GENERATING ELFMENTS IN A FIELD

Ву Мотоісні Окиzимі

It is well known that, when F is a finite separable extension of a field k, there is an element α in F such that $F = k(\alpha)$. Let L be an intermediate field between F and k, then every generating element of F over k is a generating element over L. But the converse is not true.

We shall say that an intermediate field M in F/k has property (P), when every generating element over M is a generating element over k. In the present note we shall prove the existence of the maximal intermediate field with property (P) in F/k and characterize this field.

In the case when k is a finite field, the above subfield may be given by the following theorem.

THEOREM 1. When k is a finite field and F/k is an extension of degree $n=p_1^{e_1}p_2^{e_2}\cdots p_s^{e_s}$, then the maximal subfield with property (P) is the subfield of degree $p_1^{e_1-1}p_2^{e_2-1}\cdots p_s^{e_s-1}$.

Proof. F/k is a cyclic extension field and for any divisor d of n, there is a unique subfield of degree d. Let Δ be the subfield of degree $p_1^{e_1-1}p_2^{e_2-1}\cdots p_s^{e_s-1}$, then Δ has property (P). For, let $\Delta(\alpha) = F$ and $k(\alpha)$ has degree $p_1^{f_1}p_2^{f_2}\cdots p_s^{f_s}$ over k. If for some $i, f_i < e_i$, then there is a unique proper subfield Δ' of degree $p_1^{m_1}p_2^{m_2}\cdots p_s^{m_s}$, where $m_i = \max(f_i, e_i-1)$ $(i=1, 2, \dots, s)$. But Δ' contains α and Δ , so $\Delta' = F$. This contradicts the hypothesis that Δ' is a proper subfield of F.

Conversely, let L be a subfield with property (P) and its degree be $p_i^{l_1} p_2^{l_2} \cdots p_s^{l_s}$, then L is contained in Δ . For, if for some $i, e_i - 1 < l_i$, then L contains the subfield F_i of degree $p_i^{e_i}$. As F is direct product of F_i and F'_i whose degree is $\prod_{j \neq i} p_{j^j}^{e_j}$, there is a generating element ξ in F'_i over F_i . So ξ is a generating element over L and from property (P), $k(\xi) = F$. This contradicts with the assumption $k(\xi) \subset F'_i$.

In the following, we assume that k has an infinite number of elements.

LEMMA. If two intermediate fields L_1 , L_2 in F/k have property (P), so the composite field $L=(L_1, L_2)$.

Proof. We denote generating elements as follows:

 $F = L(\alpha), \qquad L = L_1(\beta_2) = L_2(\beta_1) \qquad (\beta_i \in L_i, i = 1, 2).$

Received January 30, 1964.

MOTOICHI OKUZUMI

Then

$$F = L(\alpha) = L_1(\alpha, \beta_2).$$

We consider the system of fields $L_1(\alpha + \gamma_n \beta_2)$, $n=1, 2, \dots, \gamma_n \epsilon k$. Then from the finiteness of number of intermediate fields in F/k, there must be a pair, $L_1(\alpha + \gamma_n \beta_2) = L_1(\alpha + \gamma_m \beta_2)$. As the field contains α and β_2 , this field is F. So, from property (P), $F = k(\alpha + \beta_2) = L_2(\alpha) = k(\alpha)$.

We denote this maximal subfield with property (P) by Δ , then we can characterize Δ as follows:

THEOREM 2. Δ is the intersection of all maximal subfields of F/k.

Proof. Let Δ' be the intersection of all maximal subfields of F/k and α be a generating element of F over Δ' : $F = \Delta'(\alpha)$.

If $k(\alpha)$ is not F, then there is a maximal subfield M containing $k(\alpha)$. From $M \supset \Delta'$, $M = M(\alpha) = F$. This contradicts with the assumption, $M \subsetneq F$.

Conversely, a subfield *L* has property (P) and if there is a maximal subfield *M* such that $M \oplus L$, the composite field (M, L) is *F*. Let M = k(m), then L(m) = F and from property (P), k(m) = F. So this contradicts $M \cong F$.

When F/k is a Galois extension field. every maximal subfield corresponds to a minimal subgroup in the Galois group G of F/k. So $\mathcal{A}=\mathcal{A}_1$ corresponds to the subgroup D_1 generated by all elements of prime order.

The corresponding subgroup D_1 is a normal subgroup, so \mathcal{A}_1 is also a Galois extension field of k. And the Galois group is isomorphic with the factor group G/D_1 .

Similarly, we can define A_2 as the intersection of all maximal intermediate fields between A_1 and k, and so on.

Thus we obtain a series of normal subfields and correspondingly the principal series $G \supset D_1 \supset \cdots \supset E$. And each $\mathcal{A}_{i-1}/\mathcal{A}_i$ is a Galois extension and corresponds to a factor group D_i/D_{i-1} generated by all elements of prime orders in G/D_{i-1} .

References

- [1] ALBERT, A. A., Modern higher algebra. Chicago, Univ. of Chicago Press (1937).
- [2] ARTIN, E., Galois theory. Notre Dame Mathematical Lectures, No. 2. Notre Dame (1942).
- [3] VAN DER WAERDEN, B. L., Moderne Algebra. 2 vol. (1930), (1931).

Department of Mathematics, Tokyo Institute of Technology.

128