MINIMAL SLIT REGIONS AND LINEAR OPERATOR METHOD
By Ko6TARO OIKAWA

1. Let £ be a plane region containing the point at infinity. Let §o be the
family of all the univalent functions f on £ having the expansion

(1) F@=z+—po

about co. The function maximizing (minimizing) Re ¢ in §, exists and is determined
uniquely, which we denote by ¢a(¢e, resp.).

The image region ¢o(2) (¢o(£2)) is a horizontal (vertical) parallel slit plane.
Conversely, however, an arbitrary horizontal (vertical) parallel slit plane can not be,
in general, the image of an £2 under ¢go(¢0); in fact the measure of po(£)¢ and
¢a(£2)¢ vanish. Accordingly, with Koebe, we introduce the following:

DerFINITION. A horizontal (vertical) parallel slit plane 4 is said to be minimal
if d=¢a(22) (d=¢o(2), resp.) for an £ containing oo.

The minimality of slit regions is characterized by moduli of quadrilaterals
(Grotzsch [2]) or extremal length (Jenkins [3]). From the point of view of thc
latter a number of interesting properties are derived in Suita’s paper in these
Reports [8].

The linear operator method due to Sario [6] (see also Chapter III of the book
by Ahlfors-Sario [1]) gives us another approach to ¢o and ¢e. From this a charac-
terization of minimality is derived, which is rather similar to the original one due
to Koebe [4]. It is the purpose of the present paper to show how to use this
method to prove alternatively a part of Suita’s results mentioned above.

2. We begin with reviewing the definition of the normal linear operators L,
and L; in Ahlfors-Sario [1].

Let W be an open Riemann surface, let V be a regularly imbedded non-compact
subregion with compact relative boundary «. For any real analytic function f on
a, consider the problem of constructing the function # such that

(2) harmonic on VUg, u=f on a.

If V is the interior of a compact bordered surface we can assign the behavior
of # on B=(border of V)—a so that # may be determined uniquely. For our purpose
the following two are necessary:
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(Lo): du*=0 along B,
(Ly):  du=0 along B, Sdu*zO for each contour of f;

here the correspondence f—u is expressed by the notations in the left.

Note that the present L, is the (P)L, in Ahlfors-Sario’s book with respect to
the canonical partition P. (See [1, p. 160].)

If V is arbitrary we may define L, and L, as the limit through an exhaustion.
We can define them also as follows:

DEFINITION. Lof is defined as the # determined uniquely by the condition (2),
Dy(u)< oo, and

(3) S (du)(dv)*zg pdu

14 a
for every harmonic function » on ¥V with Dy(»)<co. L.f is defined as the «
determined uniquely by the condition (2), Dy(u)<oco, Sdu*zo for every dividing

cycle y which does not separate components of «, and ’

(4) Sv(du)wzgafw

for every harmonic differential w on VUa such that ||w|]y<<co and S w=0 for every
7 mentioned above. !

We remark the following:

(i) If V is the interior of a compact bordered surface, this definition coincides
with the previous.

(i) In (3), the harmonicity of » may be replaced by the following: v is of C®
on V. In (4) the harmonicity of  may be replaced by the following: @ is of C®
and closed on V.

(i) If V'cV then

Loy (Lovf )= Lovf, Liy(Lwf)=Lwf

on V' for any f on «; here the subscripts ¥/ and V express the region where the
operators are considered.

(iv) Conversely, let V3, .-+, V,C V be mutually disjoint and such that V— Uz V%
is relatively compact. Given f on «, suppose a # on V satisfy (2) and

u=Loy,u  (u=Lyn)

on Vi, k=1, ---,m. Then u=Lof(u=L,f, resp.) on V.

3. We find in Ahlfors-Sario [1, p. 176ff] that ¢o and ¢, are characterized as
functions regular on £2—{oo}, having expansion (1) about oo, and such that

(5) Ly(Re po)=Re ¢, Li(Re ¢g)=Re ¢
on 0%; this means the validity of (5) on V4, -+, V., with compact £2— U, Vi, which
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is independent of the choice of Vi because of the above remarks (iii) and (iv).
Therefore

THEOREM 1. A region 4 in the z=x-iy-plane with coed is a minimal horvizontal
(vertical) parallel shit plane if and only if

Lix=x (Lix=z, resp.)
on 04.

It is evident that the condition is equivalent with
(7) Ly=y  (Lyy=y, resp.).

On regarding the definition of L, we see that the validity of Lyx=« on a V is
equivalent with the following: S (av/ax)dxdyzg vdy. Consequently a region 4

with ooed is a minimal horizontal ;;/)arallel slit plarfe if and only if
SS fﬁa’:cdyzo
Aax

for every £ which is of C™® in 4, vanishes identically in a neighborhood of co, and
has finite D4(%). This is nothing but the original characterization of minimality
due to Koebe [4].

From Theorem 1 and remarks (iii), (iv) of 2°, we obtain the following which
is Theorem 12 of Suita [8]:

THEOREM 2. Let coedy (=1, -, n) have mutually disjoint 43, and let 4= N} dy.
Then 4 is a minimal horizontal (vertical) parallel skt plane if and only if so arve all
ﬂze A}C

4. Circular and radial slit planes are characterized by L, and L, in the similar
way. Slit disks and annuli are the same if the outer (and inner) periphery is
assumed to be isolated from other part of the boundary. For example

Let 4 be a circular slit annulus with inner and outer radius 0<Q’ and Q< oo,
respectively. Let (|z|=Q’) and (]z]=Q) be isolated from E=4°N {z|Q’' <|z| <Q}.
Then 4 is a minimal circular slit annulus if and only if L,(log |z])=log |z|
on F.

The change of the independent variable in (4) implies the following, which is
contained in Theorem 11 of Suita [8]:

THEOREM 3. Let a circular slit annulus 4 and its slits E be as above. Let 4’
be a horizontal parallel slit plane such that E'=4'C is contained in the interior of
a vertical parallel strip with width 2z. Suppose that E is the image of E’ under the
mapping z—expiz. Then 4 is minimal if and only if 4 is minimal.

5. Characterizing minimal circular slit annuli by extremal length is easier than
that of parallel slit plane. The former is found in, e.g., Reich-Warschawski [5] (for
slit disk, though) or Sakai [7], and the latter is in Jenkins [3] as we have mentioned.
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The former is as the following:
Let 4 be as in 4°. Let 7" be the family of all the closed rectifiable curves
in 4 separating the inner and outer peripheries. Then 4 is minimal if and
only if log (Q/Q")=2r/A(I").
The following is derived from this:

THEOREM 4. Let 4 be a plane region containing co. Let R be a rectangle whose
interior contains 4° and sides are parallel to the coordinate axes. Let a and b
be respectively the width and the height of R. Let I’ be the family of all the vectifiable
curves in RN 4 joining the both vertical sides of R. (i) If 4 is mimnal, then A(I")
=alb for any R; (i) If there exists an R with A(I")=alb, then 4 is minimal.

Concerning (ii), Jenkins [3] assumed the validity of A(I")=a/b for all sufficiently
large square R. The present form the characterization by moduli of quadrilaterals
is stated without proof by Grotzsch [2, p. 188]. The above is Theorem 8 of Suita

[8].

Proof. (i) With the aid of linear transformation, we may assume in advance
that ¢=2z. Map R by {=const-expiz onto 1<|{|<expbd and let the image of 4¢
be E. By Theorem 3 d=(1<|{|<expb)—FE is minimal, so that 6=2z/A(I"), where
I" is the family of all the closed curves in 4 separating the inner and outer
peripheries. From the general theory of extremal length, it is easy to obtain
2m/b <Ay, AY<AM). Thus A(I")=2x/b.

(il)) We may assume 1n advance that a=n. Let Rand E be obtained from R
and £, respectivey, by the reflection across the right vertical side of R. Let r
be the family of curves obtained from /' by the same reflection. Map R by
{=const-expiz onto 1<|{|<expd and let the image of E be E. Consider 4 and I’
as before. From the general theory, we have 2n/b<2(l“), 2(F)<Z(ﬁ) /I(l’) 24
Thus, by the assumption, b= 27/A(I"), and, therefore, 4 is minimal. By Theorem 3
Eeis minimal, so that, by Theorem 2, 4 is minimal.
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