
ASYMPTOTIC BEHAVIOR OF SEQUENTIAL DESIGN

WITH COSTS OF EXPERIMENTS

BY KAZUTOMO KAWAMURA

1. Introduction.

We shall consider the two kinds of experiments Eλ and E2 which have two
events "Success S " or "Feilure F". The probabilities of success or failure by the
experiments Eλ and E2 are given by

P{S\E1}=p1, P{F\E1}=l-p1

and
P{S\E2}=p2, P{F\E2} = l-p2

respectively, where we assume that pi$=p2.
Moreover, following to Kunisawa [4], we introduce the notion of costs of ex-

periments, i.e., if we execute the experiment Ei, it costs d (ci>0), and if E2, it
costs c2 (c2>0).

The object of this paper is to discriminate the hypotheses pι>p2 or pι<ip2.
What a procedure, with which we repeat the experiments, is optimal, in order to
maximize the information of discrimination per unit cost ?

According to Chernoff [1] a procedure is given, which maximizes the information,
when ci=c2.

In this paper we shall show the asymptotic behavior of the procedure which
maximizes the information of discrimination per unit cost.

2. Notations and definitions.

Given Θ the two dimensional closed rectangular set [0, l]®[0, 1], i.e., the set of
elements (plt p2) satisfying 0^/>i^l and 0^p2^kl. And put

H^Upupi): Pi>p2, (Pi,p2)eθ}9

Ά={(kp1,p2):p1<p2, (Pi,
and

Then θ is clearly the sum of sets Hu H2 and B12. Next let Ea:> be z'-th experiment,
and define x% as follows:
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Xι—\ if S occurs under Ea\

=0 if F occurs under ECO.

In the following line we shall assume that in Eco S or F occurs independently of
the selection of Ea\ •••, Eco (/=1, 2, •••). Then we see that xu x2, •••, xn, ••• are
independent random variables. And let rii be the number of selections of experiment
Eι in the partial n experiments Ea\ •••, ECn\ mi the number of occurrences of S
in these nλ observations by Ei, and similarly n2 the number of selections of E2 in
the partial n experiments, and m2 the number of occurrences of S in these n2

observations by E2. Then if θ=(php2) is an element of θ, the probability density
function of xτ at Ew f{xu θ> ECΌ) is known to be following form:

f(r. β F^\~hΛ

χί(Λ —hY-χi if FCί:> — F,

Then the likelihood function of θ over the partial n experiments is given by
ϊί?=ιf(%ι, θ> 2£Cί)). This is a function of n observations xu •••, xn, n experiments Ea\
•••, £ l ( r i ) and θ. The maximum likelihood estimate θn of θ over the partial n experi-
ments is not only a function of n observations Xι, •••, xn but also a function of n
experiments Ea\ •••, Eίn\ Next we shall denote by θn the maximum likelihood
estimate of 0 on the closed domain a(θn) over the n experiments Ea\ •••, Ein\
where a(βn) is defined as follows:

if θnGHz, then a(dn)=θ—Ht (ί = l, 2)

and if θnςB12, then a(θn)=θ.

Definition of discrimination. As a measure of discrimination between two
probability density functions fx and f2, Kullback [3] introduced following

fλ

J2

In our case, we can use this measure to express the discrimination between
f(x, 0, E) and f(x, φ, E), i.e;

and

P*)> ( M Λ*), £ a )=Λ log -0Γ + ( 1 -

where 0=(plt p2) and φ=(p^9 p2*).
Definition of procedure ^ . We shall call procedure $, if the following conditions

are satisfied: £< C 1 )=£Ί, Em=E2 and for ^ 2 succesively
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(2.1)

C\ C2

3. Theorems and the proofs.

At first, put

Diβ)= {(/>i*, p2*): (pi*^pi and p2*^£p2) or (pL*^pi and p2*

where θ=(pi,p2),

iΦn, ψ, Ei) lφn, φ, E2)
ψ\

Ci C2

(3.1)

θ* =
Ci

and θn* = (pn*, pn*), &*=(P*, P*). Using these pn*, p*, we define

(3.2)
mi m2

nL n2

and

(3.3)
pi-p2

Moreover for fixed λ λς[0, 1], let θ be θ = (p, p), where

(3.4) P=KPi-p*)+P»

Then we can list the following Theorems.

THEOREM 1. Our procedure 2 satisfies the next relation:

ivith probability 1, where

1) It is clear that θn*, 0* are uniquely determined.
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C\ C2

? (θ θ ϊ - loσ Π

C ( O is **e cost of Ea\

T H E O R E M 2. Any sequence of experiments ECrύ (n=l, 2, •••) such that
= x * satisfies also the same result as Theorem 1, //zfltf z's;

//A probability 1.

T H E O R E M 3. GM;£« «wy sequence of experiments Ei7ύ (n=l, 2, •••)

0, 1]) <2̂ (i &/limn^ romin(«i, « 2 ) = + o o , ^

^ ^ J --λ)I(θ9 ff, E2)

with probability 1.

THEORFM 4. The limit function of λ (3. 5) (Λe[O, 1]) has only one maximum
value if and only if λ=λ*.

In order to prove these theorems we need the following Lemmas.

L E M M A 1. If we execute any procedure , we have always

and

_
\

\ ni+nz ' n1+n2 J

Proof. As the function p1

mi(l—p1)
7ll-mi has the maximum value at

and pzm2(l—p2)
n2~m* at m2/n2, the likelihood function

has the maximum value on θ at θn ~(mi/ni, m2/n2). This θn is the maximum
likelihood estimate over β of p1

m\l-p1)
nί-mίp2

m*(l--p2)
nί-n\

Next we suppose that

θnzHι and θn^H2.

Then as the line θnθn connecting θn and θn crosses Bι2j we have a crossing point
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0 different from 8nζH2. Since pimi(l— pι)nx~mi is monotonically increasing in (0, mi/«i)
and monotonically decreasing in (mi/wi, 1), and also p2

mχi—p2)
n2~m2 is monotonically

increasing in (0, m2/n2) and monotonically decreasing in (m2/n2, 1), it is clear that

As β€a(θr>)=H2uB12, the above inequality is contradiction to the definition of 8n.
Thus we can conclude that if θnGHly then 8n^Bi2.

In the same manner we can show that if θn€H2, then θn^Bλ2 and if θnQBι2

then θn£B12 and θn=θn. Hence we see θn^Bχ2 for all cases. Therefore, to find θn,
we search only on Bi2 so that the likelihood function on B12 becomes

Then the function has only one maximum value if and only if

m1

J

rm2 \

nλ-\~n2 I

Hence

LEMMA 2. Given the sequence of experiments under the procedure
•, ECn\ ••• Then the probability that

for all n^k or

E™=E*

for all n^k is zero, where k is any fixed positive integer.

Proof. Suppose the probability

for all n^k is positive, where k is any fixed positive integer. Then we have

and

I(βn, 8n, E1) ^ I(dn, 8n, E2)

Ci = C2

for all n (n^k), with positive probability. Hence by the law of large numbers, we
have



174 KAZUTOMO KAWAMURA

with positive probability. On the other hand, n2 and m2 are invariant for all ex-
periments Eiηίύ (n^k) with positive probability. Hence m2/n2 is fixed at the value
[m2ln2]n=k which is determined by Ea\ EC2\ •••, Ea\ Hence we see

with positive probability. Therefore we have

i £ i / mi Γ M21 \ I Y m2~\ \
l im0 n = lim —-, — - ] = (plt — -
n-»oo n^oo \ fli L n2 Jn=k/ \ \_ W2 Jn=Jc/

and

lim θn = lim
?>->oo \ ^ 1 + ^2 '

with positive probability. Using these facts, we have

=(Pu Pύ

lim
8 E)
Cι

and

Cι

m2

L n2 J

I—p1

Γm 2 " |

i > 0

with positive probability, where [m2/n2] means [m2/n2]n=k. Therefore

0= lim ——— ^ lim ———
n—>oo C\ 7i—*oo c2

with positive probability. Hence, by (3. 6),

c2

with positive probability. It follows clearly that pi = [m2/n2]n=k and hence m2/n2=p!
for all n (n^k) with positive probability. Hence, by (3. 6)

-i

(3. 7)
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^ — \pnog
2 1

for all n (n^k) with positive probability. Here we consider two functions:

1
l o g

= Mv log ^ ΐ ^ +(1~2/) lo
and

and we use Taylor's expansion for f(x) and g(y) around (mi+m2)/(«i+«2) as follows.

where

and ζ2: y<ξ2<

or

or nx-\-n2

<ξ2<y.

Then the inequality (3. 7) become as follows:

/ m1 mi + ni2 \ 2/ 1 , 1
( — ^~I^Γ~) \ΊΓ 1—ξ

62

for all n (n^k), with positive probability. And if n—>oo then ξi—>pi, ξ2—*p\ and

m1

with positive probability.
Hence, this contradicts (3. 8). Thus we proved the probability that

exists for all n (n^k) is zero, where k is any fixed positive integer.
In the same manner, we can provcy that the probability
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for all n (n^m) is zero, where m is any fixed positive integer.

LEMMA 3. Given the sequence of experiments under the procedure <£

E\Ό 77C2) . . . /7(n) . . .

then we have

P{mm(nι, n2)-*°o as n—>oo}=l.

Proof. Suppose that exists a constant k such that as n-+oo

with positive probability. Then we have

E^=Eι

for all n (n^m) or

for all n (n^rri) with positive probability, where m is a fixed positive integer. But
by Lemma 2 we know that these facts do not exist.

LEMMA 4. We have

\imθn=(pup2)
n-*oo

with probability 1.

Proof By Lemma 3, we know that if n—>oo then nλ—>oo and w2—>oo with
probability 1. Hence, using the law of large numbers,

lim lϋtL =Pl and lim — =p2y

 2)

n->oo m n-^oo fl2

with probability 1. Therefore

limθn=(pup2)
n-+oo

with probability 1.

LEMMA 5. We have

«->oo ft

2) See, for example, Halmos [2].
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with probability 1, where λ* is defined by (3. 3).

Proof. Evidently, we have

177

with probability 1, by Lemma 4. Hence by the definition of 4 *

(3.9) lim *„*=;!*
n—>cx>

with probability 1. It is easily verified that the procedure 2 is equivalent to the
following conditions:

and for n^

(3. 10)

n

.r nλ

respectively. Using this property of the procedure 2, we shall show

lim — =λ*

with probability 1. For any positive number ε, by (3. 9), there exists some integer
n0 such that

for all n (n^n0) with probability 1.
Now we consider the following two cases:

with probability 1 and

(i)

(ϋ)

Γ - l
L n Λn=n

-λ*

Γ—1 = λ*

with probability 1, where [ni/n]n=no is the relative frequency of selection of Ei
from E^ to E<no\

If (i), by the property (3.10) of 2, there exists j0 Uo^no)
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(3. 11)
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[ΐL - λ*

with probability 1.
If (ii), we put jo==no and we have (3.11) with probability 1. Hence, we can

find the first integer jQ (jo^no) satisfying (3. 11). Next we suppose that there exists
an integer k (k^j0) such that

L fl \n=k~l
λ*

and

I Γ - 1 -λ*

with probability 1. Then by the procedure g, we see

with probability 1. Since generally, the fact

with probability 1 is satisfied for all k, we see

-JίLl _Γΐ.Ί + Γ^1 _,
_ n An=k L W Jn=k-1 L # Jn= Λ-l

with probability 1. Therefore if we have (3. 12) with probability 1, we have

L » J»=* ^ 2 = 2 + 2 ε

with probability 1 for any k (k^jo) such as

and if there does not exist k (k^jo) satisfying (3. 12) with probability 1, we have

I Γ - 1 -λ* < Ί Γ < e

with probability 1 for all k (k^jQ). Thus we have



ASYMPTOTIC BEHAVIOR OF SEQUENTIAL DESING .1 79

with probability 1 for all n (n^N0), where

AT Γ 4 Ί
iVo = max — , jo .L e J

Thus, limn->O0(n1/ή)=λ* with probability 1, as to be proved.

LEMMA 6. \imn^ooθn=^ with probability 1.

Proof, By simple calculation, we have

ffli + ^2 _ Hi ί Mi

fli-\-tl2 ft \ Hi

and, from Lemma 4,

n2 } H2

n-*oo m

and

with probability 1, and, by Lemma 5, we see that

lim ^ =λ*

with probability 1. Then

lim

with probability 1 by the definition of λ*. Hence,

lim 8n=0* = (P*,P*)
W-»oo

with probability 1, as to be proved.

Proof of Theorem 1.
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=log-

/ m1 \ m i / πix \~i-wi / m 2 \ m 2 / m x \ n

\ Wi / \ fix ) \ n2 ) \ ni )

(_ ^ ^ _ _ _ _ _ _ _ 1 I 1 " i ί 1 / "I

1 1 1 I I I I ±

n J \ n ) \ n I \
1 -

= wilog
mi+m 2

n

- ^ i ) log

1 -
+m2log

1 - m2

mi \
jlog

1 -
m i

1 -

m2

m2 . + ( 1 - ^ ) l o g

1 — ^ S
n

m2

^ 2

+ m2

Hence

SnΦnJn) Πtfi
• ~Γ "

Π2C2

c2

Therefore, as limn^oo07l=#, \imn-»o,θn=θ* with probability 1, from the Lemma 4 and
the Lemma 6, we have

^Ψ^^
with probability 1.

Proof of Theorem 2. Any sequence of experiments £ ( n ) (n=l, 2, •••) such that
\imn->ooni/n=λ*, satisfy the Lemma 4 and Lemma 6 evidently. Hence

with probability 1.

Proof of Theorem 3. It is clear by the hypothesis
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lim min (nu n2) = +oo

that \imn^ooθn=θ with probability 1. And using the equality.

mi+m 2 _ ni / mi m2 \ m2

n n \ fii n2 / n2

we have

with probability 1. Then, we have

\ιmθn = θ = (p, p)

with probability 1. Therefore, we see easily that

SnΦn, θn) nj(θn, 8n, Ei) + n2I(Sn9 8n, E2)
ΣΓ=iC ( ι ) niCi-\-n2c2

iφn, θn, jEΊ) + ί 1 jlΦn, θn, E2)

—γ- ni \
Ci+ 1 C2

^ \ n I

Hence, we have

r SnΦn, On) U{θ, 0, Ei) + Q. — λ)I(θ, θ, E2)

with probability 1, as to be proved.

Proof of Theorem 4. As p was denned as λ(p1—p2)-\-p2 in (3. 4), we have

λ

Pl~p2 '

Hence, by simple calculation, we have

d f λl(θ, 8, Ei)+q-λ)I(θ, 8, E2)

dp 1 Λ

cι c2 1 \I(θ,θ,Ei) I(0,θ,E2)

{λci+(l-λ)c2}
2 P1-P2 { ci c2

Therefore the derivative is equal to zero if and only if θ=d*. Thus, the function
of λ

λci+(X-λ)c2
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has only one maximum value if and only if λ=λ*, because θ=θ* is equivalent to
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