
MINIMAL SLIT DOMAINS AND MINIMAL SETS

By NOBUYUKI SUITA

§ 1. Introduction.

1. The problems of mapping a plane domain onto a certain canonical domain
such as a circular, radial and parallel slit domain have been discussed by many
mathematicians. Grotzsch [3, 4] specified a number of extremum problems which
provided the uniqueness of the mapping functions for the domains of infinite con-
nectivity. His method, the method of strips, was succeeded by the refined method
of the extremal metric which was usefully applied to the theory of univalent func-
tions by Jenkins [6].

Recently Reich and Warschawski [20,21] and Reich [19] dealt with these problems
for the cases of both circular and radial slit disks and annuli. Their method was
based on a sort of area theorem which was an extension of an inequality of Rengel.
There are another approaches to the problems containing potential-theoretic tech-
niques as in Ahlfors and Sario's book (Chap. Ill) [2] and others [7,8,9,23,24,28,30].

In the present note we first make a brief treatment of the problems except for
the cases of general radial slit domains by means of the method of the extremal
metric in § 3 as in Jenkins' book [6] in which the parallel slit theorem is obtained
(pp. 81-85). Our principle, however, is an elementary equality in Hubert space re-
garded as a precise evaluation of RengeΓs inequality, instead of the geometrical ob-
servations. It leads to the specified extremum properties, and characterizations of the
canonical domains in terms of the module or extremal length follow to it. These
are essentially due to Grotzsch [3, 4]. Since we can show a localization principle
which was given by Grotzsch [3] without proof, we shall define minimal sets of cir-
cular, radial and parallel slits for compact sets in § 4 which was first introduced by
Koebe [9] for parallel slits.

We discuss several properties of the minimal sets and examine the inter-relations
between the minimal sets of both circular and radial slits and the set of parallel
slits. We show that the union of a finite number of disjoint minimal sets is mini-
mal. The above results and the localization of the criterion for the minimality are
proved in the stand-point of the method of the linear operator method [2] by Oi-
kawa [15] in these Reports.

In § 5 we extend the minimality to non-compact sets and define quasi-minimal
sets. The remained mapping problems are discussed and general radial slit mapping
theorems due to Strebel [28] and Reich [19] are obtained, which may be another proof
of the continuity of external lengths [28, 31] for an exhaustion in case of plane do-
mains. Since a property of radial slit disks given by Strebel [27] contains an in-
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complete discussion, we give a correct one.
The author expresses his hertiest thanks to Professor K. Oikawa for his valuable

advices in preparing this paper and to Professors Y. Komatu and M. Ozawa for
their kind encouragements and valuable remarks.

§2. Preliminaries, modules and extremal lengths.

2. Let Ω be a domain and Γ be a family of locally rectiίiable curves in Ω. If
a non-negative measurable function p{z) defined in Ω satisfies a condition

\p\dz\^l for all γsΓ,

where the existence of the above integral (as a Lebesgue-Stieltjes integral) is assumed,
we call p an admissible metric with respect to the L-normalization and denote by
P the class of admissible metrics. Then we designate the quantity

modΓ=inf\\ p2dxdy
p£P J JΩ

as the module of Γ. The reciprocal of it is called extremal length λ(Γ) of the family
Γ [6]. If there exists an admissible metric p0 whose square integral over Ω attains
modΓ, it is called an extremal metric. The extremal metric for the module pro-
blem with finite module is unique if it exists [6],

The following lemma shows a property of continuous extremal metrics defined
below.

We suppose that a curve family Γ has the following property:
(P) Let 7Ί and γ2 be any two members of Γ (may coincide) and zlf z2 are con-

tained in pi and γ2 respectively. γ[ and γί are denoted by the arcs before zi and after
z2 following suitable parametrizations of them respectively. If we join the two
points by an arbitrary locally rectifiable curve a, the composed curve γί\Ja\jγ'2 be-
longs to Γ.

We remark that there exists a curve of the family Γ through any point z in
Ω. Denoting by Γ\ the subfamily of Γ consisting of all curves through z, we state

LEMMA 1. If po(z) is a continuous extremal metric for a module problem of a
curve family Γ with the property (P) and modjΓ<oo, then we have

c
(1) inf\ po|<fe|=l for every point z in Ω.

ΐ£ΓzJr

The lemma is a generalization of the one in the previous paper of Oikawa and
the author [17] and the proof is analogous to it. Similar results for the rectangle and
circular ring are found as effectual lemmas in proving statements of uniqueness in
Jenkins [6] but we use it in discussing certain properties of minimal slits domains.
Jurchescu [7] used similar arguments to our proof for circular slit annuli.



168 NOBUYUKI SU1TA

PROOF. Contrary to the assertain, we suppose that

(2) inff po\dz\=l+δ, δ>0.
J

We denote by U(z, ε) the set of all points in the distance within ε from z with re-
spct to p0 metric. Since ρ0 is continuous U(z, ε) is open and connected and we have

(3) [[ pldxdy>0.

Indeed vanishing of the integral (3) implies that po(z)=Q in U(zt ε) which contradicts
the definition of U(z,e). Choosing ε smaller than δ/2, we put

0, zeU(z,ε),

U , zeΩ-U(z,ε).

Then pi is also adminissible by (2) and we have ||pi||l<||po||l, using (3), which con-
tradicts the extremality of p0. Here and hereafter the norm stands for the square
integral.

3. Let Γ be a curve family with finite module. Obviously the admissible class
P for Γ makes a convex set. By the fact Strebel [27] showed that there exists always
a unique metric p0 called a generalized extremal metric as a strong limit of minimal
sequences. To explain the circumstances we add all strong limit functions of P to
it and have a closed convex set. We call such a class P* a generalized admissible
class and its member a generalized admissible metric. We can easily see

modΓ=inf||/o||2=min||p||2.
pGP peP*

In fact obviously the infinima of norms of metrics of both classes P, P* coin-
cide and we take a minimal sequence {pn} of P*. We have by an elementary
equality

an inequality \\pm—Pn\\2<^e for so large m, n that |||θm||2—modΓ<ε, | |p/ t | |
2—modi7<ε,

since modΓ^||(/ow+/σw)/2||2. Then {pn} is a Cauchy sequence and we get a unique
limit function p0 satisfying ||/00 | |

2=modΓ for all minimal sequences.
Inserting into (4) a metric p of P* and a generalized extremal metric p0, we

have

(5) -2-||p-Po

which is a fundamental inequality in the subsequent arguments.
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§3. Mapping problems.

4. We now state several mapping theorems. Although Theorems 1-7 contained
in Reich and Warschawski [19, 20], Jenkins [6] and essentially in Grδtzsch [3, 4], or
partly in many other articles [2, 7, 8, 9,23,24, 28, 30], we make simple proofs in order
to make this note self-contained. The problems will be considered for the domains
of infinite connectivity and the results for the domains of finite connectivity are
supposed (Rengel [22], Komatu [10] and Nehari [13]).

We speak of a strict difinition of boundary components. Let Ω be a plane do-
main and {Vn}n=i be a sequence of its ends i.e. non-compact subregions with com-
pact relative boundary satisfying the following conditions: {Vn} is decreasing, the
relative boundary of Vn consists of one Jordan closed curve and Π Vn=φ. Then
we obtain a closed set C= Π Vn, where Vn is the closure of Vn taken in the com-
plex sphere and call C and { Vn} a boundary component of Ω and a defining sequence
of C respectively. Two defining sequences {Vn}, {V'n} define the same boundary
component if and only if there exist suitable m, mr such that F£z> Vm and Vn'D Vϊn>
for every n and they are said to be equivalent. We can take a equivalent class of
defining sequences as a boundary component in the sense of Kerekjartό-Stoilow.

Let T{z) be a topological mapping of Ω. Then the images T( Vn) of a defining
sequence {Vn} make a defining sequence in T(Ω) and define a boundary component.
We call it the image of a boundary component under a topological mapping T.

We mean by a (normal) exhaustion of Ω a sequence of relatively compact sub-
regions {Ωn}™=1 such that ΩnaΩn+1, []Ωn=Ω and the relative boundary of Ωn consists
of a finite number of analytic Jordan closed curves containing at least one boundary
component in its exterior with respect to Ωn.

5. Let Ω be a plane domain and a, b, C, C be two points of Ω and two bound-
ary components respectively. We denote by ^ab(Ω) the family of univalent func-
tions f{z) with the properties:

2. / has a simple pole at b with residue c(f).
Then we have

THEOREM 1. There exists a unique function fab(z) within $«& with the following
properties:

1. \c(fab)mc(f)\ forfeftat.
2. The images of the boundary components of Ω under fab are circular sliis

{possibly points) of total area zero.
3. If an annulus A(q, Q)={q<\w\<Q} contains the image of the boundary under

fab, the module of the family of locally rectifiable closed curves separating the two
boundaries of A(qy Q) in the image domain Δ is equal to (Zπ)'1 log (Q/#).

Conversely the property 1 or 3 characterizes fab.

Proof. Let {Ωn} be a normal exhaustion of Ω. Then there exist extremal
functions fn within %ab(Ωn) with the properties in Theorem 1. By the normalization
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1 we can extract a subsequence {/„} with a limit / 0 from {fn}. Let Δf be the in-
tersection of Δ with A(q, Q) containing the image of the boundary of Ω under /0.
Putting Po=^(2π)-1\f/

Q/fo\ and ρv=(2π)~1\fjfv\, we have from the weak convergence
of pv which is the result of its uniform convergence on any compact subset of Ω

(6) \jm\\pv\\l,^\\p0\\l,

where Ω' is the inverse image of άf and pv is defined zero outside of Ωv in the
sequal.

On the other hand, the uniform convergence of fv on the inverse image of the
boundary of A{q, Q) shows that ρv is an extremal metric for the module problem
in a subdomain of Ω' arbitrarily close to it. We have

by the admissibility of p0, which implies

(7) ^-log-^-=lim | |rfHUII 2

Δπ q

where we use the notation " mod" as a functional of a domain. Since po(Po(w)
= 1/M in Δf) is a continuous extremal metric, the infinimum of the logarithmic
lengths of closed curves through a fixed point w in άf and separating the origin
from the point at infinity is 2π by Lemma 1 and hence the boundary components
of Δ are circular slits. By the equality (7) the logarithmic area of slits and also
the area vanish. We can deduce from the weak convergence of f'Jfv and the con-
vergence of norms \\pv\\ that it converges to fί/fQ strongly. By the uniqueness of
extremal metrics, the limits are same for all subsequences of {fn} and hence it
converges to /0.

To show the extremal property 1, for f{z)sΩ we put p = (2π)-1\ff/f\ which is
admissible in Ω\ Denoting by MQ(/), mq(f) the maximum and minimum moduli
of / on the inverse images of circles \w\=Q, \w\—q under / respectively, we have
by the fundamental inequality (5) in § 2

since the logarithmic area of an annulus A(mq(f),MQ(f)) is larger than \\p\\2

0, and
making q and Q tend to zero and infinity respectively

(8) (2τr)-1log ^ >—\\p-p*\\l

The characterizations by the property 1 or 3 are obvious. In fact, if
= k(/o)|, we have | / 7 / | Ξ | / 0 7 / 0 | in Ω and the extremal property of / 0 is deduced
from the property 3 and (8). We designate /0 as fab.
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REMARK. If an annulus A(q7 Q) containing the boundary of Δ has the property
3, it holds for all A(q, Q) for q'<q, Q'>Q by the superadditivity of modules [6]. Such
improvements of the characterizations in terms of modules will be discussed in § 4.

6. To transfer to slit disks, we denote by %ac(Ω) the family of univalent func-
tions f(z) with the properties:

1. /(β) = l-/'(tf)=0,

2. the image f(C) separates the origin from the point at infinity.
We introduce a notation

w€f(C)

and state

THEOREM 2. / / Ω is mapped onto a bounded domain by a univalent function
of $ac, there exists a unique function fac(z) within ^ac with the following properties:

1. Mc(fac) ̂  Mc(f) for /€ gfασ.
2. The images of boundary components other than C are circular slits (possibly

points) of total area zero.
3. fac(C) is a circle with radius Q (Q=Mc(fac)) crnd if a circle with radius q

(#<Q) separates the origin from the boundary of the image domain Δ, the module
of locally rectifiable closed curves separating two boundaries of the annulus A(q, Q)
in Δ is equal to (2π)~1log(Q/q).

Conversely the property 1 or 3 characterizes fac [21].

Proof. The proof is similar to that of Theorem 1 and omitted.

REMARK. The assumption in Theorem 2 is the fact that C is not weak [25].

Let %cc>(Ω) be a family of univalent functions f(z) with the property: f(Cf)
and f(C) divide the other from the origin and the point at infinity respectively.
Denoting by ntc(f) the quantity

we have

\w\
W£f(<0)

THEOREM 3. If Ω is mapped by a function of %cc> onto a relatively compact
domain in the finite punctured plane delating the origin, there exists a unique func-
tion fcc'(z) within ^cc> save linear transformations with fixed points at zero and in-
finity having the following properties:

1. Mc{fcc>)lmc>(fcc>)^Mc(f)lmcU) for fs%Co.
2. The images of boundary components other than C, Cf are circular slits (pos-

sibly points) of total area zero.
3. fcc'(C), fcc'(C) are two circles with radii q, Q and the module of locally rec-

tifiable closed curves separating the two circles in the image domain is equal to
(2π)-nog(Q/q).
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Conversely the properly 1 or 3 characterizes fee 120].

Proof. We point out only differences from that of Theorem 1. Let {Ωn} be
a normal exhaustion of Ω and Cn, C'n the boundary curves of Ωn containing C, C
respectively. Then there exists a function fn within ^cncn{Ωn) with the properties
in Theorem 3 and an additional normalization that fn(C'n) coincides with the unit
circle. The quantity Qn=Mcn(fn) is increasing and bounded by the assumption.
Denoting by Q the limiting value of Qn, we select a subsequence {fv} with a limit
/o, under which the image domain is contained by an annulus A(l, Q). Then under
the notations in Theorem 1, we have

(9) llPoll^ljinll^ll^fiiiίllPvll^modJ^ll^oll2

by the weak convergence of fί/fv, the monotonity of modules and the admissibility
of p0, which implies the properties 2 and 3. As to the extremality, put p = (2π)-1\f'/f\
for feftcc and insert ρ0, p into (5). We have

In the above inequality implies that p=p0 and f=af0.

REMARK. If Ω is regarded as a bordered surface not necessarily compact with
compact borders C, O', we take such a special exhaustion {Ωn} that (Ω*nΩ)<zΩn+ι,
)jΩ*=Ω and the boundary of Ω% consists of the borders C, Cf and a finite number
of analytic Jordan closed curves containing at least one boundary component of Ω,
instead of the normal exhaustion {Ωn} in the proof and the sequence {f*} of the
normalized extremal functions contains convergent subsequences to /0, whose con-
vergences are uniform on any compact subset in Ω U C U C. In fact the strong con-
vergences of the logarithmic derivatives of subsequences are valid as before from (9)
and the uniform convergence on borders are deduced by the usual inversion method.

7. We next mention mappings onto radial slit domains. Under the notations
in Nos. 5 and 6 we state three theorems.

THEOREM 4. There exists a unique function gab(z) within %ab(Ω) with the pro-
perties :

1. \c(gab)\^\c(f)\ forfe%ab.
2. The images of the boundary components of Ω under gaυ are radial slits {pos-

sibly points) of total area zero.
3. If an annulus A(q, Q) contains the image of the boundary of Ω under gab,

the module of the family of locally rectifiable curves joining the two boundaries of
A(q,Q) in Δ (=gab(Ω)) is equal to 2π/log(Q/q).

Conversely the properties 1 or 3 characterizes ga.b

THEOREM 5. If C is not a point and isolated from other boundary components,
there exists a unique function gac(z) within $ac(.Ω) with the properties:
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1. mc(gac)^mc(f) for
2. The images of boundary components other than C are radial slits {possibly

points) of total area zero.
3. gac{C) is a circle with radius Q {Q=m{gac)) and if a circle with radius q

(q<Q) separates the origin from the boundary of the image domain, the module of
locally rectifiable curves joining the two boundaries of the annulus A{q, Q) in Δ is
equal to 2π/log (Q/g).

Conversely the properties 1 or 3 characterizes gac [21].

THEOREM 6. If neither C nor C is a point and if they are isolated from other
boundary components, there exists a unique function gcc>{z) within %cc>{Ω) save linear
transformations with fixed points at zero and infinity with the properties:

1. mc{gcc,)IMc(gcc)^mc(f)IMc,(f) for feftcc
2. The images of boundary components other than C, C are radial slits {pos-

sibly points) of total area zero.
3. gcc>{C), gcc'{C) are two circles with radii q, Q and the module of locally rec-

tifiable curves joining the two circles in the image domain is equal to 2π/log{Q/q) [28].

Proof. We give a proof of Theorem 5 which is applied to the other two with
a little modifications. We may suppose that C is an analytic curve. Let {Ωn} be
an exhaustion of Ω in the sense of Remark in No. 6 and gn the extremal functions
of Ωn in Theorem 5 [10,22]. As before for a subsequence limgy=g0 Let Qv be the
radius of the outer boundary of gv{Ωv). Qv is decreasing and l\mQv=Q, which is
the radius of that of go{Ω), from the uniform convergence of gv on C by usual in-
versions. Put go{Ω)=Δ and Δ'=ΔnA{q,Q) for so small q that the circle \w\=q
separates the origin from the boundary of Δ. Then the metrics po = \g/

o/{go log(Q/#))|,
Pv=gJ{gΛog{Qv/Mq{gv)) are admissible and since lim Mq{gv)=q, we have

and ||po||2=:27r/log(Q/^)=modzί/. From the convergence of log{QJMq{gv)) we note
that ||flf//flfv-go7^o||8-O.

To show the property 1, we set p=\fflf\og{mG{f)IMq{f))\ in the intersection
of f{Ω) with A{Mq{f\mc{f)) and zero elsewhere for

Multiplying it by log (Q/q) log (mc(f)/Mq(f)) and tending q to zero, we have for the
inverse image Ω* of {M<m c (/)} under /

2 11/

which implies the property 1 and the converse.

8. Let %aψ) be the family of meromorphic univalent functions f{z) with the
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expansion at the point a: f(z) = l/(z—a)-\-ci(f)(z—a)+ -. Then we state

THEOREM 7. There exists a unique function p°a(z) within %Jβ) with the pro-
perties :

1. Re(e~2ίθc1(pθ

a)mRe(e~2ίθc1(f)) for fe%a.
2. The images of the boundary components of Ω under pθ

a are parallel slits
(possibly points) with inclination 0.

3. Let S(L, θ) be a square defined by |Re (e~iew)\ <L, |Im (e~ίθw)\ <L. If S(L, 0)
contains the boundary of the image domain Δ, the module of the family of locally
rectifiable curves joining the sides with inclination θ-\~π/2 in Δ is equal to one.

Conversely the property 1 or 3 characterizes pa-

Proof The result is essentially due to Grδtzsch [3]. de Possel [18] showed the

property 1 and the characterization by it. Jenkins [6] proved the theorem by means

of the method of extremal metrics and our proof is similar to his except the in-

equality (5) and omitted here.

The following facts are evident from the proofs of the preceding theorems.

COROLLARY 1. The extremal functions of the above problems are the limit func-
tions of those of exhaustions, where suitable normalizations are added if necessary:
e.g. the inner radius and the image of a point on C are fixed in the case of annuli
with isolated distinguished boundaries. The convergences are uniform on any com-
pact subsets of Ω and \\fn'/fn—fo'/fo\\ln—*0, \\Pn'—po'\\ln-*O in the cases of circular
or radial slits and parallel slits respectively.

9. For the later use, we prove a special mapping theorem as a lemma. Let
Ω be such a domain that its outer boundary is a closed Jordan curve with distin-
guished four points d, ζ2, ζ8, C4 and its inner boundary is a compact set E contained
in the interior of the curve. We suppose that the four points lie in the natural
order. Then we state

LEMMA 2. There exists a unique mapping function φ(z) such that
1. ψ maps Ω onto a rectangle R defined by 0<Rew<L, 0<Im w<L', minus a

compact set in such a way that the four points correspond to vertices of R and
especially d, ζ2 to 0, L respectively,

2. ψ maps E onto a horizontal slits (possibly points) of total area zero,
3. the module of the family of locally rectifiable curves joining two vertical

sides is equal to L'/L.
Conversely if a slit rectangle R with the normalization in 1 satisfies the condi-

tion 3, then φ(z)=z. Furthermore let {Rn} be an exhaustion of R fixing the outer
boundary in the sense of Remark in No. 6 and φn the mapping functions of Rn in
this lemma with the same normalization. ψn converges to z uniformly on any com-
pact subsets of the union of the domain and the outer boundry.

Proof. We owe the proof to Grδtzsch [3] who proved it in the case of finite



MINIMAL SLIT DOMAINS AND MINIMAL SETS 175

connectivity. We regard Ω as a non-compact bordered surface with a compact border
and make a double of Ω denoted by Ω, identifying the arcs ζ2ζ3, ζ&i with their
counterparts respectively. Ω has two closed boundary curves C, C consisting of two
arcs dζ2, ζaC4 respectively. Then by Theorem 3 a function fee maps Ω onto a cir-
cular slit annulus with inner radius one having the properties in Theorem 3. Since Ω
has an anti-conformal mapping onto itself fixing the arcs ζΓζ3 cICi, they correspond
by fee to two segments on a diameter of the outer circle. We put φ=A\ogfcc'Λ-B
for suitable imaginary constants A, B and then the restriction of it in Ω is the
desired function. Indeed the properties 1, 2 are obvious. Let Γu Γ2 be the family
of locally rectifiable curves joining the segments fcc'iζiζi) and fcc'^ζz) in the upper
and lower halves respectively. Then the module of the family of curves separating
two boundaries of A(1,Q) in the image domain is equal to (2π)~1logQ where Q is
the radius of the outer circle, and since each member of it contains both members
of Γ1 and Γ2, a well-known inequality (modΓi)-1+(modΓ2)~1^2τr/logQ [2] shows that
mod A=mod/72=(4τr)-1 logQ, which implies the property 3. The later half is ob-
vious from Theorem 3 and Corollary 1.

We remark that Lemma 2 is also valid in case that the arcs ζ2ζ3, C*d are iso-
lated from E under the exhaustions in which the isolated arcs are fixed.

§ 4. Minimal slit domains and minimal sets.

10. We call the image domains in Theorems 1, 2, 3 (4, 5, 6) a minimal circular
(radial) slit plane, disk, annulus respectively. The image domains p°a, pa2 are called
a minimal horizontal and vertical slit plane. By the preceding theorems they pos-
sess the extremal properties and characterizations in terms of modules. The ex-
tremal function of each minima] domain is the function w=z and the extremal
functions in the exhaustion converge to it in the respective sense adding suitable
normalizations, if necessary. As in Remark after Theorem 1, the criteria for mini-
mal circular slit domains comply localization principles. Analogous remarks are
valid for other minimal domains, but they are not trivial since the superadditivity
of modulus is not effective. We show them for horizontal slit domains, although
they were already stated by Grδtzsch [3] without proof.

On the other hand Professor Oikawa [15] will give interesting and effective char-
acterizations by means of linear operator methods in the subsequent paper in these
Reports, which may be regarded as a generalization of Koebe's [9] and these facts
will be clarified by them.

To this end we need the following

LEMMA 3. Let {F,}f=i be a finite number of ends of a domain Ω and fn uni-
valent functions defined in an exhaustion {Vjn} of V3. If limfn=z uniformly on
any compact subsets of VJy then for sufficiently large n there exist quasi-con formal
mappings Fn in subdomains of Ω such that Fn is equal to fn in the intersection of
Vjn with subends V3 of F, for all j and to z in Ω— u F,, and the maximal dilata-
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tions Kn of Fn tend to one with n increasing.

Proof. Put fn(z)=z+ζn(z). Let F*, V'3 be subends of V, and of V? with closed
analytic Jordan curves Cf, C'3 as relative boundaries respectively. We denote by S3

the ring domain bounded by Cf, Cf

3 and by ω3(z) the harmonic measure of C3 in
S3. We set

Fn(z) =

fn(z), m V'jΠVjn,

z-\-ω3(z)ζn(z), in Sj,

z,

The restriction of Fn on S3 maps Cf, C3 onto simple closed curves Cf, fn(C3) and
the jacobian of Fn does not vanish for sufficiently large n. Hence Fn maps S3 onto
a ring domain bouned by Cf, fn(C3) quasi-conformally and by the continuations
across Cf and Q [12], Fn is quasi-conformal in \J3((Ω— V3*)U Vjn). Simple calcula-
tions show that limi£n = l.

Then we have

THEOREM 8. Let Ω be a plane domain. If there exists such a rectangle R with
horizontal and vertical sides of the lengths L, Lr containing the boundary of Ω in
its interior that the module of the family of curves joining the vertical sides in Ω is
equal to L''/L, then Ω is a minimal horizontal slit plane.

Proof. Let {Rn} be an exhaustion of {Rf]Ω} in Lemma 2. The functions φn(z)
mapping Rn onto slit rectangles with the same lower horizontal sides tend to z.
Let S be a square containing R. Then the function Fn in Lemma 3 maps Rn U (S—R)
onto S minus a finite number of horizontal slits. We have moά(SπΩ)^l/Kn, and
moά(Sf]Ω)=l, tending n to infinity which implies the minimality of Ω by Theorem 7.

11. Now we define minimal sets which were first introduced by Koebe [9]. Let
E be a compact set in the z-plane. If Ec is a minimal horizontal (vertical) slit plane,
then E is called a minimal set of horizontal (vertical) slits. Similarly if Ec contains
the origin and is a minimal circular (radial) slit plane, E is called a minimal set of
circular (radial) slits. For simplicity's sake we remark that those minimal sets lie
on trajectories of suitable quadratic digerentials. Indeed minimal sets of horizontal,
vertical, circular and radial slits lie on the trajectories of the quadratic differentials^
dz2, —dz2, —dz2/z2, dz2/z2 respectively. Generalizations of minimal sets for other
quadratic differentials are possible but not done here.

Summing up the results obtained, we can deduce the following properties of

minimal sets:
i) Any compact subset of a minimal set is minimal,

ii) Linear transformations z-\-c for parallel slits, cz for other preserve the mini-

1) For the definitions of quadratic differentials, related notions and their properties
see Jenkins [6].
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mality.
iii) The area of a minimal set vanishes.
iv) Two points in Ec lying on a trajectory can be joined in it by an arc arbi-

trarily close to the distance of them with respect to extrmal metrics (euclidean or
logarithmic), where E is a minimal set.

In fact these properties follow from tne monotonity, conformal invariance of modules,
Theorems in §3 and Lemma 1.

A compact set E with the projection of the linear measure zero into the imagi-
nary axis is a minimal set of horizontal slits, and similar statements are valid for
others. Koebe [9] conjectured the necessity of the condition, but Grotzsch [3] showed
an example of a minimal set of horizontal slits such that the projection into the
imaginary axis becomes an interval.

Professors J. Tamura and K. Oikawa informed us two simple examples which
are a compact set of class iVφ [1] with an interval as the projection into a line in
any direction and a totally disconnected compact set without the property iv) with
respect to the euclidean metric [29].

12. We prove

LEMMA 4. Let Ω be a domain with a set of conformal or anii-conformal map-
pings {ψ} onto itself and Γ a family of locally rectifiable curves with finite module
and invariant under each ψ. Let P* be the subclass of all generalized admissible
metrics satisfying the following condition: p(z)=p°ψ(z)\ψ'(z)\ for all ψ.2) Then we have

modf=min||p||2
pep*

Proof. We put pψ=p°ψ\ψ'\ for any generalized admissible metric p and

which is invariant under ψj. Then we have

P-PΦ\\2_ II

which implies the assertion since IM^HI/fyll2-

Now we state an improvement of the property 3 in § 3 and Theorem 8, which
is valid for other minimal sets:

THEOREM 9. Let E be a minimal set of horizontal slits and R a rectangle with
sides parallel to the axes. Let Γ* be the family of locally rectifiable curves in R—E
with end points on two vertical sides which have neighborhoods contained in Ec.
Then the module of Γ* is equal to the ratio of the sides.

2) ψ' is read as dψ/dz in anti-conformal cases.
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Conversely if a closed rectangle R contains a compact sets E and the module
of the above family Γ* is equal to the ratio of sides, then E is a minimal set of
horizontal slits.

Proof We may assume that R is defined by |Re^|<L, |Imz\<U and Rf]E
±?φ. If a large square S(L*, 0) contains E, we take a rectangle R* defined by
|Re2|<L*, \lm z\<L'. By the property iv) there exist two Jardan arcs C, Cr join-
ing two vertical sides of R* in the intersections of R*—E with the half planes
I m ε < - ( L / - e ) and lmz>U —ε respectively. We denote by Tthe quadrangle bound-
ed by C, C and two vertical segments joining them. Let {Ωn} be an exhaustion
of Ec. Then the parallel slit mapping functions pn, the function pL of Ωn, converge
uniformly to z on the periphery of T for sufficiently large n and hence the rectangle
defined by |Re£|<L*+ε, \lmz\<L'—2ε lies through the image of T under pn for
sufficiently large n. We have from the same reason as in [6] p. 82 (or [1])

= L*+2s

and

V
mod ( # * - £ ) =

L* '

Next R*—R consists of two rectangles denoted by Ru R2 from the left. Let l\,
Γ2 be the families of locally rectifiable curves joining the vertical sides in Rχ—E,
R2—E respectively. Since any locally rectifiable curve joining the vertical sides of
R* in R*—E contains each members of the three families, we have by the inequality
of the extremal length used in Lemma 2 [2]

(mod Λ ^ - K m o d Γ*)-1+(mod Λ)- 1 ^L*/L.

On the other hand we note that mod Λ^Z//(L*-L), mod Γ*^L'/L, mod A
^L'(L*-L), which implies that mod Γ*=L'/L.

We show the converse. Add to the rectangle suitable rectangles, if necessary,
and the horizontal sides are isolated from E. The condition of the theorem remains
valid because of the superadditivity of modules. We give the sets R, E an inversion
with respect to the right hand vertical sides and denote by R'y Ef their images.
The union of R—E, Rr—Ef and the open segments comlementary to E of the side
is a slit rectangle (not necessarily connected) and the module of the family Γ of
locally rectifiable curves joining the vertical sides in the slit rectangle is L'/2L. In-
deed for a invariant subfamily Γ of Γy we can restrict the metrics to invariant met-
rics p by Lemma 4. Such metrics p are symmetric with respect to the side and 2p
is admissible for the module problem of Γ*, and hence modΓ=modΓ=L'/2L.

Repeat the same process for the left vertical side and vanish the slits other than
E. We see that the rectangle containing E complies the assumption of Theorem 8
and E is minimal.



MINIMAL SLIT DOMAINS AND MINIMAL SETS 179

REMARK. In order to select such a curve as C in the proof which lies in a
narrow strip, it is sufficient that the compact set E consists of horizontal slits with-
out the minimality.

COROLLARY 2. If E is a minimal set of circular slits, then any disk (annulus)
with center at the origin minus E is a minimal slit disk {annulus).

13. We state the interrelations of minimal sets:

THEOREM 10. A minimal set of circular (radial) slits is mapped by the function
w=logz (not single-valued) onto a non-compact set of vertical (horizontal) slits and
any compact subsets of it is minimal.

Proof. We may assume that the minimal set E is contained in an annulus
A(q, Q) and the compact subset £* of the image E' of E in a rectangle R defined
by \ogq<Rew<logQ, 0<Imw<2nπ. For the case of radial slits, let Γ be the family
of locally rectifiable curves joining the vertical sides in R—Er. Then we can de-
duce from Theorem 9 and the superadditivity of modules that mod Γ=2nπ/log (Q/q),
hence E* is a minimal set by Theorem 8.

For the case of circular slits, we identify the horizontal sides of R as usual,
delete the vertical slit from it and have a planar surface 9ΐ. The function z=ew

maps $i onto an n-sheeted smooth covering surface of A(q,Q)—E denoted by %.
Obviously 21 has n cover transformations regarded as a cyclic group of order n.
Let Γι be the family of locally rectifiable curves separating the boundaries over
those of A(q, Q). Then any admissible p for invariant subfamily ΓΊ in the sense
of Lemma 4 is an metric in A(q, Q) using z as a local parameter and np is admis-
sible for the module problem in Theorem 3. Then by Lemma 4 and the monotonity
of modules we have mod Γ1 = (2nπ)~1 log (Q/q) and hence conclude that the module
of curves joining the horizontal sides of R in R—E* is equal to the same value,
which implies the minimality of £*, removing superfluous parts of Ef.

Although it is a restrictive case, we have as a converse of Theorem 10:

THEOREM 11. A minimal set of vertical (horizontal) slits contained in a rectan-
gle with vertical sides 2π is mapped by eιz onto a minimal set of circular (radial)
slits.

Proof. For the case of vertical slits, let the set E be contained in a rectangle
R defined by log#<Re2<logQ, 0<Im2<2τr. Then the function w=etz maps the
identified surface R—E as in Theorem 10 onto a circular slit annulus and the curve
family Γ1 in Theorem 10 corresponds to the family of the curves joining two points
on the sides with the same real parts. Let {Rn} be the exhaustion of R—E in the
sense of Lemma 2. Then we can make functions Fn which maps Rn onto the
same rectangle with a unite number of slits quasi-conformally by Lemma 2 and 3.
Since the images of the curves belonging to Γ and contained in Rn enjoy the same
property, we have
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which implies the minimality of the circular slits. For the horizontal slits the as-
sertion is obvious from the relation of the curve families.

We remark that for the latter case the condition that the set is isolated from
the horizontal sides is removable as it is seen from the proof.

14. It is known that the union of a finite number of sets of class N% (N<$) is
also null (Kuroda [11]). We show a similar result for disjoint minimal sets.

THEOREM 12. The union of a finite number of disjoint minimal sets of the
same type is minimal.

Proof. It is sufficient to prove for horizontal slits. Let {Ej}f=1 be the sets and
E is the union. We take a large square S(L, 0) containing E and disjoint ends
{ Vj}J=ι of S—E with E as its ideal boundary. Since the complement of E is a minimal
horizontal slit domain, the slit mapping functions of the exhaustion of it tend to z
in each end V3. Hence we can make quasi-conformal mappings Fn mapping sub-
domains of the complement of E onto domains with a finite number of slits and
with the maximal dilatation arbitrarily close to one by Lemma 3. Fn=z outside
U Vj and hence we have moά(S(L,0)—E) = l from the same reason as Theorem 8,
which implies the minimality of E.

For the general case the problem is still open.

§ 5. Quasi-minimal sets.

15. A set E is called quasi-minimal set of horizontal slits etc., if any compact
subset of E is minimal. Theorem 10, 11 and the properties except iv) of minimal
sets are valid for quasi-minimal sets using the term " quasi-minimal" instead of
"minimal". We show additional properties of quasi-minimal sets:

i) If an annulus contains a quasi-minimal set E of circular slits and A(q, Q)—E
is a domain, then it is a minimal slit annulus.

ii) Let a set E be contained in A(q,Q) and A(q,Q)—E be a domain. If both
intersections of E with annuli A(q,r), A(r,Q), q<r<Q, are quasi-minimal, it is a
minimal slit annulus.
In fact, i) is deduced from Corollary 2, and ii) from i) and the superadditivity of
modules. We remark that ii) is valid for a countable number of annuli if the set
of radii of the circles complementary to the union of the annuli is of linear measure
zero, and shall use it for radial slits and radial divisions. The property ii) does not
hold in general for radial slits and circular divisions. Concerning this direction we
show

THEOREM 13. Let E be a compact set intersecting the imaginary axis whose
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intersections with the right and left half planes are both quasi-minimal sets of hori-
zontal slits. If for a rectangle containing its intersection with the imaginary axis,
the module of the family of the curves joining its vertical sides in E° is equal to the
ratio of sides, then E is minimal.

Proof. We may assume that the rectangle R is defined by |Re^|<Li, | Imz |<L 2

and that it satisfies the condition in Theorem 9 by the same reason as its proof.
Then Ef]R is minimal. It is sufficient to show the minimality of its intersection
with the closed parallel strip \lmz\^L2, denoted by Eu from the above property ii).
Let S(L, 0) contain EL Since the set of all slits of Eλ with lengths not less than
Li/4 has the projection into imaginary axis which is closed and of linear measure
zero, we can take a finite number of strips such that their two boundaries join the
vertical sides of S(L, 0) in El, they contain all the above slits and the amount of
the oscillations of Imz in each strip is less than ε. They devide S(L, 0) into a finite
number of quadrangles, say Sv. Since the set of slits contained in Sv is compact, it
can be covered by the union of a finite number of Jordan domains whose boundary
lies in Sv—Eλ with its diameter less than 2Li/5. Then we can devide the slits in
Sv into three minimal sets by means of two cross-cuts consisting of segments on
Rez=±Lχ and a part of boundaries of the Jordan domains contained in right and
left halves of R. Hence by Theorem 12 the slits in Sv are minimal and the mini-
mality of Ei is easily deduced from the superadditivity of modules.

16. We last give some remarks to the remained mapping problems especially
with respect to radial slit domains. The results are essencially due to Strebel [27,28]
and Reich [19]. We note

LEMMA 5. Let fn be univalent functions in a domain Ω and E a part of its
boundary components. If l i m / n = / uniformly on any compact subset in Ω and if
fn(E) is quasi-minimal\ then f{E) is so.

Proof. It is sufficient to prove for horizontal slits. Put Δ=f(Ω) and take an
end V of Δ containing the given compact subset £ * of E. Let gn(w) be fn°f~\w)
and S(L, 0) contain E*. Then, since \imgn=w, we have mod(S(L, 0)-£*) = l by
Lemma 4.

We remark that the lemma is valid for the sequence {fn} defined in an exhaustion
{Ωn} of Ω. The following remark deduced from it is suggested by Professor Oikawa:

REMARK. If the boundary component C is weak, the problem in Theorem 2
loses its meaning. The extremal functions facn(z) f° r a n exhaustion {Ωn} of Ω,
however, contain convergent subsequences and the image of its boundary under each
limit function is a quasi-minimal set. By Corollary 2 the intersection of the image
domain with any disk with radius Q is a minimal slit disk with radius Q. We
may call the domain a minimal slit disk with infinite radius, but the uniqueness
of the limit functions is not known.
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We define for a domain Ω and a boundary component C an exhaustion {Ωn} in
the direction of C according to Oikawa [6] such that aζΩnczΩ, (ΩnΓϊΩ)czΩn+ly \jΩn

=Ω, the relative boundary Cn of Ωn is an analytic Jordan closed curve separating a
from C. The exhaustion in the direction of C, C is defined similarly.

We treat radial slit disks representatively. For the above exhaustion Ωn is map-
ped onto a radial slit disk with radius Qn by the function gn=gacn m Theorem 5.
Since Qn is increasing, we have a limit value Q (possibly infinite) which is called
the extremal radius of C by Strebel [28] and denoted by R(a, c). Let Γq be the fami-
ly of locally rectifiable curves joining the circle \z—a\—q and C. Then using the
continuity of extremal lengths with respect to the above exhaustions, the following
equality is shown by him [28] (see also [15,16]).

(10) R(a9 C)=lim (2πλ(Γq)+log q\
Q->0

where λ is the extremal length.

17. We now state the results of Strebel [27, 28] and Reich [19] and give another
proof of them which is also a proof of the continuity of extremal lengths (distances)
for such a planar surface [28, 31]. Since annulus cases are similar, we show for disk
cases the following:

THEOREM 14. If Q~R{ayC)<ooi the radial slit mapping functions gn of an ex-
haustion {Ωn} in the direction of C converge to a function gac in the sense that
WQnlQn—QaclQacWlrΓ*®- The function gac has the following properties:

1. The images of the boundary components other than C under gac are a quasi-
minimal set of radial slits.

2. The image of C is a circle with radius Q having possible incisions of linear
measure zero.

3. The module of the family of curves joining a small circle with radius q and
gac(Q is equal to 2π/\og(Q/q) [27, 28,19].

REMARK. The image domain stated by Reich [19] is different from it, but the
property ii) in No. 15 (the remaked from) introduces his statements [27].

Proof. We have lim gv=g0 for a subsequence. Put p» = \gϊ/gvlog(Qv/Mq(gυ))\,
Pv=\gί/gΛog(Qv/mQ(gv))\ which are the extremal metrics for the module problems of
locally rectifiable curves joining two boundaries of annuli A(Mq(gv\ Qv\ A(ptq(gv), Qv)
in gv(Ωv) respectively from Theorem 5. We have by (5) for

Since UmQv/Mq(gί,)=limQv/mq(gv)=Q/q, noting that lim\\pv—pv\\2 = 0, we see that
\\gi/g»—gi/gQ\\lv-*O, from the weak convergence of gfjgv and the convergence of the
norms. By Lemma 5 the property 1 is obvious and the circle with radius Q con-
sists of the boundary points of the image domain from the facts that |go |<Q and
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Let Γ be the family of curves defined in 3. Then moάΓ^2π/log(Qlq) from the
monotonity. In order to estimate modΓ from below, we make an exhaustion {Δn}
of the image domain Δ in the direction of go(C) in which the circle with radius q
is contained in Δu and put Vn=Δn—Δn-1 (n^2), VΊ=Δ1— {\z\^q}. Let {Vnm} be
an exhaustion of Vn in the sense of Remark after Theorem 3. Since the set of
slits in Vn is a minimal set of radial slits we can make by Lemma 3 (l+ε)-quasi-
conformal mapping functions Fn defined in Fimco for sufficiently large m, which
maps the domain onto a domain with the same relative boundary as Vn and a finite
number of radial slits, where ε is arbitrarily close to zero. We set Δε= UnVnm^ and
Ge=Fn in Fnmco Gε maps the subdomain Δε onto a domain with go(P), the circle
with radius q and a countable number of radial slits as its boundary. Let l(β) be
the logarithmic length of the line segment in the direction of the argument Θ join-
ing the circle with radius q and go(Q. Then we have by Schwarz' inequality

which is a inequality of Strebel [28] for a special case where Γ6 is the image of Γ
under Ge. Because of the fact that l(0)^\og(Q/q), we have from (11)

which implies that modJΓ=27r/log(Q/#). We can easily see the property 2, since
otherwise the module would exceed 2π/\og(Q/q) by the inequality (11).

Since the sequence {pn}({pn}) is a minimal sequence for the module problem
in Δ π A(q, Q), it becomes a Cauchy sequence from the arguments in No. 3 and con-
verges to a unique generalized extremal metric pOt which implies that gn originally
tends to g0, denoted by gac.

Furthermore we show

COROLLARY 3. If a domain Δ satisfies the following conditions: Δ is contained
in a disk with radius Q and the properties 1, 3 hold using the outer boundary com-
ponent instead of gac(C), then the module of the family of locally rectifiable curves
joining two circles with radii q, Q (q<Q) is equal to 2πj\og(Qlq).

The result was stated by Strebel [27], but his proof based on incomplete discus-
sion, because the continuity of extremal distances is not guaranteed for the exhaus-
tion in his proof and we give another one.

Proof. We take such q that a closed disk \w\^q is contained in Δ. Let Gε,
Δε be the ones defined in Theorem 14. Then by the inequality (11) and the proterty
3, we see that the outer boundary component of Δ is a circle with radius Q having
possible incisions of angular measure zero. Let A, Ae be the curve family defined
in the collorary and the similar one in Gε(Δε) respectively. Since the radial slits and
incisions of Gε(Δε) are of angular measure zero, we have modΛε=2τr/log(Q/#). The
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inverse image of any member of Aε is contained by A and hence modΛ==27r/log(Q/#)
because of the admissibility of the metric {\w\\ogiQjq))-1 for the family A. For
general q<Q, the same arguments as in the proof of Theorem 9 imply the assertion.

We call the image domain Δ under gac a quasi-minimal radial slit disk, but the
function has no extremal property as in Theorem 5 in general [5,26]. Professor
Oikawa [16] obtained another interesting extremal property of gac which characterizes
it. The following characterization is also due to him3:).

THEOREM 15. Let Ω be a domain contained in a disk | z |<Q and containing a
closed disk \z\^kq. Then Ω is a quasi-minimal radial slit disk if and only if 2πj
log(Q/#)=mod/ί = modJΓ, where Γ, A are defined in Theorem 14 and its corollary.

Proof. The necessity is obvious from Theorem 14 and its corollary. Let C be
the outer boundary of Ω. The boundary components of Ω other than C are quasi-
minimal from the first half of the condition and C is a circle with radius Q having
possible radial incisions of angular measure zero from the inequality (11). Note that
the condition is valid for all q'<q, since (11) is effective for the circles \z\=q' and
\z\=Q. Then we have R(0,C)=Q from the expression (10). Put p=\g'acKQaclog(QI
Mq(goc)))\ in the inverse image of A(Mq(gOc),Q) and po=(\z\log(Q/q))-1. p belongs

to the generalized admissible class P* for the family Γ and as is shown by Strebel
[27], ô is its generalized extremal metric, since p0 is extremal for the family A,
ΓIDA and their modules are equal. Then by (5) we have

Multiplying it by log (Q/q) log (QIMq(g0o)) and tending q to zero, we have gίcl9oc = Vz

From the above therem and Corollary 3 we obtain the following characterization
stated by Strebel [27, 28] for the annulus case.

COROLLARY 4. The conditions in Corollary 3 characterizes gac-

If we take off the condition Q=R(a,C)<^> in Theorem 14, the sequence {gn} con-
tains convergent subsequences with limits g0. By Lemma 5, (11) and the property
ii) in No. 15 we can deduce the following.

REMARK (Strebel [28]). The image of the boundary components other than C
under g0 is a quasi-minimal set of radial slits and that of C is the point at infinity
with possible radial incisions of angular measure zero emanating from it, if R(a, C)
= oo. Moreover go(Ω)\J {\w\>Q} is a minimal radial slit plane. The uniqueness of
g0 is not known.

3) Oral suggestion.



MINIMAL SLIT DOMAINS AND MINIMAL SETS !8ί)

REFERENCES

[ 1 ] AHLFORS, L. V., AND A. BEURLING, Conformal invariants and function-theoretic null-
sets. Acta Math. 83 (1950), 101-129.

[ 2 ] AHLFORS, L. V., AND L. SARIO, Riemann surfaces. Princeton Univ. Press (1960).
[ 3 ] GROTZSCH, H., Zum Parallelschlitztheorem der kornformen Abbildung schlichter un-

endlich-vielfach zusammenhangender Bereich. Ber. Verh. Sach. Acad. Wiss. Leipzig
83 (1931), 185-200.

[ 4 ] , Das Kreisbogenschlitztheorem der konformen Abbildung schlichter Bereiche.
ibid. 83 (1931), 238-253.

[ 5 ] , ϋber Extremalprobleme bei schlichter konformer Abbildung schlichter Be-
reiche. Ibid. 84 (1932), 3-14.

[ 6 ] JENKINS, J. A., Univalent functions and conformal mapping. Ergebnisse, Springer-
Verlag (1958).

[ 7 ] JURCHESCU, M., Modulus of a boundary component. Pacific J. Math. 8 (1958), 791-
809.

[ 8 ] KOEBE, P., Abhandlungen zur Theorie der konformen Abbildung. IV. Abbildung mehr-
fach zusammenhangender schlichter Bereiche auf Schlitzbereiche. Acta Math. 41
(1918), 305-344.

[ 9 ] , Zur konformen Abbildung unendlish-vielfach zusammenhangender schlichter
Bereiche auf Schlitzbereiche. Gott. Nachr., (1918), 60-71.

[10] KOMATU, Y., Theory of conformal mapping. II. Kyoritsu, (1959), (Japanese).
[11] KURODA, T., On analytic functions on some Riemann surfaces. Nagoya Math. J. 10

(1956), 27-50.
[12] MORI, A., On quasi-conformality and pseudo-analyticity. Trans. Amer. Math. Soc. 84

(1957), 56-77.
[13] NEHARI, Z., Conformal mapping. McGraw-Hill (1952).
[14] OIKAWA, K., On the stability of boundary components. Pacific J. Math. 10 (1960),

263-294.
[15] , Minimal slit regions and linear operator method. Kδdai Math. Sem. Rep.

17 (1965), 187-190.
[16] , Remarks to conformal mappings onto radially slit disks. To appear.
[17] OIKAWA, K., AND N. SUITA, On parallel slit mappings. Kδdai Math. Sem. Rep. 16

(1964), 249-254.
[18] POSSEL, R. de, Sur quelques proprietes de la representation conforme des domaines

multiplement connexes, en relation avec le theoreme des fentes parallels. Math.
Ann. 107 (1932), 496-504.

[19] REICH, E., On radial slit mappings. Ann. Acad. Sci. Fenn. 296 (1961), 12 pp.
[20] REICH, E., AND S. E. WARSCHAWSKI, Canonical conformal maps onto a circular slit

annulus. Scripta Math 25 (1960), 137-146.
[21] , On cannonical conformal maps of regions of arbitrary connectivity. Pacific

J. Math. 10 (1960), 965-985.
[22] RENGEL, E., Existenzbeweise fur schilichte Abbildung mehrfach zusammenhangender

Bereiche auf gewisse Normalbereiche. Jber. Deutsch. Math. Verein. 45 (1935), 83-87.
[23] SAKAI, A., On minimal slit domains. Proc. Japan Acad. 35 (1959), 128-133.
[24] SARIO, L., Capacity of the boundary and of boundary components. Annals of Math.

59 (1954), 135-144.
[25] Strong and weak boundary components. J. Analyse Math. 5 (1958), 389-398.



186 NOBUYKI SUITΛ

[26] STREBEL, K., Eine Ungleichung fίir extremale Langen. Ann. Λcad. Sci. Fenn. 90 (1951),
8 pp.

[27] , A remark on the extremal distance of two boundary components. Proc.
Nat. Acad. Sci. U. S. A. 40 (1954), 842-844.

[28] , Die extremale Distanz zweier Enden einer Riemannschen Flache. Ann. Acad.
Sci. Fenn. 179 (1955), 21 pp.

[29] TAMURA, J., K. OIKAWA, AND K. YAMAZAKI, TO appear.

[30] TSUJI, M., Potential theory in modern function theory. Maruzen (1959).
[31] WOLONTIS, V., Properties of conformal invariants. Amer. J. Math. 74 (1952), 587-606.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.




