of R. (i) If Δ is minnal, then $\lambda(\Gamma)$ $=a / b$ for any R; (ii) If there exists an R with $\lambda\left(I^{\prime}\right)=a / b$, then Δ is minimal.

Concerning (ii), Jenkins [3] assumed the validity of $\lambda(\Gamma)=a / b$ for all sufficiently large square R. The present form the characterization by moduli of quadrilaterals is stated without proof by Grötzsch [2, p. 188]. The above is Theorem 8 of Suita [8].

Proof. (i) With the aid of linear transformation, we may assume in advance that $a=2 \pi$. Map R by $\zeta=$ const $\exp i z$ onto $1<|\zeta|<\exp b$ and let the image of Δ^{C} be \tilde{E}. By Theorem $3 \tilde{\Delta}=(1<|\zeta|<\exp b)-\tilde{E}$ is minimal, so that $b=2 \pi / \lambda(\tilde{\Gamma})$, where $\tilde{\Gamma}$ is the family of all the closed curves in \tilde{J} separating the inner and outer peripheries. From the general theory of extremal length, it is easy to obtain $2 \pi / b \leqq \lambda(\Gamma), \lambda(\Gamma) \leqq \lambda(\tilde{\Gamma})$. Thus $\lambda(\Gamma)=2 \pi / b$.
(ii) We may assume in advance that $a=\pi$. Let \hat{R} and \hat{E} be obtained from R and E, respectivey, by the reflection across the right vertical side of R. Let $\hat{\Gamma}$ be the family of curves obtained from I^{\prime} by the same reflection. Map \hat{R} by $\zeta=$ const $\cdot \exp i z$ onto $1<|\zeta|<\exp b$ and let the image of \hat{E} be \tilde{E}. Consider $\tilde{\Delta}$ and $\tilde{\Gamma}$ as before. From the general theory, we have $2 \pi / b \leqq \lambda(\tilde{\Gamma}), \lambda(\tilde{\Gamma}) \leqq \lambda(\hat{\Gamma}), \lambda(\hat{\Gamma})=2 \lambda(\Gamma)$. Thus, by the assumption, $b=2 \pi / \lambda(\tilde{\Gamma})$, and, therefore, $\tilde{\Delta}$ is minimal. By Theorem 3 \hat{E}^{c} is minimal, so that, by Theorem 2, Δ is minimal.

References

[1] Ahlfors, L. V., and L. Sario, Riemann surfaces. Princeton Univ. Press, 1960.
[2] Grötzsch, H., Zum Parallelschlitztheorem der konformen Abbildung schlichter unendlich-vielfach zusammenhängender Bereiche. Leipziger Berichte 83 (1931), 185-200.
[3] Jenkins, J. A., Univalent functions and conformal mapping. Springer-Verlag., 1958.
[4] Koebe, P., Zur konformen Abbildung uendlich-vielfach zusammenhängender schlichter Bereiche auf Schlitzbereiche. Gött. Nachr. (1918).
[5] Reich, E., and S. E. Warschawski, On canonical conformal maps of regions of arbitrary connectivity. Pacific J. of Math. 10 (1960), 965-985.
[6] Sario, L., A linear operator method on arbitrary Riemann surfaces. Trans. Amer. Math. Soc. 72 (1952), 281-295.
[7] SakaI, A., On minimal slit domains. Proc. Japan Acad. 35 (1959), 128-133.
[8] Suita, N., Minimal slit domains and minimal sets. Kōdai Math. Sem. Rep. 17 (1965), 166-186.

