# ASYMPTOTIC BEHAVIOR OF SEQUENTIAL DESIGN WITH COSTS OF EXPERIMENTS 

By Kazutomo Kawamura

## 1. Introduction.

We shall consider the two kinds of experiments $E_{1}$ and $E_{2}$ which have two events "Success $S$ " or "Feilure $F$ ". The probabilities of success or failure by the experiments $E_{1}$ and $E_{2}$ are given by

$$
P\left\{S \mid E_{1}\right\}=p_{1}, \quad P\left\{F \mid E_{1}\right\}=1-p_{1}
$$

and

$$
P\left\{S \mid E_{2}\right\}=p_{2}, \quad P\left\{F \mid E_{2}\right\}=1-p_{2}
$$

respectively, where we assume that $p_{1} \neq p_{2}$.
Moreover, following to Kunisawa [4], we introduce the notion of costs of experiments, i.e., if we execute the experiment $E_{1}$, it costs $c_{1}\left(c_{1}>0\right)$, and if $E_{2}$, it $\operatorname{costs} c_{2}\left(c_{2}>0\right)$.

The object of this paper is to discriminate the hypotheses $p_{1}>p_{2}$ or $p_{1}<p_{2}$. What a procedure, with which we repeat the experiments, is optimal, in order to maximize the information of discrimination per unit cost?

According to Chernoff [1] a procedure is given, which maximizes the information, when $c_{1}=c_{2}$.

In this paper we shall show the asymptotic behavior of the procedure which maximizes the information of discrimination per unit cost.

## 2. Notations and definitions.

Given $\Theta$ the two dimensional closed rectangular set $[0,1] \otimes[0,1]$, i.e., the set of elements ( $p_{1}, p_{2}$ ) satisfying $0 \leqq p_{1} \leqq 1$ and $0 \leqq p_{2} \leqq 1$. And put

$$
\begin{aligned}
& H_{1}=\left\{\left(p_{1}, p_{2}\right): p_{1}>p_{2},\left(p_{1}, p_{2}\right) \in \Theta\right\}, \\
& H_{2}=\left\{\left(p_{1}, p_{2}\right): p_{1}<p_{2},\left(p_{1}, p_{2}\right) \in \Theta\right\}
\end{aligned}
$$

and

$$
B_{12}=\left\{\left(p_{1}, p_{2}\right): p_{1}=p_{2},\left(p_{1}, p_{2}\right) \in \Theta\right\}
$$

Then $\Theta$ is clearly the sum of sets $H_{1}, H_{2}$ and $B_{12}$. Next let $E^{(i)}$ be $i$-th experiment, and define $x_{\imath}$ as follows:

Received April 23, 1964.

$$
\begin{array}{rlrl}
x_{i} & =1 & \text { if } S \text { occurs under } E^{(i)}, \\
& =0 & & \text { if } F \text { occurs under } E^{(i)} .
\end{array}
$$

In the following line we shall assume that in $E^{(i)} S$ or $F$ occurs independently of the selection of $E^{(1)}, \cdots, E^{(i)}(i=1,2, \cdots)$. Then we see that $x_{1}, x_{2}, \cdots, x_{n}, \cdots$ are independent random variables. And let $n_{1}$ be the number of selections of experiment $E_{1}$ in the partial $n$ experiments $E^{(1)}, \cdots, E^{(n)}, m_{1}$ the number of occurrences of $S$ in these $n_{1}$ observations by $E_{1}$, and similarly $n_{2}$ the number of selections of $E_{2}$ in the partial $n$ experiments, and $m_{2}$ the number of occurrences of $S$ in these $n_{2}$ observations by $E_{2}$. Then if $\theta=\left(p_{1}, p_{2}\right)$ is an element of $\theta$, the probability density function of $x_{\imath}$ at $E^{(i)} f\left(x_{i}, \theta, E^{(i)}\right)$ is known to be following form:

$$
\begin{aligned}
f\left(x_{i}, \theta, E^{(i)}\right) & =p_{1}^{x_{i}}\left(1-p_{1}\right)^{1-x_{i}} & \text { if } & E^{(i)}=E_{1}, \\
& =p_{2}^{x_{i}}\left(1-p_{2}\right)^{1-x_{i}} & \text { if } & E^{(2)}=E_{2} .
\end{aligned}
$$

Then the likelihood function of $\theta$ over the partial $n$ experiments is given by $\Pi_{i=1}^{n} f\left(x_{\imath}, \theta, E^{(i)}\right)$. This is a function of $n$ observations $x_{1}, \cdots, x_{n}, n$ experiments $E^{(1)}$, $\cdots, E^{(n)}$ and $\theta$. The maximum likelihood estimate $\hat{\theta}_{n}$ of $\theta$ over the partial $n$ experiments is not only a function of $n$ observations $x_{1}, \cdots, x_{n}$ but also a function of $n$ experiments $E^{(1)}, \cdots, E^{(n)}$. Next we shall denote by $\tilde{\theta}_{n}$ the maximum likelihood estimate of $\theta$ on the closed domain $a\left(\hat{\theta}_{n}\right)$ over the $n$ experiments $E^{(1)}, \cdots, E^{(n)}$, where $a\left(\hat{\theta}_{n}\right)$ is defined as follows:

$$
\begin{aligned}
& \text { if } \hat{\theta}_{n} \in H_{\imath}, \\
& \text { then } \quad a\left(\hat{\theta}_{n}\right)=\Theta-H_{\imath} \quad(i=1,2) \\
& \text { and if } \hat{\theta}_{n} \in B_{12}, \\
& \text { then } \quad a\left(\hat{\theta}_{n}\right)=\Theta .
\end{aligned}
$$

Definition of discrimination. As a measure of discrimination between two probability density functions $f_{1}$ and $f_{2}$, Kullback [3] introduced following

$$
I\left(f_{1}, f_{2}\right)=\int f_{1} \log \frac{f_{1}}{f_{2}} d \mu
$$

In our case, we can use this measure to express the discrimination between $f(x, \theta, E)$ and $f(x, \varphi, E)$, i.e;

$$
I\left(\left(p_{1}, p_{2}\right),\left(p_{1}^{*}, p_{2}^{*}\right), E_{1}\right)=p_{1} \log \frac{p_{1}}{p_{1}{ }^{*}}+\left(1-p_{1}\right) \log \frac{1-p_{1}}{1-p_{1}{ }^{*}}
$$

and

$$
I\left(\left(p_{1}, p_{2}\right),\left(p_{1}^{*}, p_{2}^{*}\right), E_{2}\right)=p_{2} \log \frac{p_{2}}{p_{2}^{*}}+\left(1-p_{2}\right) \log \frac{1-p_{2}}{1-p_{2}{ }^{*}}
$$

where $\theta=\left(p_{1}, p_{2}\right)$ and $\varphi=\left(p_{1}{ }^{*}, p_{2}{ }^{*}\right)$.
Definition of procedure $\mathscr{L}_{2}$. We shall call procedure $\mathscr{G}_{2}$, if the following conditions are satisfied: $\quad E^{(1)}=E_{1}, E^{(2)}=E_{2}$ and for $n \geqq 2$ succesively

$$
\begin{align*}
E^{(n+1)} & =E_{1} & \text { if } & \frac{I\left(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{1}\right)}{c_{1}}>\frac{I\left(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{2}\right)}{c_{2}}, \\
& =E_{2} & \text { if } & \frac{I\left(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{1}\right)}{c_{1}}<\frac{I\left(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{2}\right)}{c_{2}},  \tag{2.1}\\
& =E^{(n)} & \text { if } & \frac{I\left(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{1}\right)}{c_{1}}=\frac{I\left(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{2}\right)}{c_{2}} .
\end{align*}
$$

## 3. Theorems and the proofs.

At first, put

$$
D(\theta)=\left\{\left(p_{1}^{*}, p_{2}^{*}\right):\left(p_{1}^{*} \geqq p_{1} \text { and } p_{2}^{*} \leqq p_{2}\right) \text { or }\left(p_{1}^{*} \leqq p_{1} \text { and } p_{2}^{*} \geqq p_{2}\right)\right\}
$$

where $\theta=\left(p_{1}, p_{2}\right)$,

$$
\begin{equation*}
0_{n}^{*}=\left\{\varphi: \frac{I\left(\hat{\theta}_{n}, \varphi, E_{1}\right)}{c_{1}}=\frac{I\left(\hat{\theta}_{n}, \varphi, E_{2}\right)}{c_{2}}, \varphi \in D\left(\hat{\theta}_{n}\right)\right\} \cap B_{12}, \tag{3.1}
\end{equation*}
$$

$$
\theta^{*}=\left\{\varphi: \frac{I\left(\theta, \varphi, E_{1}\right)}{c_{1}}=\frac{I\left(\theta, \varphi, E_{2}\right)}{c_{2}}, \varphi \in D(\theta)\right\} \cap B_{12}{ }^{1)}
$$

and $\theta_{n}{ }^{*}=\left(p_{n}{ }^{*}, p_{n}{ }^{*}\right), \theta^{*}=\left(p^{*}, p^{*}\right)$. Using these $p_{n}{ }^{*}, p^{*}$, we define

$$
\begin{equation*}
\lambda_{n}{ }^{*}=\frac{p_{n}^{*}-\frac{m_{2}}{n_{2}}}{\frac{m_{1}}{n_{1}}-\frac{m_{2}}{n_{2}}} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda^{*}=\frac{p^{*}-p_{2}}{p_{1}-p_{2}} . \tag{3.3}
\end{equation*}
$$

Moreover for fixed $\lambda \lambda \in[0,1]$, let $\tilde{\theta}$ be $\tilde{\theta}=(p, p)$, where

$$
\begin{equation*}
p=\lambda\left(p_{1}-p_{2}\right)+p_{2} . \tag{3.4}
\end{equation*}
$$

Then we can list the following Theorems.
Theorem 1. Our procedure $\mathscr{L}$ satisfies the next relation:

$$
\lim _{n \rightarrow \infty} \frac{S_{n}\left(\hat{\theta}_{n}, \tilde{\theta}_{n}\right)}{\sum_{z=1}^{n} C^{(i)}}=I^{*}(\theta)
$$

with probability 1, where

1) It is clear that $\theta_{n}^{*}, \theta^{*}$ are uniquely determined.

$$
\begin{gathered}
I^{*}(\theta)=\frac{I\left(\theta, \theta^{*}, E_{1}\right)}{c_{1}}=\frac{I\left(\theta, \theta^{*}, E_{2}\right)}{c_{2}} \quad\left(\theta=\left(p_{1}, p_{2}\right)\right), \\
S_{n}\left(\hat{\theta}_{n}, \tilde{\theta}_{n}\right)=\log \frac{\prod_{i=1}^{n} f\left(x_{i}, \hat{\theta}_{n}, E^{(i)}\right)}{\prod_{\imath=1}^{n} f\left(x_{i}, \tilde{\theta}_{n}, E^{(2)}\right)}
\end{gathered}
$$

and $C^{(i)}$ is the cost of $E^{(i)}$.
TheOrem 2. Any sequence of experiments $E^{(n)}(n=1,2, \cdots)$ such that $\lim _{n \rightarrow \infty}\left(n_{1} / n\right)$ $=\lambda^{*}$ satisfies also the same result as Theorem 1, that is;

$$
\lim _{n \rightarrow \infty} \frac{S_{n}\left(\hat{\theta}_{n}, \tilde{\theta}_{n}\right)}{\sum_{\imath=1}^{n} C^{(i)}}=I^{*}(\theta)
$$

with probability 1.
ThEOREM 3. Given any sequence of experiments $E^{(n)}(n=1,2, \cdots)$ such that $\lim _{n \rightarrow \infty}\left(n_{1} / n\right)=\lambda(\lambda \in[0,1])$ and if $\lim _{n \rightarrow \infty} \min \left(n_{1}, n_{2}\right)=+\infty$, the next limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{S_{n}\left(\hat{\theta}_{n}, \tilde{\theta}_{n}\right)}{\sum_{\imath=1}^{n} C^{(i)}}=\frac{\lambda I\left(\theta, \tilde{\theta}, E_{1}\right)+(1-\lambda) I\left(\theta, \tilde{\theta}, E_{2}\right)}{\lambda c_{1}+(1-\tilde{\lambda}) c_{2}} \tag{3.5}
\end{equation*}
$$

exists with probability 1.
Theorfm 4. The limit function of $\lambda(3.5)(\lambda \in[0,1])$ has only one maximum value if and only if $\lambda=\lambda^{*}$.

In order to prove these theorems we need the following Lemmas.
Lemma 1. If we execute any procedure, we have always

$$
\hat{\theta}_{n}=\left(\frac{m_{1}}{n_{1}}, \frac{m_{2}}{n_{2}}\right)
$$

and

$$
\tilde{\theta}_{n}=\left(\frac{m_{1}+m_{2}}{n_{1}+n_{2}}, \frac{m_{1}+m_{2}}{n_{1}+n_{2}}\right)
$$

Proof. As the function $p_{1}^{m_{1}}\left(1-p_{1}\right)^{n_{1}-m_{1}}$ has the maximum value at $p_{1}=m_{1} / n_{1}$ and $p_{2}{ }^{m_{2}}\left(1-p_{2}\right)^{n_{2}-m_{2}}$ at $m_{2} / n_{2}$, the likelihood function

$$
p_{1}^{m_{1}}\left(1-p_{1}\right)^{n_{1}-m_{1}} p_{2}^{m_{2}}\left(1-p_{2}\right)^{n_{2}-m_{2}}
$$

has the maximum value on $\Theta$ at $\hat{\theta}_{n}=\left(m_{1} / n_{1}, m_{2} / n_{2}\right)$. This $\hat{\theta}_{n}$ is the maximum likelihood estimate over $\Theta$ of $p_{1}^{m_{1}}\left(1-p_{1}\right)^{n_{1}-m_{1}} p_{2}^{m_{2}}\left(1-p_{2}\right)^{n_{1}-m_{2}}$.

Next we suppose that

$$
\hat{\theta}_{n} \in H_{1} \quad \text { and } \quad \tilde{\theta}_{n} \in H_{2} .
$$

Then as the line $\overline{\hat{\theta}_{n} \tilde{\theta}_{n}}$ connecting $\hat{\theta}_{n}$ and $\tilde{\theta}_{n}$ crosses $B_{12}$, we have a crossing point

0 different from $\tilde{\theta}_{n} \in H_{2}$. Since $p_{1}^{m_{1}}\left(1-p_{1}\right)^{n_{1}-m_{1}}$ is monotonically increasing in $\left(0, m_{1} / n_{1}\right)$ and monotonically decreasing in ( $m_{1} / n_{1}, 1$ ), and also $p_{2}{ }^{m_{2}}\left(1-p_{2}\right)^{n_{2}-m_{3}}$ is monotonically increasing in ( $0, m_{2} / n_{2}$ ) and monotonically decreasing in ( $m_{2} / n_{2}, 1$ ), it is clear that

$$
\prod_{\imath=1}^{n} f\left(x_{i}, \theta, E^{(i)}\right)>\prod_{\imath=1}^{n} f\left(x_{i}, \tilde{\theta}_{n}, E^{(i)}\right)
$$

As $\theta \in a\left(\hat{\theta}_{n}\right)=H_{2} \cup B_{12}$, the above inequality is contradiction to the definition of $\tilde{\theta}_{n}$. Thus we can conclude that if $\hat{\theta}_{n} \in H_{1}$, then $\tilde{\theta}_{n} \in B_{12}$.

In the same manner we can show that if $\hat{\theta}_{n} \in H_{2}$, then $\tilde{\theta}_{n} \in B_{12}$ and if $\hat{\theta}_{n} \in B_{12}$ then $\tilde{\theta}_{n} \in B_{12}$ and $\hat{\theta}_{n}=\tilde{\theta}_{n}$. Hence we see $\tilde{\theta}_{n} \in B_{12}$ for all cases. Therefore, to find $\tilde{\theta}_{n}$, we search only on $B_{12}$ so that the likelihood function on $B_{12}$ becomes

$$
p^{m_{1}}(1-p)^{n_{1}-m_{1}} p^{m_{2}}(1-p)^{n_{2}-m_{2}}=p^{m_{1}+m_{2}}(1-p)^{n_{1}+n_{2}-\left(m_{1}+m_{2}\right)} .
$$

Then the function has only one maximum value if and only if

$$
\theta=\left(\frac{m_{1}+m_{2}}{n_{1}+n_{2}}, \frac{m_{1}+m_{2}}{n_{1}+n_{2}}\right) .
$$

Hence

$$
\tilde{\theta}_{n}=\left(\frac{m_{1}+m_{2}}{n_{1}+n_{2}}, \frac{m_{1}+m_{2}}{n_{1}+n_{2}}\right) .
$$

Lemma 2. Given the sequence of experiments under the procedure $\mathscr{L} E^{(1)}, E^{(2)}$, $\cdots, E^{(n)}, \cdots \quad$ Then the probability that

$$
E^{(n)}=E_{1}
$$

for all $n \geqq k$ or

$$
E^{(n)}=E_{2}
$$

for all $n \geqq k$ is zero, where $k$ is any fixed positive integer.
Proof. Suppose the probability

$$
E^{(n)}=E_{1}
$$

for all $n \geqq k$ is positive, where $k$ is any fixed positive integer. Then we have

$$
E^{(n)}=E_{1}
$$

and

$$
\begin{equation*}
\frac{I\left(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{1}\right)}{c_{1}} \geqq \frac{I\left(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{2}\right)}{c_{2}} \tag{3.6}
\end{equation*}
$$

for all $n(n \geqq k)$, with positive probability. Hence by the law of large numbers, we have

$$
\lim _{n \rightarrow \infty} \frac{m_{1}}{n_{1}}=p_{1}
$$

with positive probability. On the other hand, $n_{2}$ and $m_{2}$ are invariant for all experiments $E^{(n)}(n \geqq k)$ with positive probability. Hence $m_{2} / n_{2}$ is fixed at the value $\left[m_{2} / n_{2}\right]_{n=k}$ which is determined by $E^{(1)}, E^{(2)}, \cdots, E^{(k)}$. Hence we see

$$
\lim _{n \rightarrow \infty} \frac{m_{2}}{n_{2}}=\left[\frac{m_{2}}{n_{2}}\right]_{n=k}
$$

with positive probability. Therefore we have

$$
\lim _{n \rightarrow \infty} \hat{\theta}_{n}=\lim _{n \rightarrow \infty}\left(\frac{m_{1}}{n_{1}},\left[\frac{m_{2}}{n_{2}}\right]_{n=k}\right)=\left(p_{1},\left[\frac{m_{2}}{n_{2}}\right]_{n=k}\right)
$$

and

$$
\lim _{n \rightarrow \infty} \tilde{\theta}_{n}=\lim _{n \rightarrow \infty}\left(\frac{m_{1}+m_{2}}{n_{1}+n_{2}}, \frac{m_{1}+m_{2}}{n_{1}+n_{2}}\right)=\left(p_{1}, p_{1}\right)
$$

with positive probability. Using these facts, we have

$$
\lim _{n \rightarrow \infty} \frac{I\left(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{1}\right)}{c_{1}}=-\frac{p_{1} \log \frac{p_{1}}{p_{1}}+\left(1-p_{1}\right) \log \frac{1-p_{1}}{1-p_{1}}}{c_{1}}=0
$$

and

$$
\lim _{n \rightarrow \infty} \frac{I\left(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{2}\right)}{c_{2}}=\frac{\left[\frac{m_{2}}{n_{2}}\right] \log \frac{\left[\frac{m_{2}}{n_{2}}\right]}{p_{1}}+\left(1-\left[\frac{m_{2}}{n_{2}}\right]\right) \log \frac{1-\left[\frac{m_{2}}{n_{2}}\right]}{1-\mathrm{p}_{1}} \geqq 0}{c_{2}} \geqq 0
$$

with positive probability, where $\left[m_{2} / n_{2}\right]$ means $\left[m_{2} / n_{2}\right]_{n=k}$. Therefore

$$
0=\lim _{n \rightarrow \infty} \frac{I\left(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{1}\right)}{c_{1}} \leq \lim _{n \rightarrow \infty} \frac{I\left(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{2}\right)}{c_{2}}
$$

with positive probability. Hence, by (3. 6),

$$
0=\lim _{n \rightarrow \infty} \frac{I\left(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{1}\right)}{c_{1}}=\lim _{n \rightarrow \infty} \frac{I\left(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{2}\right)}{c_{2}}
$$

with positive probability. It follows clearly that $p_{1}=\left[m_{2} / n_{2}\right]_{n=k}$ and hence $m_{2} / n_{2}=p_{1}$ for all $n(n \geqq k)$ with positive probability. Hence, by (3.6)

$$
\begin{equation*}
\frac{1}{c_{1}}\left\{\frac{m_{1}}{n_{1}} \log \frac{\frac{m_{1}}{n_{1}}}{\frac{m_{1}+m_{2}}{n_{1}+n_{2}}}+\left(1-\frac{m_{1}}{n_{1}}\right) \log \frac{1-\frac{m_{1}}{n_{1}}}{1-\frac{m_{1}+m_{2}}{n_{1}+n_{2}}}\right\} \tag{3.7}
\end{equation*}
$$

$$
\geqq \frac{1}{c_{2}}\left\{p_{1} \log \frac{p_{1}}{\frac{m_{1}+m_{2}}{n_{1}+n_{2}}}+\left(1-p_{1}\right) \log \frac{1-p_{1}}{1-\frac{m_{1}+m_{2}}{n_{1}+n_{2}}}\right\}
$$

for all $n(n \geqq k)$ with positive probability. Here we consider two functions:

$$
f(x)=\frac{1}{c_{1}}\left\{x \log \frac{x}{\frac{m_{1}+m_{2}}{n_{1}+n_{2}}}+(1-x) \log \frac{1-x}{1-\frac{m_{1}+m_{2}}{n_{1}+n_{2}}}\right\}
$$

and

$$
g(y)=\frac{1}{c_{2}}\left\{y \log \frac{y}{\frac{m_{1}+m_{2}}{n_{1}+n_{2}}}+(1-y) \log \frac{1-y}{1-\frac{m_{1}+m_{2}}{n_{1}+n_{2}}}\right\}
$$

and we use Taylor's expansion for $f(x)$ and $g(y)$ around $\left(m_{1}+m_{2}\right) /\left(n_{1}+n_{2}\right)$ as follows.

$$
\begin{aligned}
& f(x)=\frac{1}{2}\left(x-\frac{m_{1}+m_{2}}{n_{1}+n_{2}}\right)^{2}\left(\frac{1}{\xi_{1}}+\frac{1}{1-\xi_{1}}\right), \\
& g(y)=\frac{1}{2}\left(y-\frac{m_{1}+m_{2}}{n_{1}+n_{2}}\right)^{2}\left(\frac{1}{\xi_{2}}+\frac{1}{1-\xi_{2}}\right),
\end{aligned}
$$

where

$$
\xi_{1}: \quad x<\xi_{1}<\frac{m_{1}+m_{2}}{n_{1}+n_{2}} \quad \text { or } \quad \frac{m_{1}+m_{2}}{n_{1}+n_{2}}<\xi_{1}<x,
$$

and

$$
\xi_{2}: \quad y<\xi_{2}<\frac{m_{1}+m_{2}}{n_{1}+n_{2}} \quad \text { or } \quad \frac{m_{1}+m_{2}}{n_{1}+n_{2}}<\xi_{2}<y .
$$

Then the inequality (3.7) becomc as follows:

$$
\begin{equation*}
\left.\frac{\left(\frac{m_{1}}{n_{1}}-\frac{m_{1}+m_{2}}{n_{1}+n_{2}}\right)^{2}\left(\frac{1}{\xi_{1}}+\frac{1}{1-\xi_{1}}\right)}{\left(p_{1}-\frac{m_{1}+m_{2}}{n_{1}+n_{2}}\right)^{2}} \geqq \frac{c_{1}}{\xi_{2}}>\frac{1}{1-\xi_{2}}\right) \quad>0 \tag{3.8}
\end{equation*}
$$

for all $n(n \geqq k)$, with positive probability. And if $n \rightarrow \infty$ then $\xi_{1} \rightarrow p_{1}, \xi_{2} \rightarrow p_{1}$ and

$$
\frac{\left(\frac{m_{1}}{n_{1}}-\frac{m_{1}+m_{2}}{n_{1}+n_{2}}\right)^{2}}{\left(p_{1}-\frac{m_{1}+m_{2}}{n_{1}+n_{2}}\right)^{2}}=\frac{\left(\frac{m_{1}}{n_{1}}-p_{1}\right)^{2}\left(\frac{n_{2}}{n}\right)^{2}}{\left(\frac{m_{1}}{n_{1}}-p_{1}\right)^{2}\left(\frac{n_{1}}{n}\right)^{2}}=\left(\frac{n_{2}}{n_{1}}\right)^{2} \rightarrow 0
$$

with positive probability.
Hence, this contradicts (3.8). Thus we proved the probability that

$$
E^{(n)}=E_{1}
$$

exists for all $n(n \geqq k)$ is zero, where $k$ is any fixed positive integer.
In the same manner, we can $\operatorname{prov} \varphi$ that the probability

$$
E^{(n)}=E_{2}
$$

for all $n(n \geqq m)$ is zero, where $m$ is any fixed positive integer.
Lemma 3. Given the sequence of experiments under the procedure $\mathscr{L}$

$$
E^{(1)}, E^{(2)}, \cdots, E^{(n)}, \cdots
$$

then we have

$$
P\left\{\min \left(n_{1}, n_{2}\right) \rightarrow \infty \quad \text { as } n \rightarrow \infty\right\}=1 .
$$

Proof. Suppose that exists a constant $k$ such that as $n \rightarrow \infty$

$$
\min \left(n_{1}, n_{2}\right) \leqq k
$$

with positive probability. Then we have

$$
E^{(n)}=E_{1}
$$

for all $n(n \geqq m)$ or

$$
E^{(n)}=E_{2}
$$

for all $n(n \geqq m)$ with positive probability, where $m$ is a fixed positive integer. But by Lemma 2 we know that these facts do not exist.

Lemma 4. We have

$$
\lim _{n \rightarrow \infty} \hat{\boldsymbol{\theta}}_{n}=\left(p_{1}, p_{2}\right)
$$

with probability 1.
Proof, By Lemma 3, we know that if $n \rightarrow \infty$ then $n_{1} \rightarrow \infty$ and $n_{2} \rightarrow \infty$ with probability 1. Hence, using the law of large numbers,

$$
\left.\lim _{n \rightarrow \infty} \frac{m_{1}}{n_{1}}=p_{1} \text { and } \lim _{n \rightarrow \infty} \frac{m_{2}}{n_{2}}=p_{2}, 2\right)
$$

with probability 1 . Therefore

$$
\lim _{n \rightarrow \infty} \hat{\theta}_{n}=\left(p_{1}, p_{2}\right)
$$

with probability 1.
Lemma 5. We have

$$
\lim _{n \rightarrow \infty} \frac{n_{1}}{n}=\lambda^{*}
$$

[^0]with probability 1, where $\lambda^{*}$ is defined by (3.3).
Proof. Evidently, we have
$$
\lim _{n \rightarrow \infty} \theta_{n}^{*}=\theta^{*}
$$
with probability 1 , by Lemma 4 . Hence by the definition of $\lambda_{n}{ }^{*}$
\[

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \lambda_{n} *=\lambda^{*} \tag{3.9}
\end{equation*}
$$

\]

with probability 1. It is easily verified that the procedure $\mathscr{L}$ is equivalent to the following conditions:

$$
E^{(1)}=E_{1}, \quad E^{(2)}=E_{2}
$$

and for $n \geqq 2$

$$
\begin{align*}
E^{(n+1)} & =E_{1} & & \text { if } \frac{n_{1}}{n}<\lambda_{n}^{*}, \\
& =E_{2} & & \text { if } \frac{n_{1}}{n}>\lambda_{n}^{*}  \tag{3.10}\\
& =E^{(n)} & & \text { if } \frac{n_{1}}{n}=\lambda_{n} *
\end{align*}
$$

respectively. Using this property of the procedure $\mathscr{A}$, we shall show

$$
\lim _{n \rightarrow \infty} \frac{n_{1}}{n}=\lambda^{*}
$$

with probability 1. For any positive number $\varepsilon$, by (3.9), there exists some integer $n_{0}$ such that

$$
\left|\lambda_{n} *-\lambda^{*}\right|<\frac{\varepsilon}{2}
$$

for all $n\left(n \geqq n_{0}\right)$ with probability 1 .
Now we consider the following two cases:

$$
\text { (i) }\left|\left[\frac{n_{1}}{n}\right]_{n=n_{0}}-\lambda^{*}\right| \geqq \frac{\varepsilon}{2}
$$

with probability 1 and

$$
\text { (ii) }\left|\left[\frac{n_{1}}{n}\right]_{n=n_{0}}=\lambda^{*}\right|<\frac{\varepsilon}{2}
$$

with probability 1 , where $\left[n_{1} / n\right]_{n=n_{0}}$ is the relative frequency of selection of $E_{1}$ from $E^{(1)}$ to $E^{\left(n_{0}\right)}$.

If (i), by the property (3.10) of $\mathscr{A}$, there exists $j_{0}\left(j_{0} \geqq n_{0}\right)$

$$
\begin{equation*}
\left|\left[\frac{n_{1}}{n}\right]_{n=\jmath 0}-\lambda^{*}\right|<\frac{\varepsilon}{2} \tag{3.11}
\end{equation*}
$$

with probability 1.
If (ii), we put $j_{0}=n_{0}$ and we have (3.11) with probability 1 . Hence, we can find the first integer $j_{0}\left(j_{0} \geqq n_{0}\right)$ satisfying (3.11). Next we suppose that there exists an integer $k\left(k \geqq j_{0}\right)$ such that

$$
\left|\left[\frac{n_{1}}{n}\right]_{n=k-1}-\lambda^{*}\right|<\frac{\varepsilon}{2}
$$

and

$$
\begin{equation*}
\left|\left[\frac{n_{1}}{n}\right]_{n=k}-\lambda^{*}\right| \geqq \frac{\varepsilon}{2} \tag{3.12}
\end{equation*}
$$

with probability 1 . Then by the procedure $\mathscr{A}$, we sec

$$
\left|\left[\frac{n_{1}}{n}\right]_{n=k}-\lambda^{*}\right|>\left|\left[\frac{n_{1}}{n}\right]_{n=k+1}-\lambda^{*}\right|
$$

with probability 1 . Since generally, the fact

$$
\left|\left[\frac{n_{1}}{n}\right]_{n=k}-\left[\frac{n_{1}}{n}\right]_{n=k-1}\right|<\frac{2}{k}
$$

with probability 1 is satisfied for all $k$, we see

$$
\begin{gathered}
{\left.\left[\frac{n_{1}}{n}\right]_{n=k}-\lambda^{*} \right\rvert\,} \\
\leqq\left[\frac{n_{1}}{n}\right]_{n=k}-\left[\frac{n_{1}}{n}\right]_{n=k-1}\left|+\left|\left[\frac{n_{1}}{n}\right]_{n=k-1}-\lambda^{*}\right|<\frac{2}{k}+\frac{\varepsilon}{2}\right.
\end{gathered}
$$

with probability 1 . Therefore if we have (3.12) with probability 1 , we have

$$
\left|\left[\frac{n_{1}}{n}\right]_{n=k}-\lambda^{*}\right|<\frac{2}{k}+\frac{\varepsilon}{2} \leqq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

with probability 1 for any $k\left(k \geqq j_{0}\right)$ such as

$$
\frac{2}{k} \leqq \frac{\varepsilon}{2},
$$

and if there does not exist $k\left(k \geqq j_{0}\right)$ satisfying (3.12) with probability 1 , we have

$$
\left|\left[\frac{n_{1}}{n}\right]_{n=k}-\lambda^{*}\right|<\frac{\varepsilon}{2}<\varepsilon
$$

with probability 1 for all $k\left(k \geqq j_{0}\right)$. Thus we have

$$
\left|\frac{n_{1}}{n}-\lambda *\right|<\varepsilon
$$

with probability 1 for all $n\left(n \geqq N_{0}\right)$, where

$$
N_{0}=\max \left[\frac{4}{\varepsilon}, j_{0}\right] .
$$

Thus, $\lim _{n \rightarrow \infty}\left(n_{1} / n\right)=\lambda^{*}$ with probability 1 , as to be proved.
Lemma 6. $\lim _{n \rightarrow \infty} \tilde{\theta}_{n}=\theta^{*}$ with prabability 1.
Proof. By simple calculation, we have

$$
\frac{m_{1}+m_{2}}{n_{1}+n_{2}}=\frac{n_{1}}{n}\left(\frac{m_{1}}{n_{1}}-\frac{m_{2}}{n_{2}}\right)+\frac{m_{2}}{n_{2}}
$$

and, from Lemma 4,

$$
\lim _{n \rightarrow \infty} \frac{m_{1}}{n_{1}}=p_{1}
$$

and

$$
\lim _{n \rightarrow \infty} \frac{m_{2}}{n_{2}}-p_{2}
$$

with probability 1 , and, by Lemma 5 , we see that

$$
\lim _{n \rightarrow \infty} \frac{n_{1}}{n}=\lambda^{*}
$$

with probability 1. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{m_{1}+m_{2}}{n_{1}+n_{2}} & =\lim _{n \rightarrow \infty}\left\{\frac{n_{1}}{n}\left(\frac{m_{1}}{n_{1}}-\frac{m_{2}}{n_{2}}\right)+\frac{m_{2}}{n_{2}} \cdot\right\} \\
& =\lambda^{*}\left(p_{1}-p_{2}\right)+p_{2}=p^{*}
\end{aligned}
$$

with probability 1 by the definition of $\lambda^{*}$. Hence,

$$
\lim _{n \rightarrow \infty} \tilde{\theta}_{n}=\theta^{*}=\left(p^{*}, p^{*}\right)
$$

with probability 1 , as to be proved.
Proof of Theorem 1.

$$
\begin{aligned}
= & \log \frac{\left(\frac{m_{1}}{n_{1}}\right)^{m_{1}}\left(1-\frac{m_{1}}{n_{1}}\right)^{n_{1}-m_{1}}\left(\frac{m_{2}}{n_{2}}\right)^{m_{2}}\left(1-\frac{m_{1}}{n_{1}}\right)^{n_{2}-m_{2}}}{\left(\frac{m_{1}+m_{2}}{n}\right)^{m_{1}}\left(1-\frac{m_{1}+m_{2}}{n}\right)^{n_{1}-m_{1}}\left(\frac{m_{1}+m_{2}}{n}\right)^{m_{2}}\left(1-\frac{m_{1}+m_{2}}{n}\right)^{n_{2}-m_{2}}} \\
= & m_{1} \log \frac{\frac{m_{1}}{n_{1}}}{\frac{m_{1}+m_{2}}{n}}+\left(n_{1}-m_{1}\right) \log \frac{1-\frac{m_{1}}{n_{1}}}{1-\frac{m_{1}+m_{2}}{n}}+m_{2} \log \frac{\frac{m_{2}}{n_{2}}}{\frac{m_{1}+m_{2}}{n}} \\
& +\left(n_{2}-m_{2}\right) \log \frac{1-\frac{m_{2}}{n_{2}}}{1-\frac{m_{1}+m_{2}}{n}} \\
= & n_{1}\left\{\frac{m_{1}}{n_{1}} \log \frac{\frac{m_{1}}{n_{1}}}{\frac{m_{1}+m_{2}}{n}}+\left(1-\frac{m_{1}}{n_{1}}\right) \log \frac{1-\frac{m_{1}}{n_{1}}}{1-\frac{m_{1}+m_{2}}{n}}\right\} \\
& +n_{2}\left\{\frac{m_{2}}{n_{2}} \log \frac{\frac{m_{2}}{n_{2}}}{\frac{m_{1}+m_{2}}{n}}+\left(1-\frac{m_{2}}{n_{2}}\right) \log -\frac{1-\frac{m_{2}}{n_{2}}}{1-\frac{m_{1}+m_{2}}{n}}\right\} \\
= & n_{1} I\left(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{1}\right)+n_{2} I\left(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{2}\right) .
\end{aligned}
$$

Hence

$$
\frac{S_{n}\left(\hat{\theta}_{n}, \tilde{\theta}_{n}\right)}{\sum_{\imath=1}^{n} C^{(i)}}=\frac{n_{1} c_{1}}{n_{1} c_{1}+n_{2} c_{2}} \frac{I\left(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{1}\right)}{c_{1}}+\frac{n_{2} c_{2}}{n_{1} c_{1}+n_{2} c_{2}} \frac{I\left(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{2}\right)}{c_{2}}
$$

Therefore, as $\lim _{n \rightarrow \infty} \hat{\theta}_{n}=\theta, \lim _{n \rightarrow \infty} \tilde{\theta}_{n}=\theta^{*}$ with probability 1 , from the Lemma 4 and the Lemma 6, we have

$$
\lim _{n \rightarrow \infty} \frac{S_{n}\left(\hat{\theta}_{n}, \tilde{\theta}_{n}\right)}{\sum_{\imath=1}^{n} C^{(2)}}=I^{*}(\theta)
$$

with probability 1.
Proof of Theorem 2. Any sequence of experiments $E^{(n)}(n=1,2, \cdots)$ such that $\lim _{n \rightarrow \infty} n_{1} / n=\lambda^{*}$, satisfy the Lemma 4 and Lemma 6 evidently. Hence

$$
\lim _{n \rightarrow \infty} \frac{S_{n}\left(\hat{\theta}_{n}, \tilde{\theta}_{n}\right)}{\sum_{\imath=1}^{n} C^{(i)}}=I^{*}(\theta)
$$

with probability 1.
Proof of Theorem 3. It is clear by the hypothesis

$$
\lim _{n \rightarrow \infty} \min \left(n_{1}, n_{2}\right)=+\infty
$$

that $\lim _{n \rightarrow \infty} \hat{\theta}_{n}=\theta$ with probability 1 . And using the equality.

$$
\frac{m_{1}+m_{2}}{n}=\frac{n_{1}}{n}\left(\frac{m_{1}}{n_{1}}-\frac{m_{2}}{n_{2}}\right)+\frac{m_{2}}{n_{2}}
$$

we have

$$
\lim _{n \rightarrow \infty} \frac{m_{1}+m_{2}}{n}=\lambda\left(p_{1}-p_{2}\right)+p_{2}=p
$$

with probability 1 . Then, we have

$$
\lim _{n \rightarrow \infty} \tilde{\theta}_{n}=\tilde{\theta}=(p, p)
$$

with probability 1 . Therefore, we see easily that

$$
\begin{aligned}
\frac{S_{n}\left(\hat{\theta}_{n}, \tilde{\theta}_{n}\right)}{\sum_{2=1}^{n} C^{(i)}}= & \frac{n_{1} I\left(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{1}\right)+n_{2} I\left(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{2}\right)}{n_{1} c_{1}+n_{2} c_{2}} \\
= & \frac{\frac{n_{1}}{n} I\left(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{1}\right)+\left(1-\frac{n_{1}}{n}\right) I\left(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{2}\right)}{\frac{n_{1}}{n} c_{1}+\left(1-\frac{n_{1}}{n}\right) c_{2}}
\end{aligned}
$$

Hence, we have

$$
\lim _{n \rightarrow \infty} \frac{S_{n}\left(\hat{\theta}_{n}, \tilde{\theta}_{n}\right)}{\sum_{n=1}^{n} C^{(2)}}=\frac{\lambda I\left(\theta, \tilde{\theta}, E_{1}\right)+(1-\lambda) I\left(\theta, \tilde{\theta}, E_{2}\right)}{\lambda c_{1}+(1-\lambda) c_{2}}
$$

with probability 1 , as to be proved.
Proof of Theorem 4. As $p$ was defined as $\lambda\left(p_{1}-p_{2}\right)+p_{2}$ in (3.4), we have

$$
\lambda=\frac{p-p_{2}}{p_{1}-p_{2}} .
$$

Hence, by simple calculation, we have

$$
\begin{aligned}
& \frac{d}{d p}\left\{\frac{\lambda I\left(\theta, \tilde{\theta}, E_{1}\right)+(1-\lambda) I\left(\theta, \tilde{\theta}, E_{2}\right)}{\lambda c_{1}+(1-\lambda) c_{2}}\right\} \\
= & \frac{c_{1} \cdot c_{2}}{\left\{\lambda c_{1}+(1-\lambda) c_{2}\right\}^{2}} \frac{1}{p_{1}-p_{2}}\left\{\frac{I\left(\theta, \tilde{\theta}, E_{1}\right)}{c_{1}}-\frac{I\left(\theta, \tilde{\theta}, E_{2}\right)}{c_{2}}\right\}
\end{aligned}
$$

Therefore the derivative is equal to zero if and only if $\tilde{\theta}=\theta^{*}$. Thus, the function of $\lambda$

$$
\frac{\lambda I\left(\theta, \tilde{\theta}, E_{1}\right)+(1-\lambda) I\left(\theta, \tilde{\theta}, E_{2}\right)}{\lambda c_{1}+(1-\lambda) c_{2}}
$$

has only one maximum value if and only if $\lambda=\lambda^{*}$, because $\tilde{\theta}=\theta^{*}$ is equivalent to $\lambda=\lambda^{*}$.

Acknowledgement. The author expresses hearty thanks to Professor K. Kunisawa for useful suggestions.

## References

[1] Chernoff, H., Sequential design of experıments. Ann. Math. Stat. 30 (1959), 755-770.
[2] Halmos, P. R., Measure theory. (1959), Van Nostrand.
[3] Kullback, S., Information theory and statistics. (1959), Wiley.
[4] Kunisawa, K., Introduction to information theory for operations research. 4th Ed. (1963), J.U.S.E. (In Japanese)

Department of Mathematics, Tokyo Institute of Technology.


[^0]:    2) See, for example, Halmos [2].
