ON THE EXISTENCE OF MEROMORPHIC
FUNCTIONS WITH PREASSIGNED ASYMPTOTIC SPOTS

By GeENkO HiromI

In his paper [2], Heins introduced the notion of asymptotic spot of an interior
transformation and then in [3], especially, he examined asymptotic spots of entire
and meromorphic functions. Let f(z) be meromorphic in |z|<oco, and let w, denote
a point of the extended w-plane. Then ¢ is called an asymptotic spot over w, when
¢ is a function (a correspondence from sets to sets) whose domain is the family
@, of simply-connected Jordan regions containing w, and which satisfies: (a) for
each 2¢9.,,, ¢(2) is a component of f~Y(Q) which is not relatively compact, and (b)
if 2,cQ, for £y, 2,€D,,, then o(2))Co(2:). Let Go(w, wo) denote Green’s function
for £ with the pole at w,. We put

Us0y(2)=G.H.M. @Q(fﬂ(ﬂ)(z), wo),

where f,0)(2) is the restriction of f(2) to ¢(2) and G.H.M. means the greatest
hermonic minorant. We associate with the pair (¢, 2) an index %(g, 2) as follows.
If #.005(2)=0, then Ao, 2)=0. If #,0,(2)>0 and is represented as a finite sum of
»n mutually non-proportional minimal positive harmonic functions on o({2), then
(o, D=n. In the remaining case, we set /(s, 2)=+4oco. The index A(s, £) is
monotone in 2, ie. if 2,c,, then A(s, 2))<Ah(c, 2:). The harminic index %(s) of
¢ is then defined as

inf Ao, 2).

2€0y,

Now Heins proposed the following realization problem: Let w;, ---, w. denote
n(=1) given points on the extended w-plane and A4, -+, k., denote n given positive
integers. Does there exist a meromorphic function f(z) in |z|<co which satisfies:
(I) the asymptotic spots of f(z) having positive harmonic indices are # in number,
say a1, -+ o, (II) o lies over wy and A(ox)=rhr, (II) f(2) is of order H/2, where
H= Z,’LJM?

The object of the present paper is to give a solution for this problem.

Heins showed an affirmative answer for the special cases: (i) n=1, (i) »=2,
hi=h,=2. As adirect consequence of the method which Heins used to construct an
example of the case (ii), M. Ozawa has informed to the author an affirmative answer
for the case (iii) #=2, l=h.=m. In fact, it is shown that the argument similar
to the case (ii) in [3] (p. 439) remains valid in the case (iii) by considering the
starting function g(z)=e* cos z™ in place of g(z)=e**cos 2>
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Here we shall give an answer for the case: #=2, Ay, %, w, and w, unrestricted
and further solve the general problem affimatively.

To this end we need some preparatory considerations. Suppose that G is a
Jordan region in |z|<oo and that U is a harmonic function non-negative on G which
vanishes on the boundary of G. Further suppose that {G;} is a family of Jordan
subregions of G satisfying GxNGi=¢ for k=/, and that U is a harmonic function
non-negative on G which vanishes continuously on the boundary of G: and is
dominated by U on Gi. Let U} denote the least harmonic majorant of the sub-
harmonic function which is equal to Uy on G; and to zero on G—Gi. Then we
get the following lemma.

LEMMA. Under the above assumption it holds
QUF=U;
if each Uy is minimal in Gy, then U¥, U¥, - are minimal and mutually non-proportional
in G.
The proof of the lemma is contained in (f) and (c) of [2] (pp. 442-445).

In [3], Heins formulated the Denjoy-Carleman-Ahlfors theorem and gave the
following theorem (p. 431).

TuEOREM A. Let H denote the grand total of the harmonic indices of all the
asymptotic spots of a nom-constant meromorphic function f in |z|<co. Let T(r; f)
denote the Nevanlinna characteristic function of f. If H=+4oo, then

lim log T'(r; 1)

—w  log 7 =treo.

If 2=<H<oo, then
s T(r; f)
hrgl_mlonf—ﬂr- >0.

If H=1 and the asymptotic spot oo with index ome is such that for some 2 of its
domain, the complement of o4(2) intersects all circles {|z|=r} with r sufficiently

lavge, then

T(@; f)

lim inf — >0.

T—>00

Now we observe Mittag-Leffler’s function

E)=3 0<a<?2)

w0 I'(14an)

which is an entire function of order 1/a and quote the following theorem (cf. §3.62
in [1]):
If 0<a<1 there exists a constant K independent of a such that

exp 2 1 3
+ zZl(1—a) [T a?|z]? for |arg z| = —ar, |2|=2,

(1) Ez2)— 1
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1 K

(2) E2)+ for

4
By using Mittag-Leffler’s function E,(z), we put
S(z)=Ezn(ze*") (k=1, 2, ---, H(z3)),
where ¢ is a primitive H-th root of 1: e=cos(2zx/H)—i sin(2x/H).
ProrosiTiON 1. The function

H

Fi2)
+

J=h1+1

f(Z)=§1 @)

has the desired properties for the case: n=2, w,=o0, w.=0 and H=3.

Proof. We define an asymptotic spot ¢; over w,=co as follows.

=arg z=—n/2H

1 _HK
lz|'1=2/H)  4]z]*’

1 H*K

(@)1= L exp 22| -

H
|/u(2)] = 5= lexp 2= |+

=

H 1
2

111

3
TA—a) = @z Tang arg z=2r— —anr, |2|=2.

For —=/H

H*K

RIFA—2/) ~ AR = 2 T Era=zm
1 H:K
VA= Tra—smn + P

hi

lf(z)lg1lf1(Z)l—]Z}2 lfj(Z)l} / ] H+1|fj(Z)l

= =h1

fzf”

H*K

g{lexp 2H2| —

For |arg z—2(k—V)r/H|=z[2H (k=1, ---, I1)

1 _ HK
TaA—2/H) ~ 4z °

e/ - lexp(ast-iye| -

2 H*K 2
RIFA—2/) ~ 2[a[° ]/ [” RIFA—2/E) 2l

1 HK . .
k-1 h1 H
|f<z>|;{|sz(z>|— S ef@— 5 Iij(Z)I} 3 122l
J=1 J=k+1 J=h1+1
s 2 HK 2 K
é['zexp(zs Y = Fa—am T 2h }/ { Ta—2E) 2k l

= { |z cosh(ze*—1)H/2| —

For |arg z-+n/H—2kx/H| =x/2H (k=1, -, hh—1)

1 K
Ta—2/m 4z

S~ ——2@ . exp(z.e"‘l)Hﬂ'g

2 HZK] /{ 2 + HK
rA—2/H)  2z| T'A—2/H) " 2|z|

|
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H . 1 K
sz+l(z)——7 zeXp(Ze")H é F(I_Z/H) + 4|Z| 4

1 H*K 1 g .
@]ttt - S lefil= § er@i] /3 1ero)

i 1 K 2 K
z{'“‘mhzm“ TA—2) 4l }/ [ ra—zm ]
And for z/2H+2(h—1)z/H= arg z=n/H4-2("—1)r/|H

E_ hi-1\H/2| _ 1 _ H’K

_}Z hi\H/2 1 HZK
| frysa(@ =5 lexplee Y™ |+ p o +
H 1 H?*K
=5t pra—gm T aE
1 H*K

(]:1, ey hl—]-) h1+2a R [:[);

-+

AN Gra—zmy T

h1—-1 H
rei(ine-"E el / 5 e

2
;{lexp(zeh‘—l)’m] _ 2 H K]/{l—l— 2 n oK )

zZICA=2/H) 2]z lz2I’(1—-2/H) * 2|z|?
From these inequalities we see that if M is sufficiently large the open set {z; |f(2)|

>M} contains the union G, of regions

. H/2 2 _—L <—.-————«7r
z; lexp 272> M?, 17 <arg z= ZH}’

; RS M, — o = T _29’1_“9_”_}
z; |z cosh 22| > M?, Sff = AgI= + 7
and
20 —n T 20l —Dr
. ha—1\II/2 2 _T
2 lexp(eem > M, t =5 §argz<——+_*.___],

Clearly the set G; is an unbounded region. We define an asymptotic spot ¢; over
wy=co by putting ¢:(Jw|>M)=the component of f~*(|w|>M) containing G,. Clearly
for every 2e®,,, o(2) is well defined suitably. Next we get /(¢:)=%4:. In fact, for
sufficiently large M the inequality

1()g—lf](‘zl)l = Ur=Re(ze*-1)#2 -2 log M



EXISTENCE OF MEROMORPHIC FUNCTIONS 113

holds in the region

2(k—1)x 2(k—1)z
H H

Now log(] f(2)I/M) being superharmonic, #,,qw>n(2)=GHM.log(]f(2)|/M) is non-
negative and #,,qw;>m(2)= Ui(2) in 4. Since Ugz) is minimal in i, %, ¢wi>mn(2)
dominates at least 4; mutually non-proportional minimal functions by Lemma.
Therefore we get A(ay, |w|>M)=h, for every large M, and hence /(a:)=%:.

Similarly we can find an asymptotic spot . over w.,=0 having A(c,)=h,. In
fact, let a set G: be the union of regions

Al z Uz)>0, — %Jr <arg z< %qu , k=1, .-, I,

2mw T 2n
. hi—-1\H/2 2 _ T 1 _ bl
z; |lexp(ze™=1)H2| > M?, H+ 17 <arg z< 2H+ 7 },
. 1 s T 2m T 2(H—1)7r}
z; |z cosh z2772| > M2, 2H+ T éargzg——ZH—l-—————H
and
. H-1yH/2 , T 2H-Dm T Z(H—l)n'}
% |exp (NP> M, 5o 77— S8z =g -

Then the set {z; |f(2)|<1/M} contains G,. If an asymptotic spot g, over w,=0 is
defined by putting ¢,(Jw|<1/M)=the component of f~*(|w|<1/M) containing G,, we
get A(o;)=h: by the argument similar to the case of .

The order p of f(2) is at most H/2 since FE.(z) is of order 1/a. On the other
hand, we get, by Theorem A, H=2p for the grand total H of the harmonic indices
of all the asymptotic spots of f. Consequently we have

H=h1+}l2§h(0'1)+h(‘72)§ﬁ§20§11
and hence
H —
=5 o) =hi, Wo)=h, and H=H.

We thus obtain the desired result.

For arbitrary w; and w,, if wi3w. it suffices to consider a function Lof where
L is a linear fractional transformation satisfying L(co)=w;, L(0)=w,, and if w,=w.
it suffices to consider a function f+1/f or 1/(f+1/f)+w; according to wi=oco or
wi¥xoo. Here we remark that a set {z; |f+1/f|>M} has two desired unbounded
components. For on the half rays {z; arg z=—n/H} and {z; arg z=n/H+2(h,—L)n/H}
we get | f+1/f|=3 for every large |z|.

The assumption H=3 is not essential. For if =2 and =2 we have a parti-
cular function expz as the above f.

Now we shall treat the general problem. Let wi, -+, w. (#=3) denote n given
points in the extended w-plane, and 7, ---, i, denotes # given positive integers. We
suppose without loss of generality that the set {ws k=1, ---, #} does not contain
the point at infinity. For the required properties are invariant under any linear
fractional transformation of values of an admissible functjon,
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Again by using Mittag-Leffler’s function, we put
fi{@)=FEyn(ze™) (=1, -, H(=h+-+ha23)),

where ¢ is a primitive H-th root of 1: e=cos(2r/H)—isin(2z/H). From fi(z) we
construct a function fi(z) associated with % as follows. If /=1, we put

F2)=5(2).
If />1 we put

Fuz)= (;i fj(Z)>gk(2),

where gi(z) is defined by

Ezn,‘/H(ZE(""‘”/Z) for 2n.<H,
0,(2)=7 Eau-ngm(ze?+e)~1  for 2/u>H,
exp zehe=172 for 2k, =H.

ProrosiTiON 2. The function
F@=| Zuefizsrr- ey 4] [ 8 Futaorre-sincy
k=1 k=1

has the required properties provided A is a sufficiently large number.

Proof. We first examine the properties of fi(z). From the estimations obtained
in (1) and (2) we get

| S0z g o — i
for ——.-[7.} <argz=— H + Zh;;ﬂr
’ij@) = rlexp e+ IzIF(liIZ/H) + er
for —77—}- 2}277 sargz=— % _2%75,
@ T
for — ‘2‘% + 2/;;7: =<arg z2=<2z— 2:%’
IZfJ(Z) Pl I[‘(liIZ/H) + Zf

for—ﬁ<ar ==
2 =VEE=T

Hence for sufficiently large |z| we have
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(3) |Zf;(z) = ——|cosh 27| for —% =arg zg____;. 2h"”
(4) E}lfj(z) =H for —%—l— zh’;ﬂ =arg zéZn’-—%.
Concerning g¢x(z) we have
2 g IOy — e o
for — ﬁ =argz= ———{— thﬂ
0] =g XM e
for — —lg:—— ZZ =argz=< — % and for ——ZT+ 2/;_;7T =argzs=— Tnl——i— _52111_;}_7:_’
e = ey * T
for —~%—I— 52/?; =arg z=2r— %— /;"Z,
if 2/<H. If 2h>H, then we have
0] 2| gy lexplas by e
for 271——;:7 =argz= %ﬂ—— —;7— g% and
0= | D AT
1 H*K

lexp(ze(H+hk—l))H/(211—2hk)l —

e
lou2)] = {‘Z(H—hk) Rl @] A=)~ HH—T |2

i . Z}lkﬂ'
H H

Further if 2/4,=H, then we have

|98(2)] = exp zs%-2],

=arg z§2n——

for — 7

Thus, if 2/<H, then we have for sufficiently large |z

115
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1 - . T s 2l
= e Chig—1)/2\H /21 L <. -
(5) lyu(2) | = 5 exp(zetke-Dr2)H2hE | for 77 Sarg 2= H+ 7
2/
(6) o) =H for —-[%—l- ;;n gargzgh—%.
If 24> H, then we have for sufficiently large |z|
-1
(7) l96(2)| = { H |exp(ze H +ri=D)H/CH=2ki) | 4 Ill }
T 5z T %
for 2n——H—§argz§—2——-ﬁ~ 577 and
T Fis Shir b %
for —5— tog =g =—pm+t—7p>

T T 7%4 T S5

(8) lgu()| = 2] for 5 T T o Sargis—— 5
. 2h
(9) lgn(2)| =1 for —% + [}” =arg Z§2n~—gl—
If 24x=H, then we have
2/

10) |9(2)] = |exp zePk—1/%| for—-ﬁ <arg z< ———+ ;}”
an  lels1 for — =+ 2’;;" Sarg e52e— .

Therefore from (3) and (5), for sufficiently large M, the set {z; |fu(z)|>M} con-
tains an unbounded region

_ thn
H

5;;(M)E{z; |cosh z#/? exp(zetre-L)H/2hk| > V]2 — <argz

IA

z
H

when 2/x<H. Or from (3), (7)~and (8), for sufficiently M, the set {z; |fi(2)|>M}
contains an unbounded region Gx(M) which is a union of regions

-1
{Z; I COSh ZH/ZI {HIeXp(ZS(H+hk-1))H/(2H——2hk)l _l_ _Ii_l, } >M2,

5r Fis V2% T S5hir T 2
__-< < —— —
2n H_arg A= 2 H 2H and 2 H+ 2H sarg 25— H H }
and
. H/2 2 T i < <_ T _ T _511___"7:
{Z’ |z cosh 2717 > M?, 2 H 2H sargz= 2 H+ 2H

when 2/>H. Or from (3) and (10), for sufficiently large M, the set {z; |fu(2)|>M}
contains an unbounded region
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; =z H/2 hi—1)72 2 T~ - _ " 2lur
Gi(M) =1z; |cosh zH/% exp(zetrk=1/2)| > M, Hzargzz__ H+ i

when 2/,=H. Moreover we have
(12) | F1(2)| = |cosh z#72|

ill the set {z; |cosh z#/2|>M?, —r/H<arg z< —z/H+2hx/H} which is contained in
G(M) for every k. Further from (4), (6), (9) and (11) we have

x 2 _ T 2 _ <op_ T

(13) | f2)|<H for 77+ =arg 2<2r i

for every k.
Now we define an asymptotic spot o, over wy as follows. Let Gy be the obtained

from G by the rotation z—ze®+ -1, Then for zeGy(M?) we have
lfk(zehx+‘-'+hlg_,)‘ > M2

and
'fj(zehliuu.‘-h]_‘)l<}]2 (]:1’ Ty k’—]-’ k+1; Y n))

and hence for a sufficiently large M

@
| 5 ool 7 el AL /| Fataeher b= 3 17 sh0o)
=k jxk

IIA

A

| 5wz 11} /or—
jxk
1
= R
Therefore the set {z; |f(z2)—wi| <1/M} contains the region Gi(M?). We then define
a(lw—wy| <1/M) as the compoment of {z; |f(2)—ws|<1/M} containing Gu(M?).
Further we see that all the spots ok, k=1, -+, #, are different each other. In fact,
by (13) we have

| F @ —wi] = { 41- %, lw,-—wkHﬂ(zeh**“*h#n)/} / ]; Iy

é{lAl —chle—wlez}/nHz

on the half rays {z; arg z=—n/H+2(/u+ - +he-1)w/H} and {z; arg z=—n/H+2(/u+ -
+hr/H} and if A is a sufficiently large constant there exists a positive number
d such that |f(z)—wi|>d>0.
We next show that A(oi)=/. In Gi(M?) we have
___1
M| f(z)—ws
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2[lJ?k(zs'“‘”'"””‘“)| — 37| F fgehrttha-))| }/MOAI +jZ/:cle~Wk|lfj(zemmw]_l))
ixk ™

%{lff&ze’“*“ )| = nHZ} / M (IAI +3 le—wku{z)

= | filzem i) | [ M*
for a sufficiently large M. By (12) and by Lemma, the function

1
M| f(2)—ws

dominates at least /Z; mutually non-proportional minimal functions. Therefore
I(ow, lw—wi| <1/M)=h and hence A(or)= /.

The order p of f(z) is at most H/2 since f;i(z) is at most of order Hj2 and
g(z) is of order HJ2hy or H|(2H—2h). On the other hand, we get, by Theorem A,
H<2p for the grand total H of the harmonic indices of all the asymptotic spots of
f. Consequently we have

%ak(|w—-wk|<1/M)(Z) =G.H.M.

H=l+ -+ =Mo)+ - +hon) SH <2< H,

and hence
H —
o= —E_) h(al):hly Tty h(an):hn, and H=H

We thus have the desired result.

Finally as a direct consequence of Propositions 1 and 2, we have the following
theorem:

THEOREM. Let wy, -+, wn denote n(=1) given points on the extended plane and
hy, -+, hn denote n given positive integers. Then there exists @ mevomorphic function
f(2) in |z|<co which satisfies (1) the asymptotic spots of f(2) with positive harmonic
indices are n in number, say o1, -, on, (1) 0% lies over we and how)=hy, (1) f(2)
is of order HJ2, wheve H= Y i /u.

The author wishes to express his thanks to Professor M. Ozawa who gave him
valuable advices.
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