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§ 1. Let R and S be two ultrahyperelliptic surfaces defined by two equations
V2=G(z) and u2=g(w)f respectively, where G and g are two entire functions each of
which has no zero other than an infinite number of simple zeros. Let ψ be an
analytic mapping from R into S. Let ^s be the projection map (w, u)->w. Let Φ
be the sifted mapping tys°<p, then Φ is an entire function on R. Let T(r, Φ) be the
Nevanlinna-Selberg characteristic function of Φ. Let N(r R) be the quantity N(r, 36)
defined by Selberg [8], which is essentially one half of the integrated Euler charac-
teristic of R defined by Sario [5].

DEFINITION 1. // T(r, Φ) satisfies the inequality

then we say ψ a semi-degenerate analytic mapping from R into S.

Let φ Λ be the projection map (zfy)^>z. If ψ satisfies fys°φ(P)=tys°φ(q) for
^Rp=^Rq, then we say that φ satisfies the rigidity of projection map.

DEFINITION 2. If φ satisfies the rigidity of projection map, then we say ψ a
rigid analytic mapping from R into S.

In the present paper we shall prove the following somewhat interesting

THEOREM 1. If ψ exists and is a rigid analytic mapping from R into S, then
there exists a suitable entire function h(z) of z in such a manner thai f(z)2G(z)
~Q°h{z) for a suitable entire function f(z) of z.

If φ is a semi-degenerate analytic mapping from R into S, then it is a rigid
analytic mapping. If Φ is not single-valued with respect to z, we have N(rf R)
<2T(r,Φ)+O(l) by Selberg's ramification theorem and hence

Π r n | l < 2
r-oo τ(r,Φ) -

holds in our ultrahyperelliptic case. This contradicts the semi-degeneracy. Thus
Φ must be single-valued for z, which is the desired rigidity of ψ.
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§ 2. Proof of the theorem. Let Ex be the closed set of z satisfying one of the
following conditions:

1) φ(p) = φ(q) if p*q but $*(/>) = $*(tf)=2,
2) The projections of all the branch points of R.

If Eι has a cluster point z0, which is not any point under a branch point of R,
then (<p1—φ2)

2 is a single-valued regular function having a countable number of
zeros around z0, where ^ is a branch of ^. Let pj be a point on R whose image
9(/>y) is a branch point of S. Let / and T be the local parameters around pj and
φ(pj), respectively. Then T is a regular function of t. If pj is not a branch point
of i?, then we have

T(t)=Σavt
v.

If pj is a branch point of R, then we have by ψi = φ2

which leads to a relation

Then ψs°φ°^Rl is a regular function of z having an infinite number of perfectly
branched values, that is, every projection of the branch point of S is a perfectly
branched value in Nevanlinna's sense. By the famous Nevanlinna ramification
relation this is a contradiction. Thus Eλ must be a countable set in the z-plane.
Let E2 be the open set of z satisfying φ(p)^φ(q) when p^q but ($R(p)=<$R(q)=z.
Then E2 is just the z-plane and φ{^R

Λ(E2)) covers almost all parts of S excepting
at most a countable set in S. By a slight discussion we can say that every branch
point of R has its ^-image on a branch point of S and Eλ must coincide with the
set of the projections of all the branch points of R. Let h{z) be ^s°(p°i^R1(z)} then
it is single-valued and analytic. Thus it is an entire function of z. Therefore φ(R)
covers S at most two exceptions having the same projection in the w-plane.

In the subsequent discussions it is necessary to consider the effects occurring
from the choices of two analytic branches of φ^1 and ^ and to modify suitably
as the case may be. In these cases we may adopt suitable sheet-exchanged analytic
mappings. Then we can arrive at the same conclusion. Thus we do not list all
the possible cases.

Let F be an analytic mapping from S into the F-plane, then f=F°φ(p) is an
analytic mapping from R into the F-plane. Let F*(w) be the two-valued function
corresponding to F, that is, F*(w)=F°tys1(w)- Let/*(z) be the corresponding func-
tion of /, that, is, /*(^)=/oφ-1(^). Then we have the representations F*(w)=F!*(w)
±F**(W)*/Q(W), f*(z)=/1*(z)±f2*(z)s/G(z)- Therefore we have φ=^oho^R and
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If iF is an analytic mapping from S into the iF-plane, which preserves the
projection map, that is, iF(pi) = ιF(qi) for pi^qίt ^spi=^sQu then 1F°φ(p) = ί

for p*q, ^Rp=ψRq. Therefore, if we put 1f=1Foφ and 1 / * - 1 / o ^ - 1 , l Jp* = 1/
then i/* and iF* are single-valued and hence

Under these preparations we shall proceed to our original problem. If F is the
analytic mapping from S into the F-plane which is defined by F°yfe\w) = /
then we have

Further if F is the analytic mapping from S into the F-plane which corresponds to
), then we have

and a single-valued function g°h of z. Therefore /i*/2* = 0. By the two-valuedness
of \ZV°W), / 2 *^0 . Thus/i*ΞΞθ. Hence we have the desired result: g°h{z)=f2*(z)2G(z).

This completes the proof of our theorem.

In our theorem / would depend on the representations of G and g. We shall
indicate this by fo,g. If R is represented by y2=a(z)2G(z) and S by u2 = β(w)2g(w)
for some meromorphic functions a(z) and β(w). Then we have

β{h{z))2g(h{z)) =fa,G, βφ)2 - a(z)2G(z)

for a suitable meromorphic function fa,G, β»Q. Thus we have

fG,g(z)2 β(h(z))*=fa«, β*g(z)2 a(z)2.

% 3. Examples. We shall give here some examples.
1) Let R be the proper existence domain of the function \/ez—1 and S be R

itself. Then we have

for a rigid analytic mapping φ. If h(z) is a transcendental entire function, then by
the Lemma in [3] we have

where N2 denotes the N function with respect to the simple 1-points of eh. By
Pόlya's theorem [4] the Nevanlinna characteristic function T(r) of eh is of infinite
order and hence N2(r, 1) has infinite order. However the left hand side function
f(z)2(ez—1) has its N2(r,0) function of order at most one. This is a contradiction,
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Thus h{z) must be a polynomial. Its degree is denoted by v. Then we have that
the N2(r,l) function of eh is of order v. However that of f\ez — 1) has order at
most one. Therefore v must be equal to one. Therefore we have the equation

Let z be 2nπi, then

eβ-xn=l, x=e2aπ%.

Let n be zero, then we have eβ=l and hence β=2pπi. Let n be one, then we have
x=l and hence a=q, an integer ^=0. Therefore we have

f(z)2(eβ — l) = e*z+2p*t—l = e** — l.

If q*±l, then
eqz — 1

e'-l

has some simple zeros, which is absurd. Thus q=±l must hold. If q=l, then
we have

f(z)2 = l, h(z)=z+2pπi.

If # = — 1 , then we have

f(zγ = —e-', h(z)=-z+2pπi.

Correspondingly we have several analytic mappings. Each solution in the above
gives two analytic mappings <ppl and φp2, which is the sheet exchange of φpί. There
is no other rigid analytic mapping from R into itself.

2) Let R be the surface defined by y2=(ez'—l)/z2 and S the surface defined by

y2=ez_it Then for an arbitrary rigid analytic mapping φ from R into S we have
the equation

Quite similarly we can deduce that the function h{z) is a polynomial of degree two.
Further we have

h=z2-\-2nπi( h=z2-\-2nπi ( h = -

[p = z2 {/2 = -z2/ez\

Correspondingly we have several rigid analytic mappings. Thus there is no other
rigid analytic mapping not corresponding to the above solutions.

To solve the equation

f2G=goh

is very difficult in almost all cases. It would be necessary to investigate more
precisely the right hand side term by Nevanlinna's theory. If it is known that
there is no analytic mapping from R into S, then this equation has no solution.
For example, if the order QG of G is of a finite non-integral value and g is
(eP-γ)(eP-δ), γ*δ, γδ^O with an entire function p, then P{R)=2 and P(S)=4 [2],
[3]. Hence there is no analytic mapping from R into S. Thus we can say that
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has no solution. Similarly we have the impossibility of the equations

p2z — 1
P- ~=e

2h-l,

and

respectively. However it had not yet been known the impossibility of the equations

P2h — Λ

J yp * , - h ,

and

/*0,

respectively.
3) We shall consider the first case:

/ ( * ! ) = ,

By the same Lemma A(̂ ) must be a polynomial. Further the degree of h{z) must
be one. Thus we have h(z)=az-\-β. Thus the equation is reduced to the following
one:

f\e2z~-l)(az^β) = e2az+^~l.

Let z be nπi, then we have

Ce2an*ι=l, C = Λ

Therefore we have that a is an integer and C = l , that is, β=mπi. Then the equa-
tion is reduced to the form

If ^>^±1, then it is a contradiction. If />=1, then f\z—mπϊ) — \y which is absurd.
If ^>= —1, then f2(z-\-mπϊ)~e~22

y which is also absurd. Thus we have the desired
impossibility. Hence we have the following fact: There is no rigid analytic mapping
from R into S, where R is the surface defined by v2—e2x — \ and S the surface
defined by y2=(e2x—l)/x.

4) Quite similarly we have the impossiblity of the second equation

p2h — 1
/ V l ) ( h - ά ) ,/Vl)=T

Then there is no rigid analytic mapping from R: y2=e2x—l into S: y2=(e2x—1)0—ά)/x,

§ 4. We shall here discuss the case where S is closed and hyperelliptic of genus
^ 2 . The torus case should be excluded, since it does not determine the projection



COMPLEX ANALYTIC MAPPINGS 163

map uniquely. Thus we can define the rigidity of φ similarly. Let ψ be rigid.
Every branch point of R corresponds to a branch point of S. Thus there is at
least one branch point of S which is covered infinite times by φ(R). Thus h{z)
should be a transcendental meromorphic function (not entire in general). We finally
have an equation

f2G=goh,

for a suitable meromorphic function /. Here g has the following form

Π(z-ffv) or 2Pγ[{z-av),
V = l V = l

Thus we have the equations
2p 2p-l

f(zYG(z)= Π (*(«)-«.) or Π (*(«)-«.)•
V = l V = l

We can easily construct an example. Let R be the surface of y2=e8x—1 and
S the surface of #2=IIί=i(#—εv)> ε=exp(7π/4). Then we may take h(z)=ez and f(z)
= 1. However our example does not belong to the semi-degenerate class, though it
satisfies the rigidity of projection map. In fact we have the following theorem:

THEOREM 2. If there is an analytic mapping from an ultrahyperellptic surface
R into a hyperelliptic surface S of genus greater than 1, then it satisfies

Proof. If an analytic mapping ψ is not rigid, then Φ is two-valued for z. Then
by Selberg's ramification theorem N(r, R)<2T(r,Φ)+O(l), which implies the non-
semi-degeneracy of ψ. If ψ is rigid, then

PG= Π (*-«-).
V = l

where we may assume that S is defined by y2=]llii(x—av). Then Jl(h~av) has no
pole of odd multiplicity. Therefore

2N(r, R)+O(log r)=N(r; 0, G)^N(r; 0,/2G)

which leads again to the desired result, since h is transcendental in our case.

§ 5. In our discussions h{z) has played the central role. In general h(z) is a
transcendental meromorphic function. Thus there is at most two exceptional values.
Here we mean a the exceptional value if a is not taken infinitely many times. Thus
there are at most four Picard's exceptional points on S. This case may happen
when S is a closed hyperelliptic surface. Such an example has already listed in § 4.

If S is an ultrahyperelliptic surface, then h(z) is an entire function. If it is
transcendental, then h(z) has at most one finite Picard's exceptional value. Thus
there are at most two Picard's points on S. Let R be the surface defined by
y2=expex—γ and S the surface defined by y2=ex—γ. If r ^ l , then we may take
h{z)=ez and f2=l. Then there are two Picard's points on S, which lie over 2=0,
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If γ=l, then k(z)=ez and / 2 = 1 . Then there is only one Picard's point on S, which
is the branch point over z=0. If h{z) is a polynomial, then linv+oo/z(£)=°° and
hence φ(p) has the limiting point, which is the ideal boundary point of S, when p
tends to the ideal boundary point of R. The function h{z) has the limiting value
when z tends to co if and only if φ(p) has constantly finite valence on S, which is
equivalent to the growth condition

ffin^<00.
r-*oo log r

Its valence v is equal to the degree of hiz). In this case we say φ degenerate. If
φ is degenerate, then every end of S corresponds to some end of R and vice versa.
Thus we can establish a sufficient condition for the non-existence of a degenerate
analytic mapping using the Picard great theorem. Its formulation is quite similar
as in [2].

§ 6. We shall offer some unsolved problems.
1) Is there any non-rigid analytic mapping from an ultrahyperelliptic surface

R into another such surface S?
It would be negative. Sario's results in [5], [6] would play a role for this prob-

lem and the subsequent problem.
2) Is there any rigid but non-semi-degenerate analytic mapping from R into S?
There would be another way to attack this problem. It reduces to the following

problem.
3) To investigate the behavior of g°h(z) especially a quantitative estimation

of the counting function of its simple zeros, when g and h are transcendental.
This is really necessary to solve the equation

f2G=gok

in some cases and to investigate the analytic mapping problems correspondingly.
4) To seek for some relations between the order pG of G and that pg of g

when there exists an analytic mapping from R into 5. It is very plausible to
conjecture that pG is a multiple of pg. However it is necessary to fix G and g
suitably, since the representation of an ultrahyperelliptic surface is not unique. It
should be remarked that ρ<?<°° and pg>0 must hold in our problem. Let G(z) be
the famous 0i-function, that is,

Then it is known that pG=pθi=2 and θλ has simple zeros at mπ+nπτ, τ=ω3/ωlt

where m and n run over all the integers and 2ωx and 2ωs are two primitive periods
of Weierstrass' ^-function. Further θx is an entire function of sin z of order 0 [9].
This entire function is denoted by g(z). Then g(z) has the following form

9(z)=g'(0)z
CO /

Π i -
W = l \ 4 sin2 nπτ
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and hence it has no zero other than an infinite number of simple zeros at 0,

±2 sin nπτ. Thus it is concluded that the equation

has at least one pair of solutions h(z) = sin z, f(z) = l. Let R be the surface defined

by y2=θi(x) and S the surface defined by y2=g(x). Then there is an analytic

mapping φ, induced by sinz, from R into S. However pG=2 and ^ = 0 . Thus we

do not persist that our conjecture remains true in this case. Hence we assume

that pg>0. If pG=OO, (Xpf^oo, then evidently pG is a multiple of pg. This case

is trivial and may be omitted in our problem. It is not yet known any counter

examples so far as we concern. If it is positively answered, then it gives very

effective criterion in our case. This problem would reduce to the above problem 3).
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