
ON COMPLEX ANALYTIC MAPPINGS

BY MlTSURU OZAWA

§1. Let R and S be two Riemann surfaces. When are there any analytic
mappings from R into S? This would be one of the most important problem.
Recently Sario [2], [3], [4], [5], [6], [7] established the general second fundamental
theorem under an assumption of existence of analytic mappings from R into S. To
establish the general defect relation and to guarantee its effectivity he made two
additional assumptions for the growth of mappings in [6] when S is closed. One
of them is his non-degeneracy condition and the other is the following condition:
(Ai) The characteristic function must grow at least as rapidly as the Euler chara-
cteristic. Then he concluded the following curious but elegant fact: (A2) The
characteristic function cannot grow more rapidly than the Euler characteristic in
order to the analytic mapping really exists, when the genus of S is not less than
2. Two conditions (Ai) and (A2) act really into two oposite directions and hence the
general defect relation has its proper sense only in a quite few cases.

In a case of algebroid functions the condition (Ai) is compatible to the well
known Selberg's ramification theorem. The result (A2) or its generalization to an
open surface S of infinite genus: the affinity relation in [7] would be one of the
most important contributions due to Sario.

In the present paper we shall offer two sufficient conditions for the non-existence
of analytic mappings, by which several cases are decided as the non-existence cases
of analytic mappings. We shall offer some examples in the present paper.

§2. We shall prove a sufficient condition for the non-existence of analytic
mappings from a Riemann surface R into an open Riemann surface S. If R$OAB,
then there are many trivial analytic mappings. Thus we should put aside this case.

Let yR(R) be a family of non-constant meromorphic functions on R. Let P(f) be
the number of Picard's exceptional values, where we say a a Picard's value when
it is not taken by / in R. Let P(R) be a quantity

When R is open, we have always P(R)^2, since there exists a non constant regular
function on R by the existence theorem due to Behnke-Stein and then it suffices to
compose it to the exponential function. Let P(S) be the corresponding quantity
attached to S.

THEOREM 1. If P(R)<P(S), then there is no analytic mapping from R into S.
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Proof. Let T be an analytic mapping from R into S. Let / be a member of
2Jl(S) such that P(f)=P(S). Then foTe3R(K). Thus P(f T)^P(R)<P(S). This
is a contradiction.

Since P(S)>0 by the assumption, the surface S should be open.
By its wide applicability of the proof we may adopt P(R) as the maximal

cardinal number of Picard's values or as the positivity or nullity of capacity or a
sort of function-theoretic null-set or positive-set. For example we can conclude the
following well-known fact: Let R be a plane region whose boundary is of capacity
zero and S a plane region whose boundary is of positive capacity. Then there is
no analytic mapping from R into S.

Further we can conclude the following fact. If there holds the Iversen (resp.
Gross) property on R but there does not hold the Iversen (resp. Gross) property on
S, then there is no analytic mapping from R into S.

§3. In general it is very difficult to calculate P(R) of a given open Riemann
surface R. It depends on the theory of value distributions on R. We shall give
here two examples.

Let R be a proper existence domain of an algebroid function

We shall prove that P(R)=2. To this end we assume that P(R)^3. We may as-
sume that three Picard's exceptional values are 0, 1 and oo. Then there is at least
one entire function f ( p ) on R whose Picard's values are 0, 1 and oo. If the order
of f(p) is greater than one, then by Selberg's generalization [8] of Nevanlinna's
theory and by a fact

where E(r, R) is the integrated Euler characteristic of R, whose order is one in
this case, and T(r,f) is the Nevanlinna-Selberg characteristic function of /, the
number of Picard's exceptional values is at most two. This is untenable. Thus
f(p) is at most of order one. Thus two coefficients fλ(z), Az(z) of the defining
equation

of /(/>) are entire functions of z and of order at most one. By the representation
o f /

we have



COMPLEX ANALYTIC MAPPINGS 95

Thus fz(z) is also an entire function of order at most one. By Remoundos' method
of proof of his celebrated generalization of Picard's theorem [1] pp. 25-27, the
function F ( z , f ) must satisfy the equations

F(z, 0)

F(z, 1)
or or

where c, βι and β2 are three constants and «ι, az are two non-zero constants. Here
we may assume that βi^O, /32^rO by Remoundos' reasoning.

We shall consider the first case:

-=£»

Then we have

Let z be nπi (n: a non-zero integer) and x denote eaιπτ, then

Suppose that x^l. Then by

we have

and hence we have a:=~l,
integer m. Then

= — 1 and further βι2=— 4. Thus αι=2w+l with an

2 1

Putting £=0, then /2(0)2^=0. Thus the right hand side term has at least a double
zero at 2=0. Thus the derivative of the left hand side term is equal to zero at
2=0. On the other hand the derivative is

which is never equal to zero. This is a contradiction, Therefore x=I, al=2m with
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a non-zero integer m. Thus

Therefore we have

jSiV* - 1) - 2β1(l+c)(e2m* - 1) = 4/2

2 -

and hence

If j8!=2(l+c), then c=l and ft =4. Thus

This equation leads to a contradiction, that is, m=0. If βι=^2(l+c), then we put
0=0. Then /2(0)2— 0 and hence the derivative of the right hand side term

2mβ1e
2mz(β1e

2mz + ft — 2(1 + £)) + βι(ezmz - I)

must be equal to zero at z=Q, that is,

Thus there must be βι=l+c. Then we have

At z=pπi for every integer p the left hand side term has a double zero and hence
the right hand side term has a triple zero. This is a contradiction.

Next we must consider the second case:

This case can be discussed quite similarly as in the first case and leads to the
similar contradiction. Thus we may omit the details.

Finally we shall consider the last case:

pZz— 1

LEMMA. Let (x0, y0) be a non-zero pair of two complex numbers. If every pair
on, 2/on) for every non-zero integer n lies on a quadratic curve
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l-2β1x-2β2y-\-βl

2x2-2βlβ2xy+β2V=Qί ft&^O,

then Oo, 2/0) =(1, 1) and

l-2β1-2β2+β^-2β1β2+β2

2=0.

Proof. For simplicity's sake we shall denote the left hand side term of the
defining equation of the quadratic curve by F(x, y). If |#0|<1, |2/o|<l, then

F(x0

n, ?/on)-+l for n— >oo.

If H>1, |2Λ>|>1, then

F(l/j?0

n, l/?/on)-*l for n-+oo.

If |#0|<1, |2/o|>l, |#o2/o| = l, then

tends to infinity, as n tends to infinity. If |#0|<1, |2Λ>|>1, |#o2Λ>|^il, then

9 / 3 ^ 7 1 1 / 3 2 ^ , 2 7 1 9 / 3 / 3 ^ TJ,/,/ n
άpiXo ~r pi XQ — 6pιp2Xo £/o

tends to infinity, as n tends to infinity. Similarly |#0|>1, |?/o|<l lead to a con-
tradiction. If |#0|<1, 1 2/0 1=1, then

for every given positive e and H^HQ. Thus \β2\=l must hold. The inequality

|l-/322/ow|<ε

leads to two equations /32 — 1 and 2/0 = 1. Then we have

Since βi^o^O, we have finally x0 = l. This is absurd. Quite similarly there does
not occur the case |#0|>1, |2/o|=l. Similarly there does not occur the case |#0|=1,

1 2/o 1^=1. Thus there remains a case |α?0| = |2/o| = l. Then we have

Let xo=eτaπ, βι = \βι\e"*, then

3=0 or 1.

Thus a must be an even integer, that is, x0—l. By an easy algebraic calculations

we have 2/0 = 1- Thus we have the desired fact.

Now we should return to our equations. Then we have



98 MITSURU OZAWA

Putting z=nπi (n: a non-zero integer), we have

G(nπi\ «ι, a2) = F(ena>lπ, ena*πi)=Q,

since H(nπi)=Q for n^O. By the Lemma we have

/ g«ι« = l / acι=2p
{ that is, (
\ ea ιn = l9 \ a2=2q,

(p, q: non-zero integers)
\ ea ιn = l9 a2=2q,

and

Thus G(0; 2p, 2#)=0 and hence 5(0) =0, which leads to a fact that /2

2 has at least
a double zero at z=0. Therefore G'Cz; 2/>, 2q)=Q at 2=0. This leads to an equation

This is nothing but a relation

G\nπi\ 2py 20) =0,

Thus G(z; 2p, 2q) has at least a double zero at z=nπi and hence /f(z) has at least
a triple zero at z=nπi. Thus H"(nπi)=Q. This leads to an equation

-s^-s^+ie/)2/^
This is nothing but G"(0; 2p, 2q)=Q. This implies that H(z) has a zero of order 4
at 0=0. Thus 5///(0)=0. Repeating this process ad infinitum, we finally have

for every n. Thus H(z)=Q, that is, /2(^)=0. Thus / reduces to a single- valued
entire function of z. In this case P(/)^2, which is a contradiction. Thus we have
finally the desired fact P(7?)=2.

The same holds for a surface R, which is a proper existence domain of an
algebroid function

that is, P(R)=2.
Next we shall proceed to the second example. Let R be an ultrahyperelliptic

surface defined by an equation yz=g(x) with an entire function g(x) of non-integral
order A/«OO). Then P(R)=2. If this is not the case, then there exists an entire
algebroid function / with three Picard's exceptional values 0, 1, oo. Then the order
of / is not greater than pg by Selberg's theorem. Thus we have the defining equation

of /, where /Ί and /2 are two entire functions of order at most pg. By Remoundos/
reasoning of his celebrated theorem we have equations,
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(z, 0)
or or

F(z, 1) \ βιeHl \ c

Here βi and β2 are non-zero constants and Hi and H2 are two polynomials of
degrees at most [pg]. In the first and the second cases we have

In the last case we have

In every case the left hand side term is of order at most [pg] and hence the ex-
ponent of convergence of its zeros is not greater than [pg]. However the right
hand side term has zeros whose exponent of convergence is not less than pg by
BoreΓs theorem, when /2(»^0. This is a contradiction. If fz(z)=Q, then /reduces
to a single- valued function of z, whence follows P(/) |̂2. This is also untenable.
Thus we have the desired result: P(R)=2.

§4. We shall here give three examples, which belong to the non-existence
case of analytic mappings.

( i ) Let R be the proper existence domain of an ^-valued algebroid function
on \z\ < oo. Then P(R)^2n by Selberg's generalization of Picard's theorem. Let S
be a Riemann surface defined by an equation ew=g(z), where g(z) is an entire
function with at least 2n+l zeros. Then P(S)^2n+l, since the projection map
(2, w)-^z omits at least 2n+l points, which are the zeros of g(z). Thus there is
no analytic mapping from R into S. If g(z) is a polynomial of degree at most n,
then S may be considered as a proper existence domain of an algebroid function
whose defining equation is g(z)=ew. Thus there may exist an analytic mapping
from R into S, when R is suitably chosen.

(ii) Let R be an open Riemann surface with one ideal boundary 3. We
assume that there is an infinite number of disjoint annuli {5i, } satisfying the con-
ditions: The modulus of 91, satisfies an inequality mod 9Γ,^<5>1 for every j, %
separates 9ί,_ι from 3 and % tend to 3 if j tends to oo. Then R belongs to the
class OG and the end of R is of Heins' harmonic dimension one. Then by the
Schottky theorem we have P(R)^2. Since generally P(R)^2, we have P(R)=2.
Let S be the proper existence domain of an algebroid function

e*+l '

Then P(S)^4 by Remoundos-Selberg's theorem and evidently P(S)^4, since the
above algebroid function omits four values 1, —1, f, —i. Therefore P(S)=4. Thus
there is no analytic mapping from R into S.

(iii) Let R and S be the proper existence domains of two algebroid functions
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respectively. In this case PCft)=P(S)=4. Thus we cannot apply Theorem 1.
Let T be an analytic mapping from R into S. Let g(w) be a two-valued entire

algebroid function with four Picard's exceptional values, say

For this function we have evidently

a+l a-l
' ' β-1' β+Γ

Then f=g°T should exclude the above four values and hence / should be a two-
valued entire algebroid function of z. Thus we have a representation

with two entire functions /i and /2 both of which are of order at most one. Then
we have

Thus by the method of proof of Remoundos' theorem we have

J- \<Ί W \

_/ a+l \
HI" 1

1 > ~ί~ 1

J a-ί\

=

\

or

ί \

c
or

r & * \

where c is a constant and alf a2 are non-zero constants and βlt β2 are two constants.
Now we shall discuss the first case. Then we have

Eliminating /Ί, we have

If c*rl, then this contradicts BoreΓs formulation of Picard's theorem, since
Thus c = l and hence a^az and (a-l)2e^ = (a-\-l)2e^. Then we have
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= 1 / a2+l a-1 \
Jl 2 U2-l a+l Γ

Let z=0, then/ι(0)= ±1 and hence e^=(3-a2)2/(a-~l)2 or -2/(α-l)2. Thus we have

or

If #2=3, then this contradicts the reasoning in Remoundos' proof. Therefore we
may assume that a2 ̂ 3. We shall first discuss the case (1). If we put z=nπi,
then we have by fλ(nπi)=±l

τ 1— 1 or

Thus either α2 is equal to an even integer 2m (^0) or satisfies e2a'πτ=(3a2—I)2

-Kα2-3)2, which is either 1 or (-3α2+l)/(^2-3). In the latter case we have either
a2—— 1 or 1 or 1/3. When a2=1/3, βα>ίrt=0, which is also a contradiction. Thus
we have that α2 is 2m (^0). Then we have

4(α2-!)2 ̂

Since α'2^l/3, this equation is untenable. Because the function

is not a square of an entire function for every m. Though the case (2) is some-
what complicated, a quite similar discussion leads to the same contradiction as in
the case (1). Thus we can conclude that the first case does not occur. The re-
maining two cases are also untenable by the similar discussion. Thus we have the
following fact: There is no analytic mapping from R into S. Quite similarly we
have that there is no analytic mapping from S into R.

The above example suggests the following general theorem, whose proof is
immediate.

THEOREM 2. If there is a meromorphϊc function gςyjl(S) in such a manner thai
for an arbitrary member f of yjl(R) there is at least one Picard's exceptional value
of g, which is not a Picard value of /, then there is no analytic mapping from R
into S.
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§5. Our original intention in the present paper is to emphasize that the pro-
blem of analytic mappings especially their existence problem is beyond the scope
of Nevanlinna theory. It seems to the present author that the existence problem
would be the problem of moduli of open surfaces, for which our knowledges in the
present status are extremely meagre. Our theorems, which seem to be applicable,
show that the quantity P(R) and the distribution of Picard's values are important
as the first step in order to test the existence of analytic mappings. Our two
theorems have less effectivity in two cases of P(S)=2 and P(S)=3. This is a
weak point of our criteria. Further they never contribute to the existence part,
which is the weakest point of our criteria. It seems to the present author that
Sario's result (A2) or its generalization would give many striking applications.
Although its original form in Sario's paper has an extremely implicite form, anyhow
it contains very significant meanings.
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