A NOTE ON AN ABELIAN COVERING SURFACE, II®
By Hisao Mizumoro

§1. Preliminaries.

1. We begin with a summary on the general properties of an abelian covering
surface which was treated in the previous paper [3]. We should refer the details
to [3].

First let R be a closed Riemann surface of genus ¢. Then there exists a
system of 2¢q cycles ay, ..., @y on R which is called a canonical homology basis of
R (cf. 3 of [3]).

Next let R be an open Riemann surface. Then there exists a system of cycles
ay, ay, ... on R which is called a canonical homology basis of R modulo the ideal
boundary J of R (cf. 3 of [3]) and further there exists a system of cycles 8,,.,,,
Jn>1 being a basis for 9, which is called a canonical homology basis of dividing
cycles, where 9, is the group formed by the homology classes of dividing singular
cycles on R (cf. 4 of [3]). A strong homology basis of the open Riemann surface
R is formed by the combined system of the cycles «, (=1, 2, ...) and the cycles
Bjyggy Jn>1 (cf. the lemma 3 of [3]).

Let R be an arbitrary Riemann surface and R be an abelian covering surface
of R with its covering transformation group &. It is one of the most important
properties of the abelian covering surface R that a (strong) homology basis of R
forms a system of generators of the group ®. Thus «, (j=1,2, ...) or B4, Fa>1,
can be taken as elements of the group & and the whole of them forms a system
of generators of & (cf. 6 of [3]).2

2. Let R be a Riemann surface admitting a group & of one-to-one conformal
transformations onto itself which is free abelian, finitely generated and properly
discontinuous.® Here we assume that no transformation of & other than the
identity has a fixed point. Let R be a Riemann surface constructed from R by
identifying equivalent points modulo &, denoted by R=R (mod ). Then, £ is an
abelian covering surface of R with its covering transformation group .

Received February 27, 1964.

1) Some results (the theorems 1, 2 and 3, etc.) in the present paper have already been
stated by the author in the Shfigakuin Symposium (cf. [2]).

2) {aj} and {ﬁ“...]n; jn>1} may be a finite set and vacuous, respectively, for the
case of R of finite genus.

3) For any abelian group ®, let € be the torsion group of @, then the quotient group
®/T is a free abelian group without torsion. Thus, in the present problem there is an
essential interest only for the case where © is free abelian.
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We distinguish several cases by the number of elements of basis of & in the
following.

1. The case where & is generated by a basis consisting of only one element T.

In the case I., two subcases can be dlStlngulShed

(H) The case where T-™(p) and T™(p) (;beR m=1, 2, ...) tend to distinct ideal
boundary components 1, and 72 of R, respectively. Then R will be called the hyper-
bolic type.

(P) The case where both sequences of points T”’"(p) and T’”(p) (peR m=1,2,..)
tend to a common ideal boundary component 7, of R. Then B will be called the
parabolic type.

II. The case where & is generated by a basis consisting of two elements Ti, Ts.

1. The case where & is generated by a basis consisting of three or more
elements Ty, ..., Ty (N=3).

In the cases II. and IIL the point sequences { T, "(F) Yoy {T7(P)}soms (PR =1,
2 for the case II.; j=1, ..., N for the case IIl.) always tend to a common ideal
boundary component y, of R (cf. the lemma 6 of [3]).

In the previous paper [3] we concerned ourselves with only the case I. (II). In
the following we shall mainly concern ourselves with the other cases I. (P), II. and
III., which was announced in [3].

3. Let R be a Riemann surface admitting the transformation group ® satisfying
the conditions in 2. In the present paper we shall call a set F consisting of a
finite number of closed domains on R a fundamental region of the covering trans-
Jormation group & if it satisfies the conditions:

(i) For any point pef there exists a point p*eF equivalent with $ modulo
®, ie. for any pef there exists a transformation ye® such that p*=y(f)eF;

(if) Two distinct points p, p* equivalent each other modulo & do not simultaneously
belong to (F)%;* ie. x(p)=p* for any p, p*e(F)° (pxp* and for any y€®. Then,
R=R (mod ®) is constructed from a fundamental region F of & by identifying points
of 0F equivalent modulo &, where the conformal metric induced from F is taken
as one of R. R is uniquely determined by B and & (cf. 6 of [3]).

§2. Function-theoritic properties of abelian covering surfaces with finite
spherical area.

4. Let R be an arbitrary Riemann surface and f be a meromorphic function
on R. We introduce the quantity

_(( _lafac* .
10=\§ o7 ey %

4) The interior of a set £ is denoted by (£)°.
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where {=£+i7 is a local uniformizing parameter at a point on R. It expresses the
spherical area of the covering surface over the Riemann sphere S which is formed
by the image of R under . We denote by Owup the class of Riemann surfaces
R which do not admit any non-constant meromorphic function f with I(f)<oo
(cf. [3]). We say briefly that R has finite spherical arvea if RéOxp.

By the wvalence v, of f we mean the function on the w-sphere S defined hy

()= 2 m(p; 1) weS,
J(p)=w

where p(p; f) is the multiplicity of f at p. Let B(R) be the class of non-constant
meromorphic functions of bounded valence on R. We denote by Oy the class of
Riemann surfaces R with B(R)=4¢.

It is known that if ReOg, O¢ being the class of Riemann surfaces not admitting
Green’s function, two alternative cases can occur; namely

(i) vs(w)=const<co except for a set of w of capacity zero, and

(i) vr(w)=oco except for a set of w of capacity zero.
Thus we can immediately see that, if ReQg, either R belongs to Oy and Opxp
simultaneously or not.

In the present chapter we shall state function-theoritic properties of abelian
covering surfaces of the types I. (P) and II. of 2, which have finite spherical area
and belong to the class Og.

5. In the present section we assume that R is a Riemann surface of the class
O¢ which admits a conformal transformation group &={7} of the type I. (P) of 2.
Then we have the following theorem similar to the theorem 2 of [3].

THEOREM 1. Let B be a Riemann surface of the class Og which admits a
conformal transformation group S={T} of the type 1. (P) of 2. If B has finite
spherical area there exists a function f,€B(R) uniquely determined except additive
constants which satisfies the conditions

oo THY=F(P)+1 for any peR
and
f=9°f Jor each feB(R),

where g is a rational function.

The proof of the present theorem may be performed by the method similar to
the theorem 2 of [3]. We omit it.

The function £, has minimal local degree d, at the ideal boundary component
70 Of R which is a common limit of both sequences of points {7T-"(p)}s-, and
{T™P)}o, (PeR) (cf. 2). Then, maxeys,(w)=d, and thus f, takes all values on S
for dy,-times except for a set of w of capacity zero. Thus we can find a real number
! such that, except for w=o0, any point on Rw=/ is neither an exceptional point
of f, nor the image of a multiple point of f,. Then the curves C on R defined by
N fo=1[ consist of d, simple analytic curves Cy, o édo both ends of each of which
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tend to the ideal boundary component 7, and each of which is univalently mapped
on Rw=I[ by f,. By the theorem 1 the closed set F,, which is not necessarily
connected, of R defined by { PII=Rf(P)=<I+1} gives a fundamental region of the
group . Then R=F (mod @) is constructed from F, by identifying the equivalent
points of C . with 7(C;) for each j=1, ..., do. Thus B must be conformally equivalent
to a covering surface B* on S which is dy-sheeted except for a set of weS of capacity
zero and which is mapped onto itself by the transformation w|w-+1.

It is immediately seen from the theorem 1 that the differential //(p)d( is in-
variant under the group @, where ¢(f) is a locally uniformizing parameter at pef.
Hence, we may regard it as an abelian differential of the first kind on the Riemann
surface R=FR (mod ®).

6. In the present section we assume that B is a Riemann surface of the class
O¢ which admits a conformal transformation group &={T,, 7.} of the type II. of
2. Then we have the following theorem.

THEOREM 2. Let B be a Riemann surface of the class Og which admits a
conformal transformation group S={T., T} of the type Il. of 2. If B has finite
spherical area there exists a function f,eB(R) uniquely determined except additive
constants which satisfies the conditions

Foo TiPY=Ff(D)+1, foo Tl D)=fo(P)+4 for any peR,
and
f=g°fs for each feB(R),

where 2 is a non-real constant uniquely determined by B and ®, and g is a rational
Sfunction.

Proof. Let ®; (j=1, 2) be the covering transformation groups of R generated
by the elements T, of the basis of the group &, respectively. By the lemma 6 of
[3], the groups &; (j=1, 2) are of the type L (P) of 2. Then, by the theorem 1,
there exist the functions f, and fi* of B(R) uniquely determined except additive
constants which satisfy the conditions

(1) foo Ti(B)=£(P)+1,
(2) Fore To()=£*(F)+1 for any peR
and

f=gofy  f=g*ofe*  for each feB(R),

where ¢ and ¢* are rational functions. In particular there exist the rational
functions ¢, and g,* such that

Jo*=goofo, Jo=g0*fo*.
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Then we see that gy=g,*! is a one-to-one map of the w-plane S onto itself with
at least a fixed point w=co and thus it has the form

go(w)= % +¢,
4, ¢ being finite constants (1%0). Thus we have
1
.ﬁ)*:T.ﬁ)_i’c)
and by (2) we have

1 . 1 "
Tfo° To(p)+c= Tfo(jb)JrC"l-l
or
(3) Foo Tos(D)=Li(D)+2 for any peR.

Now we show that 1 cannot be real. First if 2 were a rational number:
A=— (my, ms:  integers),

then by (1) and (3) we would have

(4) Joe Ty ™o T™(B)=fo(P) for any peR.
If we put y=T,"™-T,™ for the simplicity then (4) has the form
(%) foox® =1 for any peR.

Further, by (5) we have that
Soed(D)=1o(D) for any integer j.

Thus there exists an integer m (l=m=d,; dy=max.,bv,(w)) such that
(6) ™(P)=7,
where the integer m depends on the point peR. If there holds (6) for an integer
m, then we have that
(7) v™(Pp)=p for any integer ».
In fact, if there holds y*m(p)=p, then we have

2Py =ymom(P)=1™(P)= P
and

D)= e B) =1 =D,
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where I is the identity map of R onto itself. By (6) and (7) we have that

1 (p)=1I(h) for any fpeR
or
T1d°!m1= Tzdo!ﬂh

which shows that 7y and T. are linearly dependent to each other. This fact con-
tradicts that 7 and T, form a basis of .
Next, if 2 were an irrational number, then by (1) and (3) we would have

foo Timo T™(P)=fo(P)+my+med  for any pek.

Now, for any small positive number ¢, we can take the integers m;, m, such that

0<foo Ti™ o Ty (B)—fo(B) = m1+muA< % for any feR.
0.

Then we have
0< foo Ty ™o Ty ™ () —fo(p) = dol(ms+mad) <e for any pel,

and thus we can verify by the method similar to the previous case that, for an
arbitrary point f,e R the point 7,%¢m.T,2*m(f,) belongs to the neighborhood of
which is the component of {p||f(p)—F(ps)|<e} containing p,. This fact contradicts
that & is properly discontinuous (cf. 2).

The uniqueness of f, and 2 is obvious.

7. If we remove the assumption that R has finite spherical area, we can show,
for an arbitrary real number 2, an example of the Riemann surface B which admits
a conformal transformation group &= {7}, T} of the type II. of 2 and which admits
a function f, satisfying the condition

(8) foTsB=fB)+1,  feoTuP=fup)+2  for any pek.
First, let 2 be a real number not being an integer. Let

Uy r={Rz=j+k4, 0=Jz=1} (J, k=0, =1, ...),
and

+co +oo
ﬁk={|Z|<OO}— U l],k— U l]yk+1 (k=0, il, ...).
J=— Jj=—c0

We connect crosswise F, with Fy,, along all the slits /,,:; (=0, +1, ...) with the
common projection on the z-plane for each % (£=0, +1, ...). Let R be the Riemann
surface constructed from F (k=0, -1, ...) by this process, which covers the z-plane
infinitely often, and let f, be the projection map of R onto the z-planc. Then there
exists the conformal transformation 7, of R onto itself which transforms an
arbitrary point § on F, (k=0, +1, ...) to the point $* on the same Fy such that
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Jo*)=/fu(p)+1,

and also there exists the conformal transformation 7. of R onto itsell which trans-
forms an arbitrary point p on Fj (k=0, 1, ...) to the point p* on F,, such that

Jo*)=Fo(H)+A.

Then the conformal transformation group ©&={7i, T} generated by 77 and 7, is
of the type II. of 2, and f; satisfies the condition (8).

Next, let 2=m be an integer. We construct the Riemann surface F for 1=1/2
by the above procedure, and we take 73, 71732 for the case m=0 and T3, T,*™
for the case m=0 in place of 7Ty, T3, as the basis of the conformal transformation
group @ of B. Then (8) is satisfied.

It follows by the lemma 5 given later that the Riemann surface R has infinite
spherical area.

8. In the theorem 2 the function £, has minimal local degree d, at the ideal
boundary component 7, which is the common limit of the four point sequences
(T (D)2 {TA™P)}somrs { T ™(H)}oy and { Tom(H) )=, for a point pef (cf. the lemma
6 of [3]). Then, maxubv,(w)=d, and thus f, takes all values on the w-plane S for
dy-times except for a set of w of capacity zero and never takes 0 and co. Thus
we can find real constants /; and /; such that, except for w=o0, any point on Jw=1,,
and J(e**w)=I, (a=arg 2) is neither an exceptional point of f; nor the image of a
multiple point of f,. Then, by the theorem 2 the closed set F,, which is not
necessarily connected (e.g. cf. the proof of the lemma 11), of R defined by
(PIL=3fPD)=L+I32], L=J(e**fo(p)=I,+|sin a|} qwes a fundamental region of
the group & and the relatively compact boundary C=0F, consists of a finite number
of simple closed analytic curves c, ..., C. (= =d,). Then R=R (mod ®) is constructed
from F, by identifying the points of C equivalent modulo &. Thus R must be
conformally equivalent with a d,-sheeted covering surface #* on the w-plane S which
is d,-sheeted except for a set of weS of capacity zero and which is mapped onto
itself by the transformations w|w-+1 and w|w+A.

9. Let R be a Riemann surface of the class Os which admits a conformal
transformation group @={7y, T:} of the type II. of 2, and let R=F (mod ).
Then a strong homology basis of R forms a system of generators of the group
® (cf. 1).% Further we assume that R has finite spherical area. Then by the
lemmas 5 and 6 given later, no dividing cycle on R can be a non-trivial generator
of & and only a finite number of elements of a canonical homology basis of R
modulo the ideal boundary & can be non-trivial generators of &. Let ay, a,, ... be
an arbitrary canonical homology basis of R modulo the ideal boundary J defined in

5) In the following, the argument will be done only for the case where R is of
infinite genus because lor the other cases i1t is done similarly and more easily

6) By a non-trivial generator of & we mean an element of & which s not the identity
transformation.
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3 of [3]. Then, a system of a finite number of aj, a, ... forms a system of
generators of & and thus we may assume that there exists a number # such that

gy—1x1 or agx] for each j=1, ..., &,
and
a,=1I for all j=2¢+1,

if necessary, by a suitable change of the subindices of «,, where [ is the identical
transformation of R onto itself. Then, a;, a, ... have the expressions

(9) ajolm"]°T2mz'] (f:]w 2, ...)

for Ty, T, are the basis of &, where m,,,=m,,;=0 for j=2¢+1. On the other hand,
we have the expressions

2 2%
10 Ti= T oy, To= 11 a,"*v,
J=1 7=1

for ey, ..., @, are a system of generators of &. On substituting (9) in (10), we have
the relation

P11 a1
My =+ My, 2 1 0
1 : = .
Moy === Mhzy 2 Niy2e Ny 2c 0 1
Conversely, if the system of integers m,,, ms,, (=1, ..., 2¢) satisfies the condition

(11) for a system of integers #y,,, #s,, (j=1, ..., 2£), then we see immediately that
ay;=T™ 30 Ty™s (j=1, ..., 2c) forms a system of generators of & Thus we can
obtain

Lemma 1. a;=Ty™eTy™ (j=1, ...,26) form a system of generators of & if
and only if the system of integers my, ;, Mms,, (j=1, ..., 2k) satisfies the condition (11)
for a system of integers n., ,;, ns,, (j=1, ..., 2£).

10. We shall continue from the previous section. Let {={(p) be a local
uniformizing parameter at fef. If B has finite spherical area, by the theorem 2
the differential f,’d¢ is invariant under the group & and thus we may regard it
as an abelian differential of the first kind on the Riemann surface R=F (mod ©).
We can easily verify that it has a finite Dirichlet integral over R.

It is known (see the theorem 2 of [9]) that there exists a system of analytic
abelian differentials dw; of the first kind with finite Dirichlet integrals on R such
that

j dw;=0,1r (4, k=1,2,..)),
azk—1

where 0,,x is the Kronecker symbol. We shall put
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j dwj:T])k (], k=1, 2, )
ak

Then, we have

a2 fde= 3 cidw,

where

13 cj=j AL (=1, ..., x).
agj—1

In the case of R of finite genus, (12) can be verified by the well known method.
In the case of R of infinite genus, it can be verified by the use of the following
lemma by Virtanen (cf. the lemma 2 of [9]).

LEMMA 2. Let oy, as, ... be an arbitrary canonical homology basis of ReOg
modulo the ideal boundary 3, and let w=u+iv and w*=u*+iv* be two abelian
integrals of the first kind. If uw or v* has only a finite number of non-zero a;-
Deriods, then there holds the relation

Dr(w, w*)= 3, <s duj dv* —S dv*j du ),
J agj—1 azj azj—1 *2j

where Dr(w, w*) is the Dirichlet integral of w and w* over R.
We put
dw=fyd{=du+idv, dw*= Z‘}l cjdw;=du*+idv*,
]:

where du, dv, du* and dv* are real differentials. Then by the lemma 2 and (13), we
have

DR(w—w*)=i(S (du—du*)j (dv—dv*)—j (dv—dv*)j (du—du*)>:0,
s o

J=1 J i
for
S du:j dv=0  (j=2c+1, ).
aj agq

J

Hence we have dw=dw* and (12).
On calculating the periodicity moduli of (12) along each «, (j=1, 2, ...), we have

S e (=1, ..., ),
=1

j f'de= i c]j dwi= Y, ¢i0; k=
1) . w70 (=t L,

S f'dl= }i ch dw,= i} T (B=1,2,...).
X9 =1 a J=1

2k
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On the other hand, by the theorem 2 and (9), we have
M, o Mz, 1A (k=1, ..., 2¢),
(15) | =
af

0 (k=2r-+1, ..).
By (14) and (15), we have the following system of equations
[Clc=7”’l1,zlc—l‘f"”’lz,zlc—ll2 (=1, ..., ),

16 . N
( ) ];ijj,]g:mhgk“}—mz,gk/i (k=1, veey IC),

ZIC]'T],IC-——"-O (k:h‘—l—l, ),
=
and thus we have a system of algebraic equations:

K K
Z M2y 27-1T gy 1— Mg Z M2y 27-1T gy 2— Moy
=1 J=1 —

—_— = M =
Z Myy27-1T 32— M1s
=1

an

3
Z My 25-1T g5 1— M2
=1

J J

My, =12, 0,=0 for k>r).
Here it is understood that numerator and denominator vanish whenever one does.

11. LemMa 3. Let B be a Riemann surface of the class Og which admits a
conformal transformation group S={Ti, T:} of the type 1. of 2. If B has finite
spherical area, there holds the equation

Miy2)-1 My, 25-1

I3

(18) dy=sign(J4) 2,

J=1

ml) 27 N 27
where d, is the maximum valence of the function f, of the theorem 2; dy=max.,bs (w).

Proof. Let F, be the fundamental region of & defined in 8. The area of the
image of F, under f, and that of the parallelogram

LE=Sw=L+34, L=3J(e*w)<l+|sin a

arc cqual to Dpy(fo) and |J4], respectively. Then it is immediately secn that

(19) dy= -Qi%(@‘-
RY

Since we can regard the differential df, as the abelian differential of the first kind
on R, then we have
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(20) Dypy(fo)=Dxr(fo).
On the other hand, by (12) and (16) we have

21) dfe= 2 M1y 25-1+ M2y 251 A)dw;.
J=1

If we put
dfy=du-+idv; du, dv being real differentials,

then by the lemma 2 there holds the relation

(22) Dx(fo) = ;§<Sa2j_ldu§azj dv—LZj_ldvsazj a’u).

Since by (16)

S dﬁ): Z (my, 211 M2, 2#12)8 dw]:mhzlc~1+m2y 2k—14,
ak—1 J=1

a2k—1

S dﬁ)=2(m1;21—1+m2,21—13)g dw,
a2k J=1 @

2%
= (Myy 21 My, 25— 1 A)T )y == My, ai My 2ih,
)=1

then we have

S Adu=my, ok—1 M2, 261 N4, S dv=ms, 2134,
k-1 k-1

23

S du=my, 2+ M3, 234, g dv=my, 2134,
@25 @y
On substituting (23) in (22), we obtain

(24) Dr(fo)=J4 Z (M1, 29-1My, 5j— Mg, 55— 1M1, 25)-

J=1
19), (20) and (24) imply (18).
By the lemma 3, we obtain immediately

CoroLLARY 1. The maximum valence d, of the function f, of the theorem 2 is
uniquely determined by the structure of the system of generators ay, ..., s, as elements
of the covering lransformation group .

RemMARK. The relation (23)
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(25) Z (Mgp—1m3y, — Mmam, ) =d,
k=1

of the previous paper [3] for the case of the type I. (H) of 2, can also be verified
by the method similar to the lemma 3 though it has been done by another method
in [3]. The maximum valence d, in (25) is not uniquely determined by the structure
of the system of generators ay, ..., az. as elements of &={T}, for the possibility of
the choice of m,_, and m¥, (k=1, ..., ) remains. In 26 later, we shall concern
ourselves with the problem of finding the Riemann surface B minimizing d, in the
class of the Riemann surfaces which have a given structure of the system of
generators aj, ..., az, as elements of &= {T}.

12. Now we shall proceed to the converse problem of 10. We assume that
there holds (17) for the period matrix (z;,#);,=1,2.. and the system of integers
{m, 53 ma,,}2%, (¢=1) which satisfies the condition (11) for a system of integers
N1, 5, May; (=1, ..., 2¢). Then, when we put

K 3
M1y 25-1T31— Mg Z M1y 25-1Tg2— Mys
f __J=
- =—I= —=...
Z M2, 25-1T3,1— Moz M2y 25~1T gy 27— Maa
J=1 J=1

(my, su=ms,2,=0 for Fk>k),

we see immediately that the differential
df= 3 (M1, 57-1+Ms, ;-1 A)dw,
J=1

satisfies the period relations

e

2k—1

{ M1, sk-1-F M, 2x-14 (k=1, ..., &),

0 (k=k+1,..),
(26)
ml,zk—'-”iz,zkl (k=1, ceny IC),

S df = 2‘: (m1,2]—1+m2;21—1'1)7hk:{
azk 7=1 0 (k=k+1, ...).

Here the imaginary part of 4 is not reduced to zero, because, if 2 were real then
by (26) and the lemma 2 we would have

Da(f)= fi(Sw_l duSaZj d”_Saz,-_l deazj du) —0

=1
and thus df=0, where
df=du-idv;, du, dv being real differentials.



NOTE ON AN ABELIAN COVERING SURFACE, II 141

Let R be the abelian covering surface of R with the covering transformation group
G={Ty, Tz a,=T™10T™ (j=1, ..., 25), a,=1 (j=2x+1, ...)}

of the type II. of 2. Of course, here we assume that no dividing cycle on R is a
non-trivial generator of &. Let p, be an arbitrary fixed point on R é(ﬁ) be a path
from §, to any point $ on K, and C(p) be the projection of C() on R. Then the
analytic function

o=\ ar

[4¢)

is one-valued and regular on R, for the value f(§) of f at § is independent of the
choice of the path C(p) by (26) and the structure of the system of generators
a, ..., az of the group ©. Further, f satisfies the functional relation

27 L TuP)=f(P)+1, foTu(h)=/(p)+2 for any pek,
for, by (10), (11) and (26)

2% 2%
FTBH-1B=2, ng Af = iy (s, D=1,
= aj J=

2% 2
FeToA(P)—f(P)= 2 nz,jg df= 23 Nay 5 (My, j+ms, A=A,
J=1 aj J=1

J

Then, if we note that Dz(f)<co, by the similar method to the lemma 3 we have

My, 25-1 M2y 25-1

3

(28) d=sign(J2) X,

J=1

<o,

My, 2, M2, 2

where d is the maximum valence of £ Thus, feB(K) and R¢Oyp. Further, by
(27), (28) and the lemma 3, we see that f provides the property of the function f
of the theorem 2.

13. By the argument throughout 10 and 12, we obtain the following result.

THEOREM 3. Let R be a Riemann surface of the class Og, ai, as, ... be a
canonical homology basis of R modulo the ideal boundary I, and (t;,1);,k-1,2,.. be
the period matrix corresponding to the canonical homology basis ai, o, .... Let R be
an abelian covering surface of R which is of the class Og and which admits the
covering transformation group S={T,, T} of the type 1l. of 2, and let & have a
system of gemerators ay, ..., ay, (k=1) with

a,=Ty™ 30 Ty™ (j=1, ..., 2x).

Further we assume that a;=1I (j=2«t+1, ...) and no dividing cycle on R is a non-
trivial generator of &, where [ is the identical transformation of R onto itself.
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Then, R has finite spherical avea if and only if there holds

K K
Z Mgy 27-1T 51— Mz Z M2y 25-1T gy 2— Moy

an = e R
L3 3
Z Miy25-1Tg1— M2 Z Miy27-1Tgy2— Mia
J=1 7=1

(M, o=z, =0 for k>r)

Jor the period matvix (t;,1))5=1,2,.. and the system of integers {m,,; ms, ;)% which
satisfies the condition

11 (N
My *+* My 2e 1 0
1n : : =
Ma1 =+ Mo, 2 Niyoe Tayoe 0 1

Jor a system of integers n,,, ns, (j=1, ..., 2).

RemMArk. In the theorem 4 of the previous paper [3], we assumed that R is
a Riemann surface of the class O” and a;, as, ... are a canonical homology basis
belonging to the exhaustion E={R,} satisfying A{¥z}=0 (cf. [3] for the notations
and words). However we can now verify that there holds the theorem 4 of [3]
under the weaker assumption that R is a Riemann surface of the class O¢ and
ay, @, ... is a canonical homology basis of R modulo the ideal boundary J. In fact,
if we note that, by the theorem 1 of [3] and the lemma 14 of [3], the differential
(fo’1f0)dC of 24 in [3] has only a finite number of non-zero a;-periods, then we can
easily see that the argument of 10 and 12 in the present paper remains valid for
the case.

§3. Topological properties of abelian covering surfaces with finite spherical area.

14. In the present chapter we shall investigate topological properties of abelian
covering surfaces. Especially we shall investigate in detail the topological structure
of an abelian covering surface with finite spherical area.

Let R be an arbitrary Riemann surface and R be an abelian covering surface
of the type II. of 2. Let a;, as, ... be a canonical homology basis of R modulo the
ideal boundary J, and ai, a, ... have the expression

(29) =TTy (j=1,2,..)

as elements of the covering transformation group &={T,, T;} of B?
Then we have the following lemma.

7) Here it may arise that either {a;} is vacuous or all the «, are trivial generators
of ® Then the lemma 4 is trivial,



NOTE ON AN ABELIAN COVERING SURFACE, II 143

LeMMmA 4. From a given canonical homology basis ai, as, ..., we can always
select the canonical homology basis @i, &, ... of R modulo J, called regular for R
which satisfies the conditions:

(1) In the case

My 27-1 My 24
(30)
Moy 251 Moy 25
wn (29),
31) Argr1=1I, asy= Tyrtgo Tyarey,
where
(32) My 25== (M1, 251, M1y 27), a2 =E(Mzy 2-1, M3, 25),>

¢ being defined by

e= SIgN(M1, 5, 1M, 2)—1 -+ My, 2jMs2, 25) (sign 0=1);

(ii) In the case

My 25-1 M1y 29
(33) x0
Ma,y 25-1 M2, 2
m (29),
(34) @oy1= TI'I—rix,z]—:’ @pj= Tlﬁx,:jo’l‘zﬁs,zj,

where iy, o1, May2; And s, s, Satisfy the conditions
M1y 25-1 M2,y 251 A1y25-1 ai, 25 i1y 25-1 0
= — —_ ’
(35) My, 2 My 25 A2y 251 A2y 2 My, 25 M2y 2,
0§m1)2j<m1y2]—1

for a system of integers ai,sj-1, Q1,25 A2y25-1, Q2y2, Such that

A1525-1 a1y 25

(36)

A2y 25-1 A2y 2

Conversely, from a given regular canonical homology basis (31) and (34) for R,
we can always select a canonical homology basis o, as, ... of R which satisfies the
condition

Qg y=TyM29=10 Tymaeg=s
(7=1,2,..)

= Tlmm]o sze,ﬂ]

8) (m,n) means the non-negative greatest common measure of integers = and #,
For convenience, we take (0, 0) as 0,
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for an arbitrarily given system of integers ma,zj—1, Ma, 251, M1,2; ANRA Ms,2; (=1, 2, ...)
that satisfies (32) in the case (31) and does (35) for a system of integers ai,s;-1, Q1,25
Qsy2)-1 and Qs 2, with (36) in the case (34).

Proof. The case (i): If my,0;-1=m1,2,=mMsy0,—1=Ms,2,=0, We put @&;-1=as,1,
oy =0z, Then
0-(2]—1=I, C-ng=[.

If ml,gj_l#o or ml,zjio, we put

(37) &2]_1=a21_1m1,:j/(7n1,51—1,M1,xj)azj—m1,zj—ll(ml,zj—x,mhzj).
Then, by (29) and (30), we have
(38) Qgg-1= Tz(mz,a]—xm:,aj—mz,zﬁnx,a]—:)/(ml,g]—x, Mis2j) — I

Now there always exists a pair of integers &i,»,-; and &i,., such that
(39) L1y07-1M1y 251 L1y 251, 2= (M1, 29—1, M1, 25)-

For such i,2,-1 and &i,2;,, we put

40) Qo= Qay—1 "7 g, 010,

Then, by (29) and (39), we have

41 Gy Ty Mg Mo Ty@oej=imaaj=k Zisjmas;

By (37), (39) and (40), we have

{ Ay = &2]_127:,;]'&2] mi,25=1/(M1,2 51, mmj)’
(42)

—Z1,2y— M1,2j/ (M1,2 =1, M1,25)

{ A2 ={25-1 ‘Az,

We note that if m,2,-1%0 or m,2,%0, and s, ,-1%0 or ms,2,50, by (30) either
M1y 25-1/May 251 OF My, 25/, 2, 1S finite and

My, 25-1 _ My, 2y —e (M, 251, My, 25)
- ’
M2y 25-1 My 2 (mZ» 27-1, My, Zf)

where e= sign(my, 2y-1Ms, 25-1-F M1, 253, 25) (sign 0=1). Thus, by (30) and (39), we have

May 251 M2y 25
L1y 05-1May 25-1 L1, 2/M2, 2;=(m1,2]—1, My, 25) ——— |\ OF (My,95-1, Wy, 21’) —
My 25-1 M, 2

IE(MZ) 27—1y ms, 2]'))
provided that m,z,—1%0 or m,2,50. Thus (41) takes the form
(43) &,2]=T1(7n1,2]—x,mh¢j)oTze(mz,2j~1,mx,2j).

If My, 0)—1=m1,2,=0, and ma, 2,150 Or m3,2,%0, we put
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! @ggm1= azj_lmz.zj/(mz,zj—x, m:,zj)azj—mz,zj—ll(mz.zj-l, mmp,
(44)

t Qzy =gy 17" g, "%,
where Zs,2,-1 and &,,,, are a pair of integers determined by the condition
(45) X2y 27-1M2y 27-1 Loy 2Ma, 25= (M2, 25-1, M2, 25)-
Then we have
@gy-1=1, dzjol(m’gj—l'mg'cj),
and by (44) and (45)

! Qg1 :azj_lwz,zjazjme,aj-—l/(ma,z]-l. 'Ina,zj)’

(46) 1

as, =C—(Z]_1—xa,zl—zo-[zjmz,zj/(mz,sj—n, Tﬂz,zj).

The case (ii): In the case, #s,2,-1=1m,,,,=0 does not take place. Then we put

I a,zj_ll:azj_lumz,zj/(mz,:]—:, mz,aj)azj-—s’mz,zj—1/(mz,zj—1, mz,zj),
%) J

{ a,zj/:a,zj_le/xe,zj-:azjum,g]’

where Z;,,,-1 and &,,,, are a pair of integers determined by the condition

48) T2y 27— 1M2y 291 T2, 2M, 29 = (M2, 051, Mz, 25),
and

. M1y 25-1 M1, 25

¢/ = sign
My 251 M2y 2y
Then we have
I a,zj_llzTl|mx,xJ—xmz,zj—mn,ajmx,sj—-x[/(M2,a]—1,mz,gj),

(49)

{ 0(2]/2 Ty Forrgmimaag= st s mae ) o T el (assg=i, maye )

and by (47) and (48)

' ; - — ;
I az"_1=a2]_lls xz,gjazjle M2,y x/(mz,qJ 1,7714,2‘7),

(50)
i azjzazj_ll—-5’xz,zJ—xa,zj’slmz.kj/(’mz,zj—l,mz,z_'j)'
If we put
— m 1Moy 25— M1, 25M -
- (71, 29=1M2, 25— M1, 252, 251 (>0),
(51) (Mg 25-1, M2, 25)

r__ — —at
My, 2;” =€ (L2, 25-1M1, 251+ X2,y 251, 25), Mo,y 2y =€ (M2, 05-1, M2, 25),

then (49) takes the form
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(52) 0(2]—1' — Tlﬁn,«j-x, az;, — Tlm'x,:]o Tzﬁ"”.

There exists a pair of integers iy, and », such that

(53) ity 05 =M1y 2," —NjM1,25-1
and
(54) 0§m1,2j<7711,2]—1-

Then, if we put
(55) Fog1=0sy—1’, Aoy =0t2;—1 ""0t5,

then we have

(56) Xoy-1 :d2]—1,, 61’2]/:0—1’2]_1"-7(_1‘2],
and
57 &2]_1:]‘177“,2]—1’ @y = Tl’T”"”JOTgﬁ“J.

It is immediately verified that the combined system of the conditions (51), (53) and
(54) are equivalent with (35).

We must show that the system of the cycles ay, a., ... constructed by the above
procedure satisfies the conditions (a) or (a’), and (b) or (b’) of 3 in [3]. It is obvious
by (42), (46), (50) and (56) that the condition (a) or (a’) is satisfied. Further it is
immediately verified by simple calculations that the condition (b) or (b’) for the
intersection number is satisfied.

The converse statement is also obvious by the above procedure of the proof.

15. Let R be an arbitrary Riemann surface, £ be an abelian covering surface
of R and & be its covering transformation group. Let aj, @, ... be a canonical
homology basis of R modulo the ideal boundary J. Then the cycles ay, as, ... can
be regarded as elements of the group &. Let a,,-1, @, be a system of conjugate
cycles obtained by a linear combination of the conjugate cycles a,-,, @, for each
7 (=1, 2, ...) such that the system of the cycles @, @, ... forms a canonical homology
basis modulo 3. For convenience, we shall define the following terminology. If
we can take from the system of the conjugate cycles a,,-1, as; a system of conjugate
cycles @1, @, with @,-,=1I, then we shall call that the system of the conjugate
cycles as,_y, ay, is of the tube type on B, and if we can never take from as, s, as,
a system of conjugate cycles @sj-1, &, Wwith &,—1=1 (or @»,=I), then we shall call
that the system of the conjugate cycles as,_i, az, is of the card type on R.

By the lemma 4, we can state the result.

COROLLARY 2. Let R be an abelian covering surface of R of which the covering
transformation group & is of the type 1. of 2. Then, the system of the conjugate
cycles as,y, as, is of the tube type on R if and only if (30) holds, and it is of the
card type on B if and only if (33) holds.
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Further, by the lemma 10 of [3], we obtain the result.

COROLLARY 3. Let R be an abelian covering surface of R of which the covering
transformation group & is of the type 1. (H) of 2. Then, each system of the con-
jugate cycles as,—, as, is of the tube type on R.

Next, let # be an abelian covering surface of R of which the covering trans-
formation group & is of the type L (P) of 2. Then for such an R we can obtain
a lemma of the same type as the lemma 10 of [3] and it can be verified by the
argument similar to it. Therefore we have the result.

COROLLARY 4. Let B be an abelian covering surface of R of which the covering
transformation group & is of the type ~I (P) of 2. Then, each system of the conjugate
cycles sy, ayy is of the tube type on R.

16. Throughout 16—25, we shall assume that # is a Riemann surface which
is of the class O¢ and admits a covering transformation group &={T}, T} of the
type II. of 2. Let ai, @, ... be a canonical homology basis of R=F (mod @) modulo
X, and B,,..;,, 7>1 be a canonical homology basis of dividing cycles of R (cf. 4 of
[3] for the notation).

LeMMA 5. If R has finite spherical area, then no dividing cycle on R can be
a non-trivial generator of &.

Proof. (i) We would assume that an infinite number of elements of a canoni-
cal homology basis of dividing cycles were non-trivial generators of &, and let
B= {1, P2, ...} be the system of such ones.

Let p; be a point on B, (=1, 2, ...) and §, be the point lying over p; on the
fundamental region F, of the group & defined in 8. We can select a subsequence
{p,, ), of the point sequence {f,}3-, such that both point sequences {p,,}=, and
{Bs,(P,)}2, simultaneously tend to ideal boundary components y and 7/, respectively.

Then we see that the limit point lim,.. fo(5,,) must lie on the parallelogram
Zy={2|L=Jz=0+|34], L=J(e )=+ |sina |} (a= arg ),

where f; is the function in the theorem 2. Since 5, (j=1, 2, ...) are non-trivial
generators of 9, by the theorem 2 we have

[ /o085, (B2, —fo(B5,)| = min (1, 4).

Thus, by the lemma 12 of [3], we know that lim,../fo(8,,(5,)*lim. . fo(P;,) or
73%7’. On the other hand, since for any compact- region KCR there exists a
number v, such that two points ,, and 8,,(f,,) can be connected by one ,B?u of
the curves on R—K lying over B;, for all v=v, we know that it must be y=y".
Contradiction,
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(i) We would assume that only a (non-zero) finite number of elements of a
canonical homology basis of dividing cycles are non-trivial generators of &, and let
B be a system of such ones. Let f 5048, ( 7%>1) be one of the elements of B such that

(58) N= max n for B;,..,€B.

Then we see that

e

‘Bj‘;"j?VIN‘ng"jgv]NE=2 (‘Bj;)“'joz\ﬂz\r+1)_1

and

,ng..‘_f}’v;NH:I Uni1=2, ..., Sj‘}-uj‘}v)'

For, if B0 8y, 1 Pi-i%sy,, must belong to B which contradicts (58). Thus

1
Bt =B34, as generators of ®. By the similar procedure, we have that

Bty = B9 = Bstii =+
and then ;.51 B5.71, ... are non-trivial generators. Thus we may apply the
argument of (i) for a system of such ones and deduce a contradiction.
LemMMA 6. If R has finite spherical area, then only a finite number of a, can
be non-trivial genevators of ©.

We can prove the lemma by the argument similar to the proof of the case (i)
of the lemma 5. We omit its proof.

17. By the lemmas 5 and 6, if # has finite spherical area, a suitably chosen
system of a finite number of @, a,, ... forms a system of generators of & and thus
we may assume that there exists a number « such that

az;-1] or ayxI for each j=1,..., r
and
a,=1 for all =21,

if necessary, by a suitable change of indices of «,. Then, ai, as ... have the
expressions

(59) a,=T\™ o Ty™s (j=1,2, ...; my,j=ms,,=0 for j=2k+1),

as the generators of &, where the system of integers mu,;, ms,, (7=1, ..., 2¢) must
satisfy the condition (11) for a system of integers u,,, #s,, (j=1, ..., 2¢).
Then, we have the following lemma.

Lemma 7. If R has finite spherical area, then there holds
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My 251 Mz, 25-1

sign(32) =0 (=12 ..)

Mi,2) M2, 25

A being the constant in the theovem 2, and thus m,,, ms,, (j=1, 2, ...) satisfies the
condition:
@) The determinants

My, 251 My 251

' (=12, ..)
M1, 2, M2y 2,

are all non-negative or all non-positive.

Proof. 1t is sufficient to prove the lemma only for the case J1>0. Because,
if 32<0, we take T3, 7>~ in place of 73, 7% as the basis of the group &, respectively,
and take —2, my,,, —ms,,; (j=1, 2, ...) in place of 4, m.,,, ms2,,, respectively, then it
is reduced to the case J4>0. Further, by the lemma 4, it is sufficient to prove
that m,,.,>0 if the pair as,_;, s, is of the type:

(60) Qg ="T1"™ 47, gy =T™*1 Ty (0 =111, 2; <M, 25-1, Ma2,2,50),

in the case where ay, as, ... are the regular canonical homology basis.

Let the two shores of each of the curves as;—i, @, (=1, 2, ...) be denoted by
1ty zy_1T, gyt ap,”, respectively, in such a manner that oriented curve as,
intersects as;—; from as,—;* to the other shore a.,_,~ and that a,,_, intersects a,, from
as;* to az;~. Let F be the surface obtained from R by scissoring along the curves
a1, azy (j=1, ..., k). Then, by 6 of [3] and (59), R is constructed from an infinite
number of replicas of F by a suitable identification process along the curves as,-,*,
Qyo1”, Aoyt and ap,” (7=1, ..., ) of the replicas, and thus we may regard F as a
fundamental region of & on B. Further we may regard R as the covering surface
of the w-plane S with the projection map f, of B onto S.

Now let ay;_y, @z; be of the card type (60). Then, by the theorem 2, we have

foo oy a(P)=Fo(B)+muy 051 and  ay-y(P)eas,* for any peaz,,
Soeaos(B)=Fo(B)+m1yj+ma02 and  azi(P)eas,—* for any peaz;-i~.

Let C, be the Jordan curve ag,_; e, (@;—1") ;7)™ on R which has the four
vertices

ﬁo, Tlml,zj—l(ﬁo)’ T17n1,z]—|+mx,z]° szz,zj(ﬁo) and Tl'"ll,cjo TZ’ngﬂj(ﬁU))

where f, is the common point of a@g,-,7, @y, Let G; be a doubly-connected
subregion of F contained in a neighborhood of C,, one of the boundary components

9) We must take simple closed curves a,;—; and «, in the homology classes (ag;-1)
and (asy), respectively, which always exist.
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of which is C, Further, let G] be the connected component containing G, of" the
subset of R consisting of all the regions equivalent with G; modulo . Then, G,
is an infinitely-connected covering surface of genus zero on S and admits the
covering transformation group &’ the basis of which is

Qayer= Tlam,xj-—x’ = Tlmn,x]o sz::,z].

Hence, there existc a region 5;* and a homeomorphic map of 5] onto 51* which
satisfy the conditions:

(i) the map is homotopically deformable to the identity map on fixing all
points equivalent with p, modulo &';

(ii) G* is univalent over the w-plane S;

(ili) G;* admits the covering transformation group ¢’ the basis of which is

b=y, 05-1, la=M1,2j- AWMz, s;.

Here we noteNthat az_ 1 Xag,=1 ((b) or (b’) of 3 in [3]). Then we know from the
structure of G, that there should hold that ms,,.,>0.

Remark. We note that the condition (a) of the lemma 7 does not necessarily
hold unless there is the assumption that R has finite spherical area. It is evident
by the following simple example.

Let

={l, ts; hi=2z2+1, ts=2+1},

~ ~n +°°
Fi=F,={|z]|<oo}— VU tiroty (1),
p,y=—0c0

a=a;={z|0=Rz=1, Jz=0},
dr=a,={z|0=Jz=1, Nz=0}.

We draw the curves & and @ on £, and & and & on the reverse side of F,,
respectively. Let B be the Riemann surface obtained from F, and F, by connecting
along the common shores of each pair of the slits with the common projection on
the z-plane. Let & be the covering transformation group of R generated by the
basis T, and 7, which transform an arbitrary point $ on F, (;=1, 2) to the points
#. and f, on the same F, such that

fip)=tofo(p) and fi(Ps)=tz2fo(P),

respectively, where £, is the projection map of R onto the z-plane.)® Let F be a
subregion of R lying over {2|/0=Nz=1, 0=J2=1}, and R be a Riemann surface

10) We should note that the map f, 1s not analytic.
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obtained from F by identifying the points of &, @, @ and &, with those of Ty(ay),
Ty(a), To(as) and Ti(@s) equivalent modulo . Then R is an abelian covering
surface of R with the covering transformation group & of the type IL of 2, and
the images «a;, a,, @s and a, on R of &, a., @ and @&, respectively, form a canonical
homology basis of R. We can take the orientations of a;, as, @; and a4 in such a
way that

= Tl, N = Tz; Az= Tl, A= Tz“l.

This gives an example desired.

The canonical homology basis ai, az, ... of R satisfying the condition (a) of the
lemma 7 shall be called to have the wuni-orientation with respect to B or @.

18. Now we shall classify the abelian covering surfaces R. Let U(g; myy, ...,
My 2e; Mai, ...y Mayec) (@=k) be the class of the abelian covering surfaces R such that
R=R (mod ®) are open or closed Riemann surfaces of genus g (1=g=o0), and which
satisfy the following conditions:

(i) No dividing cycle on R is a non-trivial generator of ;

(i1) There exists a canonical homology basis a;, as, ... modulo the ideal boundary
3 of R which has the forms

J a;j= Tlm‘lo szz] (j:l, eeey ZK),

l a,=1 (7=2t+1, ...)

as a system of generators of &, where it does not occur that me, ;- 1= My, 2=, 2, -,
=mg,2,=0 for any j (j=1, ..., 2¢), and my,,, ms,, (=1, ..., 2¢) satisfy the condition
(11) for a system of integers n,,, #s,, (j=1, ..., 2c);

(iii) The canonical homology basis a;, as, ... has the uni-orientation with respect
to ﬁ, ie. my,,, ms,, satisfy the condition (a) of the lemma 7.

Further we shall divide each class W(g; #11, ..., 1,20 Moy, ..., M, into the
following three families:

(A) The family of W(g; M, ..., My, 2 Mas, .., Mazyne) Such that, for Rel(g; m,
ey M, 205 M2ty ..., May2e), €ach system of the congugate cycles oy, asy (j=1, ..., k) is
of the tube type on B,

(B) The family of N(g; My, ..., My, 26, Moy, ..., May2.) such that, for Rel(g; ma,,
vy Mayagy Moy, ..., Ma,oe), €ach system of the conjugate cycles az;_i, as, (j=1, ..., £) 1S
of the card type on ﬁ;

(C) The family of W(q;, My, ..., My, 25, Mo, ..., Ma,20) such that, for Bed(g; my,
ey My 28] May oy Mty )y Qopery Qo (G=1, ..., 6§ 1=c<k) are of the card types on B
and as,_y, as; (j=c+1, ..., k) are of the tube types on RV

19. In the present section, we shall concern ourselves with the family (A).
We have the lemma.
——Il_)ﬁwgsi)ouldir;gt‘é that each property of (A), (B), (C) does not depend on the choice
of Re(g; M1, -, My, 263 Mgy <oy Mo, 91)-
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LemMmaA 8. If (g, My, ..., My, 26 Moy, ..., May2) belongs to the family (A), then
91(6]; M1y ooy m1)2x; M2ty «ouy m2,2:)COMD-

Proof. If there existed R such that Red(g; muy, ..., My, 20 Masy ..., Mz, 20)€(A)
and R¢Ouxp, then by the lemma 3 we would have

K

61) do = sign(32) X3

My, 25-1 Mgy 291
=1

My, 2) M2, 25

By the corollary 2, the right hand side of (61) must be zero and thus d,=0 which
is evidently impossible.

20. In the present section, we shall concern ourselves with the family (B).
First we have a lemma.

LemMA 9. If W(g; M1, Mz a1, Mas) belongs to the family (B) and 2=q=oo,
then W(q; M1, Maz; M2, Maz) COup.

Proof. By the assumption, & has the system of generators

! ay=Ty™e szn’ ay=Ty™20 Tym,

(62)
and
miy M2 N1y Moy 1 0
o (I R
\ Mgy M2z N2 Nag 0 1

for a system of integers ni, 7z, 72, and 7. If RéOyp, then by the lemma 3,
(62) and (63) we would have

M2

dy= sign(37) =1

Moy Mg

On the other hand, each system of the branches ds;-;, @, with a common point
which are the images on R of the conjugate cycles as, i, az; (2=j=q), forms a
system of conjugate cycles on B (cf. 6 of [3]). Then, R has infinite genus and thus
it is evidently impossible that R is univalently mapped onto the w-plane.

Next, we shall show that, except for the case of the lemma 9, there always
exists an abelian covering surface R with finite spherical area in each class W(g; #7211,
vy My 26, Mai, ..., Mayz2.) Of the family (B). In fact, we have the lemmas 10 and 11.

LeMMA 10. There exists an abelian covering surface R with finite spherical
area in each class W(; miy, My, Moy, Ms2).
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Proof. Each class W(1; #e11, Mys, s, mae) necessarily belongs to the family (B).
Then, by the lemma 4 and the condition (11), it is sufficient to prove the lemma
only for the case

= Tl; A= Tzil.

Further we may assume that a;=7T3, ay="T,, otherwise we may take 7Ti, 7. ' in
place of Ti, T. as the basis of ®.

Let R={z||z|<oo}, @={Ty, Ty Ti=z+1, To=z+i}, &=1{J2=0, 0=Rz=1}, &
={Nz=0,0=J2=1} and F;={0=Rz=1,0=Jz=1}. Let R be a Riemann surface
(torus) constructed from F, by identifying the points of & and a&, with those of
To(a&;) and Ti(@:) equivalent modulo &, and @i, a. be the images on R of ai, @
respectively. Then we see immediately that a,=7T;, a;=T: by a suitable selection
of the orientation of a;, a, and thus f satisfies the condition of the present lemma.

LeMMA 11, If £=2, then there exists an abelian covering surface B with finite
spherical area in each class W(q, My, ..., My, 25, May, ..., May0s) O the family (B).

Proof. By the lemma 4, it is sufficient to prove the lemma only for the case

oy 1= Tlm:,zj—x’ o= Tlmm]o szz,z]
J (j=1y ey K5 0= 001,05 <M1y 25-1, M, 2,%0),
a,=1 (F=2c+1, ...).

(64)

Further, by the condition (iii) of 18 we may assume that m,.,>0 (=1, ..., &),
otherwise we may take 743, 7>~! in place of T3, T. as the basis of ©.
Let

tl(z) :z+ 1; tZ(z) :z+ iy

[ o 1={J2=0, 0=Rz=m11,2,-1}, .
©65) =1, ..., &),

- M2, 25 - S T T
dyy=1arg z=tan"'—=, 0= 2| = v/ my, 2, "+ Mo, o,

M, 2

let &, (j=1, ..., £) be the closed parallelogram surrounded by @&s;—1, ds; L™
°t2mz'2j(d2]_1) and tlmb”—'(dg‘]) and let @0:{0§§Rz§1y 0§SZ§1}- Then we can take
a disk

(66) D={z||z—2| <7}
such that
67) Dc]g“0 @),
Let

2j—3

(68) ZJ: S(z—20) =0,

— 2j—-1) ] .
o1 r=f(z—2z2)= o1 r} (=2, ..., r),
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/= _2)=0 — I = o= T
(69) W= 3z—a)=0, — 5 =Ra—)=— 5" 1}
(k=1, ..., q—rx, if g<oo; k=1, 2, ..., if g=00).
Let
~ +oo
Fi0, 0)={lz|<oo}— U tlnlmm-nzmuotzngmu<lzuglkl>,
n1,ne=—00
~ +o
Fi0, 0)={|z|<co}— U fyrmsg A memag o mamay ([ ST
n1,n9=—00

(j=2, e 'C_]-)’

~ +oo
F;(O, 0):{[51<00}__ U tlnllnl,ﬁh—]'l 'num,uotz'nunz,:»(lx\_/Ulk/>,
n k

1,N9=—00
Fip, vy=tiot(F(0, 0)) (j=1, ..., & p, v: integers),
where Uil =¢ if g=«. We shall agree that
Fy, vy=Fi(p, ») (=1, .oty B),

if the system of integers p, v; ¢/, v/ satisfies the relation

( u—p < My, 25-1 M1,y 25 ni
v —y ) 0 M2,2; )( N2 )
for some integers #i, #,. The system of all mutually distinct F i, v) is given by

Fiw,v)  (e=0, ..y myyay1—1; v=0, ..., My 0j—1; =1, ..., &).

We draw the curves @;;-1, @, on F,0,0)( j=1, ..., ¥), and let F;(0, 0) be the subregion
of Fj0,0) surrounded by d@z,-1, ds), ™oty ™ 0 (d@g,-1) and H™ T (dgy), Le. Fi(0, 0)
=0, — (L~ Uly), Fi0, 0)=0,—(,~l,11) (=2, ..., —1), F.(0, 0)=®,— (.~ Uxl’). Let
R be the surface obtained from

Fiw,v) (=0, ..., myy0y1—1; v=0, ..., ma,05—1; j=1, ..., &)

by connecting crosswise along each pair of the slits with the common projection
on the z-plane, where each slit corresponds obviously to one and only one slit.

First we can see as follows that B is connected. It is sufficient to be proved
that a point on F.(0,0) can be connected to a point on ﬁj(y, v) by a curve on R
for any j (1=j=«), p and v, denoted by

F20, 0)~F (s, v).

It is immediately seen that £(0, 0)~F,(z, v) if and only if F(y, )~ F(utp, vv)
(=1, ..., &) for any p’, v/, and that
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Fi(p, v)~...~F(1, v) for any g, ».
Hence, it is sufficient to be verified that

(70) Fi0,0~F.1,00 and  Fi0, 0)~F.(0, 1).

It is immediately seen that if
( Hi—H-1 ) ( My, 25-1 My 2y >< Miy2y-1 )
vi—v, 0 Maya; [\ N,z

Fi(#]"h vj—l):ﬁ(j(#]’ V.i) (]:1’ ceey "‘),

then

and that
Fi(py v)~Fsialpsy v (G=1, ..., £=1),

where n,, (j=1, ..., 2¢) are the system of integers satisfying the condition (11).
Then we have that

F~1(#0, Vo)"’ﬁfr(ﬂn Vi)

If we take po=0, v,=0, then by (11) we see that u,=1, »,=0. Thus we obtain the
first relation of (70). The second relation of (70) is also obtained similarly.

Next there exist the conformal transformations 7% and 7. of R onto itself
which transform an arbitrary point p on F i(, v) for each j (j=1,..., ¥) to the points
by on Fy(u+1, v) and p, on Fi(y, v+1) such that

fib)=tiefo(p) and  fu(p)=t2ofo(D),

respectively, where f; is the projection map of R onto the z-plane. Thus R admits
the covering transformation group &={7\, T} generated by T) and 7. Let F be
a subregion of F surrounded by @, @, T2 Ty™ (@), Ti™ &), ..., Gzer, @zey T2
o Ty™*(@s,—1) and T1™**~*(&,,), and thus F consists of the portions Fy(0, 0), ..., F:(0, 0)
connected along the corresponding slits. Let R be a Riemann surface obtained
from F by identifying the points of @s,—, and &, (j=1, ..., ¥) with those of 7y™
o To™i(dy,-;) and Ty™7'(&;) equivalent modulo &, respectively, and a, be the images
on R of & (j=1, ..., 2x), respectively. Then, R=FR (mod @), for F is a fundamental
region of the group &. Further, on selecting suitably the orientation of ay, ..., s
and the remaining basis a4, ... on R, we see that the condition (64) is satisfied.
Hence, R is the one which satisfies the condition of the present lemma.

21. In 21~24, we shall concern ourselves with the family (C). First we have
a lemma.

LemMA 12, If W(g; My, ..., May2., Moy, ..., Mayz.) belongs to the family (C), (=1
and



156 HISAO MIZUMOTO

my M2
=4 ]-y

M2y Mg
then (g, M, ..., M1, 26, Mty .., Ma2,2:.) COup, where ¢ is the integer in (C) of 18.

Proof. If there existed R in the class W(g; #, ..., M1, 205 Moy, ..., Ms,q:) Of the
lemma such that R¢Ouxp, then by the lemma 3, we would have

. m M2
(71) do= sign (34) =1.
m21 Moz
Now we may assume that the system ai, ay, ... is regular for B Then, by 6 of

[3], any branch @,_, of the images on B of as,_; (j=2, ..., «) forms a cycle on B,
the surface F obtained from R by scissoring along all branches a,, , for each
j(j=2, ..., x) is connected, and thus there exists a cycle on K conjugate to each
@»;-1. Hence, the genus of R is infinite, which contradicts (71).

22. In 23 and 24, we shall show that, except for the case of the lemma 12, there
always exists an abelian covering surface f with finite spherical area in each class
N(g; Mar. ..., M1, 2 Mo, ..., Mz,2:) of the family (C). For the purpose we shall pre-
pare a lemma in the present section.

Let g be the transformation group the basis of which is a system of trans-

formations
L@)=z+1, t(z)=2+1i

of the finite z-plane Z={|z|<co}. One of the simplest fundamental regions of g is
given by the square

0,={0=Rz=1, 0=]z=1}.
We denote
@={3z=0, 0=Rz=1}, &= {Rz=0, 0=Jz=1}.

Let K be a bounded set arbitrarily given on Z consisting of a finite number
of continua or isolated points Kj, ..., K, which satisfies the conditions:

(i) The complementary set of K is a domain;

(ii) Two distinct points z, 2z’ equivalent each other modulo g do not simul-
taneously belong to K;

(ili) Any lattice point (the point the real part and the imaginary part of which
are integers) does not belong to K.

Then we have the following lemma proved in [4].

LemMa 13.  There exist a fundamental region @ of g and a homeomorphic
map h of Oy onto D which have the properties:
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@) The four points 0,1, 1414, i are fixed points of h;

(b)) heti(z)=tioh(2) Jor any zeaj,

hoty(z)=t20 h(2) for any zea,

() Kc(@®)°.

2312 LemMa 14. If ¢=2, then there exists an abelian covering surface R with
finite spherical area in each class N(q; may, ..., M1, 2, Mo, ..., Ma,2.) Of the family (C),
where ¢ is the integer in (C) of 18.

Proof. By the lemma 4, it is sufficient to prove the lemma only for the case

Ay = Ty™573, gy = T30 Tymeres

G=1, .... ¢ 0=my,2;<M1,2;-1, Ms, 2,0),
(72) Apy =1, agy="T™30 Ty (J=¢+1, ..., k),
a,=1 (j=2k+1, ..).

Further, by the condition (iii) of 18 we may assume that #.,.,>0 (j=1, ..., ).

Let @gz;-1, &2y (=1, ..., ¢) be those defined by (65) for j=1, ..., ¢ in place of
j=1, ..,k and let [, (=2, ..., k) and I/ (k=1, ..., g—«, if g<oo; k=1, 2, ..., if g=00)
be those defined by (68) and (69), respectively, for a disk (66) such that Dc N :_(®;)°
in place of (67).

Let ¢’ be the transformation group the basis of which is a system of trans-
formations

H (@) =z+mu, t'(2)=2z-+mo+ims,

of the finite z-plane Z. Then, the closed paralellogram @,’ surrounded by &, @, t.’(d:)
and #’(@) is a fundamental region of ¢’. Then, there exist a fundamental region
@’ of ¢’ and a homeomorphic map 4’ of @)/ onto @ which have the properties:

(@’) The four points 0, #11, M1a+imse, M1+ mie--imss are fixed points of A’;
(b Wt/ (2)=Ht'h'(2) for any zeds,

W ot (2)=1 o' (2) for any zea;

() K'=01~ U 1~U L/ c@),
=2 J=e+1 k
where

Lt=tmaotyei(lyy  (j=ctl, ..., K).

12) The signatures in the previous section will be taken for the same meaning as
those in 23 and 24,
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In fact, we define a homeomorphic (affine) map ¢ of Z onto itself by

g(@=u(z, y)+iv(x, y) (z=x+1y),

u My M2 Z
e k)
Then, ¢ maps homeomorphically @, onto @,’, satisfies

9(0)=0, gV)=m11, g(L+i)=m11+M1o+iMs2,
g(@)=m12+imas;
g@=da,  g(@)=ds,
and further has the property
goti@)=t'c9(2),  got()=1'9(2).

Let K be the homeomorphic image of K’ under the inverse map g-': K=g Y(K’).
It is easily seen that the present K satisfies the conditions (i), (ii) and (iii) of 22.
Here we should note that the possibility that a number of components of Uxl is
infinite does not interrupt the validity of the lemma 13. If we apply the lemma
13 to the present K, then it is immediately verified that @' =¢(®) and A'=gohog!
have the properties (a’), (b’) and (c’).

Let &/ =n'(@&), &’=h'(a:). Then, by (a’) and (b’), &’ and &’ are the curves
which run from 0 to me; and mq-Fims., respectively, and &/, &', £.’(&,’) and #,/(a’)
form the boundary of the fundamental region @ of g¢’. Since any confusion might
not occur we shall denote @/, @', for the sake of simplicity, by a,, @ in the

following.

Let

~ + o0 14

}’11(0, 0): { |Z| <OO} _ U tlmmn»l-mm:zotzmmm<12\./ U l]_*\/ U l/.:/>,
n1,ne=—0c0 J=c+1 i

~ +oo

Fj(O, O)={]ZI<OO}— U iz ””m"27°t2"2m3’2j(ljvl];1) (]=2, s (__1)’
n1,N2=—00

A~ + o0 £

F,(O, 0)= { |Z| <OO} _ U fymime = F"zm:,z'ctz’ﬂz’mz,zl< U l]v \g lk,>,
n1,N2=—00 J=¢ d

Fi(u, )=t t(F5(0, 0)) (j=1, ..., ¢, pt, v: integers),

where Uili’=¢ if g=r. We shall agree that
Fyw o oh=Fip, ) (G=1,.., 9,

if the system of integers p, v; o/, ¥’ satisfies the relation
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( ©—p ) M1,y 25-1 M, 2y )( nm
v —y =( 0 M2y 2y N2 )
for some integers #;, #,. Then, the system of all mutually distinct F;(g, v) is given

by
Firyv) (=0, .y My 0pm1—1; v=0, ..., Ma,0;—1; j=1, ..., 0).

We draw the curves ds,-., @, on Fj0, 0) (j=1, ..., ¢), respectively, and let F;0, 0)
(7=1, ..., ¢) be the subregion of F;(0, 0) surrounded by @&z;-1, @, L™ 70t:™*5(dz;-1)
and ™17 (@y;). Then, by (¢’), we have

F(0, o>=a>'~(12v 0 lj*VUlk’>.
J

=c+1 k
Further, we have obviously

Fj(()r 0):¢j_(ljvlj+1) (]:27 ceey ‘_])y
Fo,0=0,—(0 1= yw),
J=
where @, (j=2, ..., ¢) are the closed parallelograms defined in the lemma 11. Let
R be the surface obtained from
ﬁ]‘(/"’ V) (F=Or ceey mlyZ]—l"‘]—; U=O, ceey m2)2j_1; ]Zlv ceey ()

by connecting crosswise along each pair of the slits with the common projection
on the z-plane, where each slit corresponds obviously to one and only one slit.

First we can see as follows that £ is connected. By the reasoning similar to
the lemma 11, it is sufficient to be verified that

(73) F0,00~F(1,00 and  F0, 0)~F._.(0, 1).

By the reasoning similar to the lemma 11, if

N1
He— o mu Mz o Mi2.-1 My,
o (TH |
v, —VY, 0 Moz -+ 0 M2, 2.
N1y 2
then
(75) Fipto, vo)~F'(e, v).

Further, we note that
F1(0, O)N"'Nﬁ:(o, O)Nﬁz(mx, 270 M2y 25) (J=¢+1, ..., 6).
Then, we have that
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(76) Flpgn, vy)~Flpn v)  (G=ct+1, .oy 6),

provided
i g1 \ 0 My, 2 Niy25-1 .

@ ( =( )( Gt ).
Vji—V;-1 / 0 M2, 25 1,25

By (75) and (76)
ﬁl(,u()y VO)NFNz(‘Un Vx)-

Further, if we take p,=0, v,=0, then, by (74), (77) and the condition (11), we know
that w=1, v»=0. Thus we obtain the first relation of (73). The second relation of
(73) is also obtained similarly.

Next there exist the conformal transformations 77 and 7: of R onto itself
which transform an arbitrary point § on Fy(y, ) for each j (j=1, ..., ¢) to the points
py on Fy(u+1,v) and $, on Fy(y, v+1) such that

So(p)=tofo(P) and  fo(p2)=teofo(P),

respectively, where f;, is the projection map of K onto the z-plane. Thus R admits
the covering transformation group &={7T3, T>} generated by the basis 7, and T%.
Let F be a bounded subregion of B obtained by scissoring along @z,-i, @z, 73™*
o To™ 2 3(@gy—1), T1™*™(@;) (j=1, ..., ¢) and along both shores of slits /,, [;* (j=c+1,
.., k). Then F consists of the portions Fi(0, 0), ..., F.(0, 0) connected crosswise
along each pair of the slits /, (=2, ..., ¢) and &/ (k=1, ..., g—=r, if g<oo; k=1,2, ...,
if g=o0) with the common projection on the w-plane, where the slits [,, /;* (j=¢
+1, ..., ¥) remain free from the connecting process. Let F’ be the subregion of F
obtained by removing from F a domain G surrounded by two Jordan curves C; and
C. surrounding Uxl in (F1(0, 0))° and (F.(0, 0))°, respectively, but not surrounding
Iy I, (j=¢, ..., &) and [;* (j=¢+1, ..., £). Then, F’ is connected and thus we can draw
a simple curve &, on (F’)° which runs from the mid-point of the upper shore of
I, to the mid-point of the lower shore of /;* for each j (j=¢+1, ..., ¥) such that
@, (j=¢+1, ..., ) mutually have no common points. Further we can draw a Jordan
curve ds,-1 on (F’)° surrounding [, for each j (j=¢+1, ..., ¥) which intersects ds;,
only once but not @;—; and du for kxj. Let R be a Riemann surface obtained
from F by identifying the points of @s;—1, @, (j=1, ..., ¢) and [, (j=¢+1, ..., x) with
those of Ty™ 70 Ty™*i(dz,—1), Ti™ i *(d@z;) and [;* equivalent modulo &, respectively,
where I, (j=¢+1, ..., £) are connected crosswise with /;*, respectively. Then R=FR
(mod @), for F is a fundamental region of the group &. Let «, be the images on
R of &, (j=1, ..., 2r), respectively. Then each pair a,,—: and a,, (j=1, ..., £) forms
a system of conjugate cycles on R. We can select the remaining elements as.1,
... of the canonical homology basis on the subdomain G of R. Then, on taking a
suitable orientation of a3, as, ..., we see that the condition (72) is satisfied. Hence,
R is the one which satisfies the condition of the present lemma,
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24. Lemma 15. If <=1 and

mi1 M2

(78) *+1,

M2y Moz

then there exists an abelian covering surface R with finite spherical area in each
class W(g; M, ..., My oe; Moy, ..., M2,2:) 0f the family (C), where ¢ is the integer in
©) of 18.

Proof. By the lemma 4, it is sufficient to prove the lemma only for the case

=T,  op=T™0 Ty" O=mi2<my1, Ma2x0),
(79) ;=1 agj=Ty™30 Ty (7=2, ..., ),
a,=] (j=2t+1, ...).

Further, we may assume that #2.,>0. By (78) and the condition (11), we can see
that there exists at least one number %k (2=k=«) such that there does not hold

My, 2k < mi M2 ( 1, 2k >
< M2, 2k ) 0 Moz > U2y 2k
for any system of integers u,zx, p2,2. Without loss of generality, we may assume
that =2, ..., ¢/ 2=/ =k) are all the numbers for which

mi, 25 My Mz M1y 25
( Ma, 25 ) < 0 Moz )( Hay 25 )
does not hold for any system of integers pi,s;, #2,2,. Let ¢’ be the transformation
group the basis of which is a system of transformations

t(2)=z+mu, ' (2)=2z+mi+ims:

of the finite z-plane Z. Then we can easily see that, for any point z€Z, z and
B0 t™(2) (j=2, ..., ¢/) are not mutually equivalent modulo ¢/, but z and #™*
of,™i(2) (j=¢+1, ..., k) are mutually equivalent modulo g¢’.

Let

&'1: {3220, Oé%zgmll}’

. M2z
fd,={arg z=tan!:
Mi2

’ Oélzléx/mlzz"l‘mzzz ,

and let [, (j=2, ..., ¥) and I/ (k=1, ..., g—x, if g<oo; k=1, 2, ..., if g=c0) be those
defined by (68) and (69), respectively, for a disk (66) such that Dc (@, ~9,)° in place
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of (67). Further let
! Ti™230 Ty™25(1;) (j=2, ..., )
I*= i
Tlmu+mm]°sz“-wna,nj(lj) (]'=l,+1, - IC),

U =T To™(I) (=1, ..., q—r, if g<co; k=1, 2, ..., if g=o00).
Then, we can easily see that the set
K= U159 U@ 0%
J=2

does not simultaneously contain two distinct points z, 2/ equivalent each other
modulo ¢’. Then, by the method similar to 23, we know that there exists a funda-
mental region @’ of ¢’ and a homeomorphic map %4’ of @, onto @ which satisfy
the conditions (a’), (b’) of 23, and

() K'= U (71692 Ul e @),

Let @&/'=h'(@), &’=h'(é:). Then, by (a’) and (b’), @’ and &’ are the curves
which run from 0 to m,, and ms+imes, respectively, and &/, &', &.'(@’) and /(&)
form the boundary of the fundamental region @’ of ¢’. Since any confusion might
not occur we shall denote &', @, for the sake of simplicity, by &, &. in the following.

Let

+ o0

F’(O, 0)= { |Z| <OO} . U tl‘n.mu+mmuotzmmn <JO (l]\/l]*)\./ LLJ (lkl\./lk_l*)>,

n1,ng=—co
Fu, v)=trot2(F(0, 0)) (1, v:  integers),
where Uxly’=¢ if g=«. We shall agree that
F!, vy=Fp, »),

if the system of integers g, v, ¢/, v’ satisfies the relation

< u—p My Mz N1

u’—v) (0 Moz >< n2>

for some integers #;, #.. Then, the system of all mutually distinct F (#, v) is
given by

Ev) (=0, ..., mu—1; v=0, ..., mor—1).

We draw the curves i, @ on F(0, 0), and let F(0, 0) be the subregion of ﬁ(O, 0)
surrounded by @, @, ™™ (@) and #™'(&). Then, by (c”) we have



NOTE ON AN ABELIAN COVERING SURFACE, II 163
FO, 0)=q>'—< y (z]vzj*)vwlk'vlk’*)).
7= e

Let R be the Riemann surface obtained from
Fr vy (e=0, ..., mu—1; v=0, -+, me—1)

by connecting crosswise along each pair of the slits with the common projection on
the w-plane, where each slit corresponds obviously to one and only one slit. We
can see by the method similar to 23 that R is connected. Further there exist the
conformal transformations 7 and 7. of R onto itself which transform arbitrary
point # on F(z, v) to the points #; and $» on F(u+1,v) and F(y, v+1) such that

Sfo(br)=tifo(H) and So(p)=tze (),

respectively, where f; is the projection map of I onto the z-plane. Thus R admits
the covering transformation group &={T), T} generated by 7 and T,. We can
easily see that F(0, 0) is a fundamental region of the group ©.

Let p. and p; (j=¢+1, ..., £) be mutually distinct points on the upper shore of
l;, and po* and p;* (j=<-+1, ..., ¥) be the points on the lower shore of /;* equivalent
with p, and p; modulo g={#, £}, respectively.’® Let @& be a Jordan curve sur-
rounding 1~ Ut 4, Ul in (F(0, 0))° but not surrounding /, (7=3, ..., ¢), I;*
(j=2, ..., k) and all li’* and let G; be the Jordan domain surrounded by &s. Let
C and C* be Jordan curves surrounding Ul and Uxl’* in (F(0, 0))°, respectively,
but not surrounding I, and /* (=2, ..., £) such that CCG;, and let G and G* be
subdomains of F(0, 0) surrounded by C and C¥*, respectively. Let &, be a simple
curve on (F(0, 0))°—G—G* which runs from p. to p.* and intersects @ only once.
Further, let @,’ be a simple curve on Gs—G which runs from the mid-point of the
upper shore of [, to p; for each j (j=¢+1, ..., £) and such that & and &.,” (j=¢/+1,
..., £) mutually have no common points, and let @,,-; (j=¢-+1, ..., ) be a Jordan
curve on G;—G surrounding /, but not surrounding /x for k2j which intersects d,,’
only once but not @, dwx-1 and @’ for k=j. Let @,” be a simple curve on (F(0, 0))°
—Gs;—G* which runs from p,* to the mid-point of the lower shore of [;* for each
j(j=¢+1, ..., £) and such that a,,” (j=¢+1, ..., ¥) mutually have no common points,
and let azj=ad.,"dz,” (j=¢+1, ..., k). Let @, (j=3,...,,¢) be simple curves on
(F(0, 0))°—Gs—G*— U%,1,@,” which run from the mid-points of the upper shores
of 1, (=3, ..., ¢) to the mid-points of the lower shores of /;* (j=3, ..., ¢), respectively,
and such that &, (j=3, ..., ¢) mutually have no common points. Let &,—; (j=3,
.., ) be a Jordan curve on (F(0, 0)°—G;—G*—U 5o mz,” surrounding /, but not
surrounding /; for k=j and any /;/* which intersects &, (j=3, ..., ¢) only once but
not @smx-, and @ for kg,

Let R be the Riemann surface obtained from F(0, 0) by identifying the points

13) We shall take that {p;, p}"};zﬂ 4118 vacuous in the case (=, The similar note
should be taken in the following.
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of @, @, I, (=2, ..., ) and I/ for each k& with those of T\™*eT™ (&), T\™ (&), I;*
and I/* equivalent modulo @, respectively, where /, (=2, ..., ) and [,/ are con-
nected crosswise with [;* and /*, respectively. Then R=F (mod @). Let a, be
the images on R of &, (j=1, ..., 2¢), respectively. Then each pair a,;-; and as,
(=1, ..., ) forms a system of conjugate cycles on R. We can select the remaining
elements a1, ... of the canonical homology basis on the subdomain of R corres-
ponding to G and G*. Then, on taking a suitable orientation of a, as, ..., we see
that the condition (79) is satisfied. Hence, R is the one which satisfies the condition
of the present lemma.

25. On summing up the results of 16~24, we obtain the following theorem.

THEOREM 4. Let R be a Riemann surface of the class Og, a1, s, ... be a
canonical homology basis of R modulo the ideal boundary J. Let B be an abelian
covering surface of R which is of the class Og and whose covering transformation
group @={Ty, T:} 1s of the type 1. of 2. If B has finite spherical area, then R
and & satisfies the conditions (i)~ (vi):

(i) No dividing cycle on R can be a non-trivial generator of & (LEMMA 5);

(ii) Omnly a finite number of «; can be non-trivial generators of & (LEMMA 6);

(i) {a;} has the uni-orientation with respect to & (LEMMA 7);

@iv) R does not belong to any class W(g; M, ..., M, 26, Ma, ..., Mz, 2:) Of the
Sfamily (A) (LEmMA 8);

(v) R does not belong to a class W(g; My, Mz M2y, Me2) (2=q=00) of the
Samily (B) (LEmma 9);

(vi) R does not belong to a class W(g; My, ..., M1, 26, Mo, ..., May2e) O the family
(C) such that (=1 and

‘ mi1 Mg

ma1 Moo

where ¢ is the integer in (C) of 18 (LEMMA 12).

On the other hand, there always exists an abelian covering surface R with
finite spherical area in each class W, M, ..., My, 2 Mo, ..., Mo, 2:) except for the
classes in (iv), (v) and (vi) (LemMmas 10, 11, 14, 15).

RemArk 1. It is admitted in the theorem 4 that R is a closed Riemann surface,
where the conditions (i), (ii) are trivial.

ReEMARK 2. On the class of the abelian covering surfaces of the class O¢ with
finite spherical area, there is a notable difference on the topological property between
the cases I. (H) and II. of 2. The theorem 4 should be compared with the theorem
3 of [3].

26. Let R be a Riemann surface of the class Og, ai, as, ... be a canonical
homology basis of R modulo the ideal boundary J. Throughout the present section,
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we assume that R is an abelian covering surface of R which is of the class O and
whose covering transformation group &={T} is of the type I. (H) of 2. By the
theorem 1 of [3], no dividing cycle on R can be a non-trivial generator of & and
only a finite number of a;, as, ... are non-trivial generators of &. Then we may
assume that

{ C(J:YWJ (j:]-, (X} 2’6)! (mly [EX3] mzx):]-v
a,=1 (J=2r+1, ..)),

for a #=1, for T is a basis of &, where m, (j=1, ..., 2r) are integers being not

May—1=ms,;=0 for any j (j=1, ..., £) and (m,, ..., m.,) denotes the greatest common
measure of the integers my, ..., M.
Let {m,}., be a system of integers with (my, ..., m2)=1 being not mes;,_;=m,

=0 for any j (j=1, ..., ¥). Let W(g; my, ..., ms:) be the class of the abelian covering
surface R with finite spherical area such that R=F (mod @) are open or closed
Riemann surface of finite or infinite genus ¢ (¢r=g=c0), and such that there exists
a basis ay, az, ... on R which has the forms

[ W=T" (=1, .20,
Ua,=1 (G=2c+1, ...)

as generators of &. Then, by the theorem 3 of [3], Wg; e, ..., M2e)F .
In the present section, we shall verify the theorem.

THEOREM 5. Let

(80) dy= min max v (w).
JEBCR)  w
Then
1 (my==1, g=1),
@81 min dy=1 2 (mo=1, q=2),

ﬁe?[(q; M1, ML)
Mo (my=2),

where my=miN<;<; (M2)-1, M2j).

Proof. We have already known that the function attaining d, of (80) is given
by the function f; of the theorem 2 of [3] (cf. 21 of [3]) and further between dy
and m, ..., ma, there holds the relation of (23) of [3]:

(82) 2 (Moy—mg % —mzims, - *) =do
J=1
for a system of integers m* (j=1, ..., 2x).

Let @, @, ... be the canonical homology basis regular for B constructed from
ay, @, ... such that
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! (:i’zj_r:I, .
(]=]" ey h:),

t 6(2] — T"—”,

where m,=(mz;-1, mz;)>0 (cf. the lemma 10 of [3]). By the lemma 10 of [3], it is
sufficient to prove the theorem for such a regular canonical homology basis for K.
Then (82) takes the form

(83) 3 i = do,
1=1

and by the method similar to the lemma 7 it can be shown that
i, *=0 (=1, ..., k).

First it is obvious by (83) that the minimum d, is not smaller than the value
of the right hand side of (81).

Next we shall construct the abelian covering surface R attaining the value of
the right hand side of (81) as d..

(i) The case my=1, g=1:
It is easily constructed.

(ii) The case my=1, ¢g=2:
Without loss of generality, we may assume that i, =m,. By the method of the
proof of the lemma 15, we construct the abelian covering surface B, of the type
II. of 2 which has the covering transformation group & with the system of
generators such that

a=T7, ax=T,
1 a2/—1:I) a2/=T1°T2ﬁJ (]22, veey IC),

a,=1 (j=2c+1, ..),
and which has finite spherical area. Let F be the subregion of R, lying over the
parallel strip {0=Rz=1), and R be the Riemann surface constructed from F on
identifying points of 0F equivalent modulo 73. Then it is easily seen that R is
the desired one.

@iii) The case m,=2:

We may assume that #;=m, By the method of the proof of the lemma 15, we
construct the abelian covering surface K. with the system of generators:

ay=T, ag="T™,

0(2,_1=I, 0(2]=T2ﬁ‘7 (]=2, veey IC),

a,=1 (=241, ...).

Then, by the method similar to (ii), we can construct the desired R from R..



NOTE ON AN ABELIAN COVERING SURFACE, 11 167

27. Let R be an abelian covering surface the covering transformation group
® of which is of the type I. (P) of 2, throughout the present section. By the
theorem 1 of the previous paper [3], we have that F of the type I of 2 is of the
type 1. (P) if and only if either

(i) There exists a dividing cycle on R=F(®) being a non-trivial generator of ®;
or

(i) There exists an infinite number of the elements of a canonical homology

basis modulo ¥ being non-trivial generators of &.
Thus we see that there holds (i) or (i) for R of the type L (P) even if B has
finite spherical area, which shows a notable difference from the cases of the types
I. (H) and II. (cf. the lemmas 7 and 8 of [3] and the lemmas 5 and 6). In fact, we
can easily construct examples of R with finite spherical area which have the pro-
perties (i) or (ii). Further, by the theorem 1, the differential f,’($)d¢ can be regarded
as an abelian differential of the first kind on R=R (mod @) and

DR(ﬁ)) =00,

which shows again a notable difference from the cases of types L. (H) and IL
where there hold

Dgr(log fiy<oo and  Dg(fy)<oo,

respectively.
By the above reasoning, it seems that it is difficult to obtain the results
similar to the theorems 3 and 4 for the case of the type I. (P).

28. Let R be an abelian covering surface the covering transformation group
& of which is of the type III. of 2, throughout the present section. Then no more
R cannot belong to the class O; even if R=FR (mod @®) is closed (cf. [5]). Let®; (j=1,
..., N; N=3) be the subgroups of & gencrated by the only one clement 7', of the
basis of &, respectively. Then, each G, (j=1, ..., N) is of the type L. (P). Here
we shall assume that N

(i) there holds the same conclusion as in the theorem 1 for the present R and
®; (=1, ..., N) in place of & of the theorem 1.9 N
Then, we know by the method similar to the proof of the theorem 2 that if R has
finite spherical area there exists a function f,eB(F) which satisfies the conditions

84 Joo THD)=1o(B)+4 (j=1L, .., N).

On the other hand, it is obviously impossible that there exists such a function f,
for the case N=3. Thus we have that ReO,,. Unfortunitely, we have not yet
known if (i) is true.

CoNJECTURE. Let R be an abelian covering surface the covering transformation

group & of which is of the type III. and such that R=RF (mod ®) belongs to the
class Og. Then R would have in finite spherical area.

) 145 Here we should note that B¢Ogy If BeOq, (i) would follow from the theorem 1.
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