ASYMPTOTIC BEHAVIOR OF SEQUENTIAL DESIGN WITH COSTS OF EXPERIMENTS

By Kazutomo Kawamura

1. Introduction.

We shall consider the two kinds of experiments E_1 and E_2 which have two events "Success S" or "Feilure F". The probabilities of success or failure by the experiments E_1 and E_2 are given by

 $P\{S|E_1\} = p_1, \qquad P\{F|E_1\} = 1 - p_1$ $P\{S|E_2\} = p_2, \qquad P\{F|E_2\} = 1 - p_2$

and

respectively, where we assume that $p_1 \neq p_2$.

Moreover, following to Kunisawa [4], we introduce the notion of costs of experiments, i.e., if we execute the experiment E_1 , it costs c_1 ($c_1>0$), and if E_2 , it costs c_2 ($c_2>0$).

The object of this paper is to discriminate the hypotheses $p_1 > p_2$ or $p_1 < p_2$. What a procedure, with which we repeat the experiments, is optimal, in order to maximize the information of discrimination per unit cost?

According to Chernoff [1] a procedure is given, which maximizes the information, when $c_1 = c_2$.

In this paper we shall show the asymptotic behavior of the procedure which maximizes the information of discrimination per unit cost.

2. Notations and definitions.

Given Θ the two dimensional closed rectangular set $[0, 1] \otimes [0, 1]$, i.e., the set of elements (p_1, p_2) satisfying $0 \leq p_1 \leq 1$ and $0 \leq p_2 \leq 1$. And put

 $H_1 = \{ (p_1, p_2): p_1 > p_2, (p_1, p_2) \in \Theta \},$ $H_2 = \{ (p_1, p_2): p_1 < p_2, (p_1, p_2) \in \Theta \}$ $B_{12} = \{ (p_1, p_2): p_1 = p_2, (p_1, p_2) \in \Theta \}$

and

Then Θ is clearly the sum of sets H_1 , H_2 and B_{12} . Next let $E^{(i)}$ be *i*-th experiment, and define x_i as follows:

Received April 23, 1964.

$$x_i=1$$
 if S occurs under $E^{(i)}$,
=0 if F occurs under $E^{(i)}$.

In the following line we shall assume that in $E^{(i)}$ S or F occurs independently of the selection of $E^{(1)}, \dots, E^{(i)}$ $(i=1, 2, \dots)$. Then we see that $x_1, x_2, \dots, x_n, \dots$ are independent random variables. And let n_1 be the number of selections of experiment E_1 in the partial *n* experiments $E^{(1)}, \dots, E^{(n)}, m_1$ the number of occurrences of S in these n_1 observations by E_1 , and similarly n_2 the number of selections of E_2 in the partial *n* experiments, and m_2 the number of occurrences of S in these n_2 observations by E_2 . Then if $\theta = (p_1, p_2)$ is an element of Θ , the probability density function of x_i at $E^{(i)}$ $f(x_i, \theta, E^{(i)})$ is known to be following form:

$$f(x_i, \theta, E^{(i)}) = p_1^{x_i} (1-p_1)^{1-x_i} \quad \text{if} \quad E^{(i)} = E_1,$$
$$= p_2^{x_i} (1-p_2)^{1-x_i} \quad \text{if} \quad E^{(i)} = E_2.$$

Then the likelihood function of θ over the partial *n* experiments is given by $\prod_{i=1}^{n} f(x_i, \theta, E^{(i)})$. This is a function of *n* observations x_1, \dots, x_n , *n* experiments $E^{(1)}$, $\dots, E^{(n)}$ and θ . The maximum likelihood estimate $\hat{\theta}_n$ of θ over the partial *n* experiments is not only a function of *n* observations x_1, \dots, x_n but also a function of *n* experiments $E^{(1)}, \dots, E^{(n)}$. Next we shall denote by $\tilde{\theta}_n$ the maximum likelihood estimate of θ on the closed domain $a(\hat{\theta}_n)$ over the *n* experiments $E^{(1)}, \dots, E^{(n)}$, where $a(\hat{\theta}_n)$ is defined as follows:

if
$$\hat{\theta}_n \in H_i$$
, then $a(\hat{\theta}_n) = \Theta - H_i$ $(i=1, 2)$
and if $\hat{\theta}_n \in B_{12}$, then $a(\hat{\theta}_n) = \Theta$.

Definition of discrimination. As a measure of discrimination between two probability density functions f_1 and f_2 , Kullback [3] introduced following

$$I(f_1, f_2) = \int f_1 \log \frac{f_1}{f_2} d\mu.$$

In our case, we can use this measure to express the discrimination between $f(x, \theta, E)$ and $f(x, \varphi, E)$, i.e;

$$I((p_1, p_2), (p_1^*, p_2^*), E_1) = p_1 \log \frac{p_1}{p_1^*} + (1-p_1) \log \frac{1-p_1}{1-p_1^*},$$

and

$$I((p_1, p_2), (p_1^*, p_2^*), E_2) = p_2 \log \frac{p_2}{p_2^*} + (1-p_2) \log \frac{1-p_2}{1-p_2^*}$$

where $\theta = (p_1, p_2)$ and $\varphi = (p_1^*, p_2^*)$.

Definition of procedure \mathfrak{P} . We shall call procedure \mathfrak{P} , if the following conditions are satisfied: $E^{(1)} = E_1$, $E^{(2)} = E_2$ and for $n \ge 2$ successively

ASYMPTOTIC BEHAVIOR OF SEQUENTIAL DESING

$$E^{(n+1)} = E_1 \qquad \text{if} \qquad \frac{I(\hat{\theta}_n, \tilde{\theta}_n, E_1)}{c_1} > \frac{I(\hat{\theta}_n, \tilde{\theta}_n, E_2)}{c_2},$$

$$(2.1) \qquad = E_2 \qquad \text{if} \qquad \frac{I(\hat{\theta}_n, \tilde{\theta}_n, E_1)}{c_1} < \frac{I(\hat{\theta}_n, \tilde{\theta}_n, E_2)}{c_2},$$

$$= E^{(n)} \qquad \text{if} \qquad \frac{I(\hat{\theta}_n, \tilde{\theta}_n, E_1)}{c_1} = \frac{I(\hat{\theta}_n, \tilde{\theta}_n, E_2)}{c_2}.$$

3. Theorems and the proofs.

At first, put

 $D(\theta) = \{ (p_1^*, p_2^*): (p_1^* \ge p_1 \text{ and } p_2^* \le p_2) \text{ or } (p_1^* \le p_1 \text{ and } p_2^* \ge p_2) \}$ where $\theta = (p_1, p_2)$,

$$\theta_n^* = \left\{ \varphi: \ \frac{I(\hat{\theta}_n, \varphi, E_1)}{c_1} = \frac{I(\hat{\theta}_n, \varphi, E_2)}{c_2}, \ \varphi \in D(\hat{\theta}_n) \right\} \cap B_{12},$$

(3.1)

$$\theta^* = \left\{ \varphi: \frac{I(\theta, \varphi, E_1)}{c_1} = \frac{I(\theta, \varphi, E_2)}{c_2}, \varphi \in D(\theta) \right\} \cap B_{12}$$

and $\theta_n^* = (p_n^*, p_n^*), \theta^* = (p^*, p^*)$. Using these p_n^*, p^* , we define

(3.2)
$$\lambda_n^* = \frac{p_n^* - \frac{m_2}{n_2}}{\frac{m_1}{n_1} - \frac{m_2}{n_2}}$$

and

(3.3)
$$\lambda^* = \frac{p^* - p_2}{p_1 - p_2}.$$

Moreover for fixed $\lambda \lambda \in [0, 1]$, let $\tilde{\theta}$ be $\tilde{\theta} = (p, p)$, where

(3. 4)
$$p = \lambda (p_1 - p_2) + p_2.$$

Then we can list the following Theorems.

THEOREM 1. Our procedure \mathfrak{T} satisfies the next relation:

$$\lim_{n\to\infty}\frac{S_n(\hat{\theta}_n,\,\hat{\theta}_n)}{\sum_{i=1}^n C^{(i)}} = I^*(\theta)$$

with probability 1, where

¹⁾ It is clear that θ_n^* , θ^* are uniquely determined.

$$I^{*}(\theta) = \frac{I(\theta, \theta^{*}, E_{1})}{c_{1}} = \frac{I(\theta, \theta^{*}, E_{2})}{c_{2}} \qquad (\theta = (p_{1}, p_{2})),$$
$$S_{n}(\hat{\theta}_{n}, \tilde{\theta}_{n}) = \log \frac{\prod_{i=1}^{n} f(x_{i}, \hat{\theta}_{n}, E^{(i)})}{\prod_{i=1}^{n} f(x_{i}, \tilde{\theta}_{n}, E^{(i)})}$$

and $C^{(i)}$ is the cost of $E^{(i)}$.

THEOREM 2. Any sequence of experiments $E^{(n)}$ $(n=1, 2, \cdots)$ such that $\lim_{n\to\infty}(n_1/n) = \lambda^*$ satisfies also the same result as Theorem 1, that is;

$$\lim_{n\to\infty}\frac{S_n(\hat{\theta}_n,\,\tilde{\theta}_n)}{\sum_{i=1}^n C^{(i)}}=I^*(\theta)$$

with probability 1.

THEOREM 3. Given any sequence of experiments $E^{(n)}$ $(n=1, 2, \cdots)$ such that $\lim_{n\to\infty}(n_1/n)=\lambda$ ($\lambda \in [0, 1]$) and if $\lim_{n\to\infty}\min(n_1, n_2)=+\infty$, the next limit

(3.5)
$$\lim_{n \to \infty} \frac{S_n(\hat{\theta}_n, \tilde{\theta}_n)}{\sum_{i=1}^n C^{(i)}} = \frac{\lambda I(\theta, \tilde{\theta}, E_1) + (1-\lambda)I(\theta, \tilde{\theta}, E_2)}{\lambda c_1 + (1-\lambda)c_2}$$

exists with probability 1.

THEORFM 4. The limit function of λ (3.5) ($\lambda \in [0, 1]$) has only one maximum value if and only if $\lambda = \lambda^*$.

In order to prove these theorems we need the following Lemmas.

LEMMA 1. If we execute any procedure, we have always

$$\hat{\theta}_n = \left(\frac{m_1}{n_1}, \frac{m_2}{n_2}\right)$$

and

$$\tilde{\theta}_n = \left(\frac{m_1 + m_2}{n_1 + n_2}, \frac{m_1 + m_2}{n_1 + n_2}\right).$$

Proof. As the function $p_1^{m_1}(1-p_1)^{n_1-m_1}$ has the maximum value at $p_1=m_1/n_1$ and $p_2^{m_2}(1-p_2)^{n_2-m_2}$ at m_2/n_2 , the likelihood function

$$p_1^{m_1}(1-p_1)^{n_1-m_1}p_2^{m_2}(1-p_2)^{n_2-m_2}$$

has the maximum value on Θ at $\hat{\theta}_n = (m_1/n_1, m_2/n_2)$. This $\hat{\theta}_n$ is the maximum likelihood estimate over Θ of $p_1^{m_1}(1-p_1)^{n_1-m_1}p_2^{m_2}(1-p_2)^{n_1-m_2}$.

Next we suppose that

$$\hat{\theta}_n \in H_1$$
 and $\hat{\theta}_n \in H_2$.

Then as the line $\overline{\hat{\theta}_n \tilde{\theta}_n}$ connecting $\hat{\theta}_n$ and $\tilde{\theta}_n$ crosses B_{12} , we have a crossing point

 θ different from $\tilde{\theta}_n \in H_2$. Since $p_1^{m_1}(1-p_1)^{n_1-m_1}$ is monotonically increasing in $(0, m_1/n_1)$ and monotonically decreasing in $(m_1/n_1, 1)$, and also $p_2^{m_2}(1-p_2)^{n_2-m_2}$ is monotonically increasing in $(0, m_2/n_2)$ and monotonically decreasing in $(m_2/n_2, 1)$, it is clear that

$$\prod_{i=1}^n f(x_i, \theta, E^{(i)}) > \prod_{i=1}^n f(x_i, \tilde{\theta}_n, E^{(i)}).$$

As $\theta \in a(\hat{\theta}_n) = H_2 \cup B_{12}$, the above inequality is contradiction to the definition of $\tilde{\theta}_n$. Thus we can conclude that if $\hat{\theta}_n \in H_1$, then $\tilde{\theta}_n \in B_{12}$.

In the same manner we can show that if $\hat{\theta}_n \in H_2$, then $\tilde{\theta}_n \in B_{12}$ and if $\hat{\theta}_n \in B_{12}$ then $\tilde{\theta}_n \in B_{12}$ and $\hat{\theta}_n = \tilde{\theta}_n$. Hence we see $\tilde{\theta}_n \in B_{12}$ for all cases. Therefore, to find $\tilde{\theta}_n$, we search only on B_{12} so that the likelihood function on B_{12} becomes

$$p^{m_1}(1-p)^{n_1-m_1}p^{m_2}(1-p)^{n_2-m_2}=p^{m_1+m_2}(1-p)^{n_1+n_2-(m_1+m_2)}.$$

Then the function has only one maximum value if and only if

$$\theta = \left(\frac{m_1+m_2}{n_1+n_2}, \frac{m_1+m_2}{n_1+n_2}\right).$$

Hence

$$\tilde{\theta}_n = \left(\frac{m_1 + m_2}{n_1 + n_2}, \frac{m_1 + m_2}{n_1 + n_2}\right).$$

LEMMA 2. Given the sequence of experiments under the procedure $\mathfrak{P} E^{(1)}, E^{(2)}, \dots, E^{(n)}, \dots$ Then the probability that

$$E^{(n)}=E_1$$

for all $n \ge k$ or

$$E^{(n)}=E_2$$

for all $n \ge k$ is zero, where k is any fixed positive integer.

Proof. Suppose the probability

$$E^{(n)} = E_1$$

for all $n \ge k$ is positive, where k is any fixed positive integer. Then we have

$$E^{(n)} = E_1$$

and

(3. 6)
$$\frac{I(\hat{\theta}_n, \tilde{\theta}_n, E_1)}{c_1} \ge \frac{I(\hat{\theta}_n, \tilde{\theta}_n, E_2)}{c_2}$$

for all $n \ (n \ge k)$, with positive probability. Hence by the law of large numbers, we have

$$\lim_{n\to\infty}\frac{m_1}{n_1}=p_1$$

with positive probability. On the other hand, n_2 and m_2 are invariant for all experiments $E^{(n)}$ $(n \ge k)$ with positive probability. Hence m_2/n_2 is fixed at the value $[m_2/n_2]_{n=k}$ which is determined by $E^{(1)}, E^{(2)}, \dots, E^{(k)}$. Hence we see

$$\lim_{n\to\infty}\frac{m_2}{n_2}=\left[\frac{m_2}{n_2}\right]_{n=k}$$

with positive probability. Therefore we have

$$\lim_{n\to\infty}\hat{\theta}_n = \lim_{n\to\infty} \left(\frac{m_1}{n_1}, \left[\frac{m_2}{n_2}\right]_{n=k}\right) = \left(p_1, \left[\frac{m_2}{n_2}\right]_{n=k}\right)$$

and

$$\lim_{n \to \infty} \tilde{\theta}_n = \lim_{n \to \infty} \left(\frac{m_1 + m_2}{n_1 + n_2}, \frac{m_1 + m_2}{n_1 + n_2} \right) = (p_1, p_1)$$

with positive probability. Using these facts, we have

$$\lim_{n \to \infty} \frac{I(\hat{\theta}_n, \tilde{\theta}_n, E_1)}{c_1} = \frac{p_1 \log \frac{p_1}{p_1} + (1 - p_1) \log \frac{1 - p_1}{1 - p_1}}{c_1} = 0$$

and

$$\lim_{n \to \infty} \frac{I(\hat{\theta}_n, \tilde{\theta}_n, E_2)}{c_2} = \frac{\left[\frac{m_2}{n_2}\right] \log \frac{\left[\frac{m_2}{n_2}\right]}{p_1} + \left(1 - \left[\frac{m_2}{n_2}\right]\right) \log \frac{1 - \left[\frac{m_2}{n_2}\right]}{1 - p_1}}{c_2} \ge 0$$

with positive probability, where $[m_2/n_2]$ means $[m_2/n_2]_{n=k}$. Therefore

$$0 = \lim_{n \to \infty} \frac{I(\hat{\theta}_n, \tilde{\theta}_n, E_1)}{c_1} \leq \lim_{n \to \infty} \frac{I(\hat{\theta}_n, \tilde{\theta}_n, E_2)}{c_2}$$

with positive probability. Hence, by (3.6),

$$0 = \lim_{n \to \infty} \frac{I(\hat{\theta}_n, \tilde{\theta}_n, E_1)}{c_1} = \lim_{n \to \infty} \frac{I(\hat{\theta}_n, \tilde{\theta}_n, E_2)}{c_2}$$

with positive probability. It follows clearly that $p_1 = [m_2/n_2]_{n=k}$ and hence $m_2/n_2 = p_1$ for all $n \ (n \ge k)$ with positive probability. Hence, by (3.6)

$$\frac{1}{c_1} \left\{ \frac{m_1}{n_1} \log \frac{\frac{m_1}{n_1}}{\frac{m_1+m_2}{n_1+n_2}} + \left(1 - \frac{m_1}{n_1}\right) \log \frac{1 - \frac{m_1}{n_1}}{1 - \frac{m_1+m_2}{n_1+n_2}} \right\}$$

(3.7)

ASYMPTOTIC BEHAVIOR OF SEQUENTIAL DESIGN

$$\geq \frac{1}{c_2} \left\{ p_1 \log \frac{p_1}{\underbrace{m_1 + m_2}_{n_1 + n_2}} + (1 - p_1) \log \frac{1 - p_1}{1 - \underbrace{m_1 + m_2}_{n_1 + n_2}} \right\}$$

for all $n \ (n \ge k)$ with positive probability. Here we consider two functions:

$$f(x) = \frac{1}{c_1} \left\{ x \log \frac{x}{\frac{m_1 + m_2}{n_1 + n_2}} + (1 - x) \log \frac{1 - x}{1 - \frac{m_1 + m_2}{n_1 + n_2}} \right\}$$

and

$$g(y) = \frac{1}{c_2} \left\{ y \log \frac{y}{\frac{m_1 + m_2}{n_1 + n_2}} + (1 - y) \log \frac{1 - y}{1 - \frac{m_1 + m_2}{n_1 + n_2}} \right\}$$

and we use Taylor's expansion for f(x) and g(y) around $(m_1+m_2)/(n_1+n_2)$ as follows.

$$f(x) = \frac{1}{2} \left(x - \frac{m_1 + m_2}{n_1 + n_2} \right)^2 \left(\frac{1}{\xi_1} + \frac{1}{1 - \xi_1} \right),$$
$$g(y) = \frac{1}{2} \left(y - \frac{m_1 + m_2}{n_1 + n_2} \right)^2 \left(\frac{1}{\xi_2} + \frac{1}{1 - \xi_2} \right),$$

where $\xi_1: \ x < \xi_1 < rac{m_1 + m_2}{n_1 + n_2} \ \ ext{or} \ \ rac{m_1 + m_2}{n_1 + n_2} < \xi_1 < x,$

and
$$\xi_2: y < \xi_2 < \frac{m_1 + m_2}{n_1 + n_2}$$
 or $\frac{m_1 + m_2}{n_1 + n_2} < \xi_2 < y.$

Then the inequality (3.7) become as follows:

(3.8)
$$\frac{\left(\frac{m_1}{n_1} - \frac{m_1 + m_2}{n_1 + n_2}\right)^2 \left(\frac{1}{\xi_1} + \frac{1}{1 - \xi_1}\right)}{\left(p_1 - \frac{m_1 + m_2}{n_1 + n_2}\right)^2 \left(\frac{1}{\xi_2} + \frac{1}{1 - \xi_2}\right)} \ge \frac{c_1}{c_2} > 0$$

for all $n \ (n \ge k)$, with positive probability. And if $n \to \infty$ then $\xi_1 \to p_1, \xi_2 \to p_1$ and

$$\frac{\left(\frac{m_1}{n_1} - \frac{m_1 + m_2}{n_1 + n_2}\right)^2}{\left(p_1 - \frac{m_1 + m_2}{n_1 + n_2}\right)^2} = \frac{\left(\frac{m_1}{n_1} - p_1\right)^2 \left(\frac{m_2}{n_1}\right)^2}{\left(\frac{m_1}{n_1} - p_1\right)^2 \left(\frac{m_1}{n_1}\right)^2} = \left(\frac{n_2}{n_1}\right)^2 \to 0$$

with positive probability.

Hence, this contradicts (3.8). Thus we proved the probability that

$$E^{(n)} = E_1$$

exists for all $n \ (n \ge k)$ is zero, where k is any fixed positive integer.

In the same manner, we can prov φ that the probability

$$E^{(n)} = E_2$$

for all $n \ (n \ge m)$ is zero, where m is any fixed positive integer.

LEMMA 3. Given the sequence of experiments under the procedure \mathfrak{P}

 $E^{(1)}, E^{(2)}, \dots, E^{(n)}, \dots,$

then we have

$$P\{\min(n_1, n_2) \rightarrow \infty \text{ as } n \rightarrow \infty\} = 1$$

Proof. Suppose that exists a constant k such that as $n \rightarrow \infty$

$$\min(n_1, n_2) \leq k$$

with positive probability. Then we have

$$E^{(n)} = E_1$$

for all $n (n \ge m)$ or

 $E^{(n)} = E_2$

for all $n \ (n \ge m)$ with positive probability, where *m* is a fixed positive integer. But by Lemma 2 we know that these facts do not exist.

LEMMA 4. We have

$$\lim_{n\to\infty}\hat{\theta}_n=(p_1,\,p_2)$$

with probability 1.

Proof, By Lemma 3, we know that if $n \rightarrow \infty$ then $n_1 \rightarrow \infty$ and $n_2 \rightarrow \infty$ with probability 1. Hence, using the law of large numbers,

$$\lim_{n \to \infty} \frac{m_1}{n_1} = p_1 \text{ and } \lim_{n \to \infty} \frac{m_2}{n_2} = p_{2,2}^{(2)}$$

with probability 1. Therefore

$$\lim_{n\to\infty}\hat{\theta}_n=(p_1,\,p_2)$$

with probability 1.

LEMMA 5. We have

$$\lim_{n\to\infty}\frac{n_1}{n}=\lambda^*$$

²⁾ See, for example, Halmos [2].

with probability 1, where λ^* is defined by (3.3).

Proof. Evidently, we have

$$\lim_{n\to\infty}\theta_n^*=\theta^*$$

with probability 1, by Lemma 4. Hence by the definition of λ_n^*

$$\lim_{n \to \infty} \lambda_n^* = \lambda^*$$

with probability 1. It is easily verified that the procedure \mathfrak{P} is equivalent to the following conditions:

 $E^{(1)} = E_1, \qquad E^{(2)} = E_2$

and for $n \geq 2$

(3. 10)
$$E^{(n+1)} = E_1 \qquad \text{if } \frac{n_1}{n} < \lambda_n^*,$$
$$= E_2 \qquad \text{if } \frac{n_1}{n} > \lambda_n^*,$$

$$=E^{(n)}$$
 if $\frac{n_1}{n}=\lambda_n^*$

respectively. Using this property of the procedure 2, we shall show

$$\lim_{n\to\infty}\frac{n_1}{n}=\lambda^*$$

with probability 1. For any positive number ε , by (3.9), there exists some integer n_0 such that

$$|\lambda_n^* - \lambda^*| < \frac{\varepsilon}{2}$$

for all $n (n \ge n_0)$ with probability 1.

Now we consider the following two cases:

(i)
$$\left| \left[\frac{n_1}{n} \right]_{n=n_0} - \lambda^* \right| \ge \frac{\varepsilon}{2}$$

with probability 1 and

(ii)
$$\left| \left[\frac{n_1}{n} \right]_{n=n_0} = \lambda^* \right| < \frac{\varepsilon}{2}$$

with probability 1, where $[n_1/n]_{n=n_0}$ is the relative frequency of selection of E_1 from $E^{(1)}$ to $E^{(n_0)}$.

If (i), by the property (3.10) of \mathfrak{P} , there exists j_0 ($j_0 \ge n_0$)

(3. 11)
$$\left| \left[\frac{n_1}{n} \right]_{n=j_0} - \lambda^* \right| < \frac{\varepsilon}{2}$$

with probability 1.

If (ii), we put $j_0 = n_0$ and we have (3.11) with probability 1. Hence, we can find the first integer j_0 ($j_0 \ge n_0$) satisfying (3.11). Next we suppose that there exists an integer k ($k \ge j_0$) such that

$$\left|\left[\frac{n_1}{n}\right]_{n=k-1}-\lambda^*\right|<\frac{\varepsilon}{2}$$

and

(3. 12)
$$\left| \left[\frac{n_1}{n} \right]_{n=k} - \lambda^* \right| \ge \frac{\varepsilon}{2}$$

with probability 1. Then by the procedure \mathcal{Q} , we see

$$\left|\left[\frac{n_1}{n}\right]_{n=k}-\lambda^*\right| > \left|\left[\frac{n_1}{n}\right]_{n=k+1}-\lambda^*\right|$$

with probability 1. Since generally, the fact

$$\left|\left[\frac{n_1}{n}\right]_{n=k} - \left[\frac{n_1}{n}\right]_{n=k-1}\right| < \frac{2}{k}$$

with probability 1 is satisfied for all k, we see

$$\left| \left[\frac{n_1}{n} \right]_{n=k} - \lambda^* \right|$$

$$\leq \left| \left[\frac{n_1}{n} \right]_{n=k} - \left[\frac{n_1}{n} \right]_{n=k-1} \right| + \left| \left[\frac{n_1}{n} \right]_{n=k-1} - \lambda^* \right| < \frac{2}{k} + \frac{\varepsilon}{2}$$

with probability 1. Therefore if we have (3.12) with probability 1, we have

$$\left|\left[\frac{n_1}{n}\right]_{n=k} - \lambda^*\right| < \frac{2}{k} + \frac{\varepsilon}{2} \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

with probability 1 for any $k \ (k \ge j_0)$ such as

$$\frac{2}{k} \leq \frac{\varepsilon}{2}$$
,

and if there does not exist $k \ (k \ge j_0)$ satisfying (3.12) with probability 1, we have

$$\left|\left[\frac{n_1}{n}\right]_{n=k} - \lambda^*\right| < \frac{\varepsilon}{2} < \varepsilon$$

with probability 1 for all $k \ (k \ge j_0)$. Thus we have

$$\left|\frac{n_1}{n}-\lambda^*\right|<\varepsilon$$

with probability 1 for all $n (n \ge N_0)$, where

$$N_0 = \max\left[\frac{4}{\varepsilon}, j_0\right].$$

Thus, $\lim_{n\to\infty}(n_1/n) = \lambda^*$ with probability 1, as to be proved.

LEMMA 6. $\lim_{n\to\infty} \tilde{\theta}_n = \theta^*$ with prabability 1.

Proof. By simple calculation, we have

$$\frac{m_1 + m_2}{n_1 + n_2} = \frac{n_1}{n} \left(\frac{m_1}{n_1} - \frac{m_2}{n_2} \right) + \frac{m_2}{n_2}$$

and, from Lemma 4,

$$\lim_{n\to\infty}\frac{m_1}{n_1}=p_1$$

and

$$\lim_{n\to\infty}\frac{m_2}{n_2}-p_2$$

with probability 1, and, by Lemma 5, we see that

$$\lim_{n\to\infty}\frac{n_1}{n}=\lambda^*$$

with probability 1. Then

$$\lim_{n \to \infty} \frac{m_1 + m_2}{n_1 + n_2} = \lim_{n \to \infty} \left\{ \frac{n_1}{n} \left(\frac{m_1}{n_1} - \frac{m_2}{n_2} \right) + \frac{m_2}{n_2} \right\}$$
$$= \lambda^* (p_1 - p_2) + p_2 = p^*$$

with probability 1 by the definition of λ^* . Hence,

$$\lim_{n\to\infty}\tilde{\theta}_n=\theta^*=(p^*,p^*)$$

with probability 1, as to be proved.

Proof of Theorem 1.

$$S_n(\hat{\theta}_n, \tilde{\theta}_n) = \log \frac{\prod_{i=1}^n f(x_i, \hat{\theta}_n, E^{(i)})}{\prod_{i=1}^n f(x_i, \tilde{\theta}_n, E^{(i)})}$$

$$= \log \frac{\left(\frac{m_1}{n_1}\right)^{m_1}}{\left(\frac{m_1+m_2}{n}\right)^{m_1}\left(1-\frac{m_1+m_2}{n}\right)^{n_1-m_1}} \left(\frac{m_2}{n_2}\right)^{m_2}}{\left(\frac{m_1+m_2}{n}\right)^{m_1}\left(1-\frac{m_1+m_2}{n}\right)^{n_1-m_1}} \left(\frac{m_1+m_2}{n}\right)^{m_2} \left(1-\frac{m_1+m_2}{n}\right)^{n_2-m_2}}$$

$$= m_1 \log \frac{\frac{m_1}{m_1+m_2}}{\frac{m_1+m_2}{n}} + (n_1-m_1) \log \frac{1-\frac{m_1}{n_1}}{1-\frac{m_1+m_2}{n}} + m_2 \log \frac{\frac{m_2}{m_2}}{\frac{m_1+m_2}{n}}$$

$$+ (n_2-m_2) \log \frac{1-\frac{m_2}{n_2}}{1-\frac{m_1+m_2}{n}}$$

$$= n_1 \left\{ \frac{m_1}{n_1} \log \frac{\frac{m_1}{m_1+m_2}}{\frac{m_1+m_2}{n}} + \left(1-\frac{m_1}{n_1}\right) \log \frac{1-\frac{m_1}{n_1}}{1-\frac{m_1+m_2}{n}} \right\}$$

$$+ n_2 \left\{ \frac{m_2}{n_2} \log \frac{\frac{m_2}{m_1+m_2}}{\frac{m_1+m_2}{n}} + \left(1-\frac{m_2}{n_2}\right) \log \frac{1-\frac{m_2}{n_2}}{1-\frac{m_1+m_2}{n}} \right\}$$

$$= n_1 I(\hat{\theta}_n, \tilde{\theta}_n, E_1) + n_2 I(\hat{\theta}_n, \tilde{\theta}_n, E_2).$$

Hence

$$\frac{S_n(\hat{\theta}_n, \tilde{\theta}_n)}{\sum_{i=1}^n C^{(i)}} = \frac{n_1 c_1}{n_1 c_1 + n_2 c_2} \frac{I(\hat{\theta}_n, \tilde{\theta}_n, E_1)}{c_1} + \frac{n_2 c_2}{n_1 c_1 + n_2 c_2} \frac{I(\hat{\theta}_n, \tilde{\theta}_n, E_2)}{c_2}$$

Therefore, as $\lim_{n\to\infty} \hat{\theta}_n = \theta$, $\lim_{n\to\infty} \tilde{\theta}_n = \theta^*$ with probability 1, from the Lemma 4 and the Lemma 6, we have

$$\lim_{n\to\infty}\frac{S_n(\hat{\theta}_n,\,\tilde{\theta}_n)}{\sum_{i=1}^n C^{(i)}} = I^*(\theta)$$

with probability 1.

Proof of Theorem 2. Any sequence of experiments $E^{(n)}$ $(n=1, 2, \dots)$ such that $\lim_{n\to\infty} n_1/n = \lambda^*$, satisfy the Lemma 4 and Lemma 6 evidently. Hence

$$\lim_{n\to\infty}\frac{S_n(\hat{\theta}_n,\,\tilde{\theta}_n)}{\sum_{i=1}^n C^{(i)}}=I^*(\theta)$$

with probability 1.

Proof of Theorem 3. It is clear by the hypothesis

$$\lim_{n\to\infty}\min(n_1, n_2) = +\infty$$

that $\lim_{n\to\infty} \hat{\theta}_n = \theta$ with probability 1. And using the equality.

$$\frac{m_1 + m_2}{n} = \frac{n_1}{n} \left(\frac{m_1}{n_1} - \frac{m_2}{n_2} \right) + \frac{m_2}{n_2}$$

we have

$$\lim_{n \to \infty} \frac{m_1 + m_2}{n} = \lambda(p_1 - p_2) + p_2 = p_2$$

with probability 1. Then, we have

$$\lim_{n\to\infty}\tilde{\theta}_n\!=\!\tilde{\theta}\!=\!(p,\,p)$$

with probability 1. Therefore, we see easily that

$$\frac{S_{n}(\hat{\theta}_{n}, \tilde{\theta}_{n})}{\sum_{i=1}^{n} C^{(i)}} = \frac{n_{1}I(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{1}) + n_{2}I(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{2})}{n_{1}c_{1} + n_{2}c_{2}}$$
$$= \frac{\frac{n_{1}}{n}I(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{1}) + \left(1 - \frac{n_{1}}{n}\right)I(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{2})}{\frac{n_{1}}{n}c_{1} + \left(1 - \frac{n_{1}}{n}\right)c_{2}}$$

Hence, we have

$$\lim_{n\to\infty}\frac{S_n(\hat{\theta}_n,\,\tilde{\theta}_n)}{\sum_{i=1}^n C^{(i)}}=\frac{\lambda I(\theta,\,\tilde{\theta},\,E_1)+(1-\lambda)I(\theta,\,\tilde{\theta},\,E_2)}{\lambda c_1+(1-\lambda)c_2}$$

with probability 1, as to be proved.

Proof of Theorem 4. As p was defined as $\lambda(p_1-p_2)+p_2$ in (3.4), we have

$$\lambda = rac{p-p_2}{p_1-p_2}.$$

Hence, by simple calculation, we have

$$\frac{d}{dp} \left\{ \frac{\lambda I(\theta, \tilde{\theta}, E_1) + (1-\lambda)I(\theta, \tilde{\theta}, E_2)}{\lambda c_1 + (1-\lambda)c_2} \right\}$$
$$= \frac{c_1 \cdot c_2}{\{\lambda c_1 + (1-\lambda)c_2\}^2} \frac{1}{p_1 - p_2} \left\{ \frac{I(\theta, \tilde{\theta}, E_1)}{c_1} - \frac{I(\theta, \tilde{\theta}, E_2)}{c_2} \right\}$$

Therefore the derivative is equal to zero if and only if $\tilde{\theta} = \theta^*$. Thus, the function of λ

$$\frac{\lambda I(\theta, \tilde{\theta}, E_1) + (1-\lambda)I(\theta, \tilde{\theta}, E_2)}{\lambda c_1 + (1-\lambda)c_2}$$

has only one maximum value if and only if $\lambda = \lambda^*$, because $\tilde{\theta} = \theta^*$ is equivalent to $\lambda = \lambda^*$.

ACKNOWLEDGEMENT. The author expresses hearty thanks to Professor K. Kunisawa for useful suggestions.

References

- [1] CHERNOFF, H., Sequential design of experiments. Ann. Math. Stat. 30 (1959), 755-770.
- [2] HALMOS, P. R., Measure theory. (1959), Van Nostrand.
- [3] KULLBACK, S., Information theory and statistics. (1959), Wiley.
- [4] KUNISAWA, K., Introduction to information theory for operations research. 4th Ed. (1963), J.U.S.E. (In Japanese)

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.