ON INFINITESIMAL TRANSFORMATIONS OF
ALMOST-KAHLERIAN SPACE AND K-SPACE

By Sumio Sawaki

1. Introduction.

In the present paper, we shall consider mainly infinitesimal conformal and
projective transformations of almost-Kihlerian space, K-space and, as their special
case, Kidhlerian space. Under what conditions do these transformations become
isometric? Even though there are many papers about this problem, it seems
to the author that there exist few about non-compact spaces. Recently Couty [1]
proved that in an almost-Kihler-Einstein space with positive scalar curvature, an
infinitesimal projective transformation is necessarily an isometry and Tashiro [7]
proved that in a Kihlerian space with non-vanishing constant curvatue scalar, an
infinitesimal conformal transformation is necessarily an isometry. In this paper,
we shall deal with the same problem but throughout this paper we do not assume
that the space is compact. In §2 we shall state some properties of almost-Kihlerian
space and K-space for later use. In §3 we shall obtain sufficient conditions for an
infinitesimal conformal transformation to be an isometry and especially a condition
corresponding to Couty’s result on a projective transformation and give a
decomposition of an infinitesimal conformal transformation in an Einstein K-space.
In §4 we shall deal with the same problem of an infinitesimal projective trans-
formation. A remark on the result obtained by Tachibana [4] about an infinitesi-
mal analytic conformal transformation in a K-space will be given in the last §5.

2. Almost-Kihlerian space and K-space.

Let X., be a 2n-dim. almost-complex space® and ¢;* its almost-complex
structure, then by definition we have

2.1 00 =—0;"

An almost-complex space with a positive definite Riemannian metric ¢;; satisfying

2.2) Grs@i"Pi* =i

Received December 18, 1963.
1) For example, see Yano [8]. Indices run over 1, 2, -, 2z.
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is called an almost-Hermitian space. From (2.2) it follows that ¢;; =g, is skew-
symmetric.
If an almost-Hermitian space satisfies

2.3) 7ipin+pioni+pnp=0

where p, denotes the operator with respect to Riemannian connection, then it is
called an almost-Kdhlerian space and if it satisfies

2.4 7 i0in+pipin=0

then it is called a K-space. In an almost-Hermitian space, if p;p,,=0, then it is
called a Kihlerian space.

Now, first of all, we shall assume we are in jan almost-Kidhlerian space and
transvecting (2. 3) with ¢/?=g7¢,*, we have

2077 jpin+ @7 Prpji=0 or 209+’ re;i=0.
From the last equation we have 2¢;,;0*=0 and therefore

2.5) pier’ =0,

because by (2.1) ¢’iprp;=0.
Operating p*pr=¢™p.pr to (2.1), we have

(2.6) FEr(eit s = rup;)est + 2 ke ) pFes -+ o pFrupst=0.

On the other hand, let Ri;* and R;=R;;' be Riemannian curvature tensor
and Ricci tensor respectively, then by the Ricci’s identity and (2.5), we get

2.7 Qs rpi’ =05 (o7 s¢° — Rsri' @i+ Rert*0i) = — @7 01* Rori' +¢,7¢0i' Ry
from which by the Bianchi’s identity we get
2.8) @Y rpis = pit Rn—R*;i
where

R*ji=(1/2)p" Ry
Similarly we have
2.9 @iV ipsr=Rji—R*ju.
Forming next the sum (2.8)+(2.9), we have

PP rpustrips) = ¢ R+ Rji— 2R

or using (2.3)
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(2.10) =@V sPr =05 ¢i'Rri+Rji—2R* ;.
Substituting (2. 10) into (2.6), we have
2.11) 2P0 W Psi =i 05 Ryt Roj—2R* 14070 R+ R ji — 2R*j;
and therefore for any vector field », from (2.11) we have
2.12) 7@, (PEs )0 = @7 i Rrwv* + R v — 2 R* 070 <0).

For an almost-Kihler-Einstein space:

R
Rj= 95
where R=¢"R;;, (2.12) becomes
(2.13) (Rj.— R*j)v70* =0.

Thus we have the following

LEMMA. In an almost-Kéihlerian space, the inequality
@CR*ji—Rji—o¢:i' Rn)vor =0
is valid for any vector field v and in an almost-Kdahler-Einstein space
(R*;;—Rj)v'v*=0
is valid for any vector field v.

In the next place, let us assume we are in a K-space. In a K-space, we know
the following identities obtained by Tachibana [5]:

2.14) R*j;=R*,,

(2.15)  Rju—R*;i=(pjor)pi0™, (Rju—R*)vv*=0 for any vector field v,
(2.16) R— R*=constant=0,

where R*=g¢'R*,;,

2.17) p"N(@)»,=0 for any vector field v,

where N@)rn=or'(Piors)pTv°.

In general,

) 1
(2.18) V]Rji'—:"‘z—ViR
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is a well known identity and the present author [3] proved in a K-space

3. Infinitesimal conformal transformations.

Let v* be an infinitesimal conformal transformation in an almost-Hermitian space
X:n, then by definition there exists a scalar function p satisfying

3.1) pivi+piv;=2pg;:
and as is well known, we have

1
(3.2 Pyt Ryt v =00+ 00" —0" 050, pi=pi0,  p=5 =V

n—1
n

3.3) pryv+ R+ v =0.

Multiplying (3.2) by ¢/¢rt, we have
OO0+ 2R*vr=—20; i.e.
3.9 0P (o' v™) + o (7 jons)p "0 +2R* 0" = —2p.

First of all, let X,, be an almost-Kidhler-Einstein space with non-vanishing
scalar curvature, then it is well known that v* is decomposed into

@3.5) v'=p+ky, k=constant

where p* is a Killing vector and 7* is a gradient vector defining an infinitesimal
conformal transformation [2]. Consequently, for %»* by (3.3) we have

n—1
—

(3.6) 7'yt R+ 77" =0.

Since ppy=ppy=pyy+RAy7, (3.6) turns to

2n—1
n

3.7 g 2Ry =0.
Let the scalar function for 7* be 2, then from (3.1) and (3.4), we have

17,77’:2, R*”??TZ—X?, Zq,Esz

2n

respectively and therefore combining these two equations, we have
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(3.9) 1 74 R¥*,97 =0
. o Vifrn w?) =V,

Eliminating pp,%" from (3.7) and (3.8), we get
@Cn—1)R* " — Ry =0

from which it follows that

3.9) @n—1)(R*\r—Rur)p'y +2(n—1)Ruryy =0

where R,,=(R/2n)gr.

But in this place, according to Lemma in § 2, (R*,—R.)y'p"=0 and therefore if
R>0, then from (3.9) we have

2(n—1)
2n

R 7]"'777 = 0)

hence, for #n>1, y”=0. Thus from (3.5) we have the following

THEOREM 1.2  In an almost-Kihler-Einstein space (n>1) with positive scalar
curvaturve, an infinitesimal conformal transformation is necessarily an isometry.

Secondly, assume that X, is a K-space with constant curvature scalar (i. e.
p:R=0). From (3.3), we can easily deduce

2n—1
nn 72 RAvm) =0
or making use of p= L o
g o= 2 yiv
1
(3.10) P or+ ————F (R0 =0.

2n—1
Operating p* to (3.4) and using (2.17) and pr¢,?=0, we have
(3.11) PUR* ") =—ploi.®
Accordingly, from (3.10) and (3.11), we have
1
JER—— % T — 7 X 17Ty —
(3.12) - iR o) —po(R*0m)=0.

But since, by (2.16), (2.18) and (2.19), we find

2) For a compact Kihler-Einstein space, see Yano [8], p. 277.
3) See Tachibana [6].
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1 1
O=p"Rri=—piR=—piR*=p R,

from (3.12) it follows

Rpv,—R*pv,=0.

1
(3.13) T

On the other hand, transvecting (3.1) with symmetric tensors R’ and R*/,
we have

(3 14) .Rjile}q;=pR, R*jiVjUi':pR*

respectively, so from (3.13) we obtain

1
_ R o=
(3.15) ( o1 R—R )p 0.

Consequently if (1/(2n—1))R— R*=0, then we have p=0. Thus, from (3.1), we have
the following

THEOREM 2. In a K-space with constant curvaturve scalar, if (1/2n—1))R—R*
%0, then an infinitesimal conformal transformation is necessarily an isometry.

According to this theorem and (2.16), we have

CoROLLARY. In a K-space (n>1) with constant curvature scalar, if R<0 or
R*<0 or R>0 and R*=0, ¢ic., then an infinitesimal conformal transformation is
necessarily an isometry.

When the space is a Kihlerian space, R=R* and hence from Theorem 2 we
have

CoroLLARY. (Tashiro [7]) In a Kdihlerian space (n>1) with non vanishing
constant curvature scalar, an infinitesimal conformal transformation is necessarily
an isometry.

Again returning to a K-space, if we consider a homothetic motion, then by
definition we have

(3.16) pvityav;=2cq;i, c=constant

from which it follows

3.17) o= 21 ypr=c.

n

Transvecting (3.16) with R/ and R*¥, we have
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(3.18) Ritpjv;=cR, R¥iip jv;=cR*
respectively.
Making use of (3.17) and (3.18), from (3.10) it follows
(3.19) cR+vpiR=
and from (3.11)
(3. 20) cR*¥+vp R*,*=0.

But, by virtue of (2.16), (2.18) and (2.19), we have

3.20) PRA— R = (7 R~ R =0

and then forming the difference (3.19)—(3.20), we have
(3. 22) c(R—R*)=0.

Thus, in a K-space such that R R* (which will be called a proper K-space), from
(3.22) we can deduce ¢=0 and therefore from (3.16) we have the following

THEOREM 3. In a proper K-space, a homothetic motion is necessarily a motion.

Finally, suppose that we are in an Einstein K-space with non-vanishing scalar
curvature, then v* is decomposed in the form

(3.23) ve=p+ky, k=constant

and let the scalar function for %»* be 4, then from (3.1) we have

(3.29) Vi7.=4gji.

Consequently, putting

(3.25) q+=—kos

and operating p’ to (3.25), we have
7qr=—k(pe )y —kerpiy

or substituting (3.24) into this equation

(3.26) 7q=—k(plo, )y —kip"

from which it follows

(3.27) r’q+pig’=0

i. e. ¢¢ is a Killing vector. Since, from (3.25) we get kpy*=¢,q", we can state
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THEOREM 4. In an Einstein K-space with non-vanishing scalar curvature, any
vector v* defining an infinitesimal conformal transformation is decomposed in the form

V= pt_l_gorzqr
where p* and q* arve both Killing vectors and ¢,*q" is a gradient vector. The decom-

position stated above is unique.

4. Infinitesimal projective transformations.

Let v* be an infinitesimal projective transformation in an almost-Hermitian
space X.», then by definition there exists a vector p; such that

(C3Y Pl "+ Ry ji"v"=p;0:"+p:0 ;"

from which we have

4.2) 7yt RAvr =20, or= Tl 7.

By the same method in § 3, we have the following equation corresponding to (3.4):
4.3) 0 {on'p ™)+ sona)p v +2R* 1,07 = —p1.

Here, as is well known, if X,, is an Einstein space with non vanishing scalar
curvature, then v»* is decomposed into

4. 4) v =p'+kyp, k=constant

where p* is a Killing vector and 7* is a gradient vector defining an infinitesimal

projective transformation [8].
Thus, for »* by (4.2) we have

2
Pyt Ry = TR
from which it follows

2n—1 .
4.5) m—ViVm +2R =0
and from (4. 3)
(4.6) OR* iy =0,
e 2n+1

Eliminating p:p,%” from (4.5) and (4.6), we have
4.7 @2n—1)R*;y"— Ry =0.
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Multiplying (4.7) by 7* and rewriting, we get
4.8) @Cn—1)(R*ji— R )n’n*+2(n—1) Ry =0.

In this place, when X,. is an almost-K#hler-Einstein space, by Lemma in §2,
(R*ji—Rj)pn*=0. Accordingly, if R>0, then from (4.8) we find ((n—1)/n)Ry*y;
=0 and therefore 7*=0.

Hence we have the following

TueoreMm 5. (Couty [1]) In an almost-Kdihler- Einstein space (n>1) with positive
scalar curvature, an infinitesimal projective transformation is mnecessarily an
isometry.

And if X,, is an Einstein K-space, then from (2. 15) (R*;;—R;)7’7*=0 and there-
fore if R<(, then from (4.8) we have ((r—1)/n)Ry*:=0.
Hence we have the following

THEOREM 6. In an Einstein K-space (n>1) with negative scalar curvature,
an infinitesimal projective transformation is necessarily an isometry.

As a special case, when X,. is a Kihler-Einstein space, taking account of
R;i=R*;;, from (4.8) we have

COROLLARY.Y In a Kihler-Einstein space (n>1) with non vanishing scalar
curvature, an infinitesimal projective transformation is necessarily an isometry.

5. Infinitesimal analytic conformal transformations in a K-space.

In an almost-Hermitian space Xa,., if »* satisfies
(6.1 Lor=vpei =7+ =07

where £ is the operator of Lie derivative, then v* is called a contravariant almost-
v

analytic vector. When a vector »* defining an infinitesimal conformal transforma-

tion is almost-analytic, we shall say that ¢* is an infinitesimal analytic conformal

transformation.
Now, we consider an infinitesimal analytic conformal transformation of a K-

space.
Multiplying (5.1) by pres/, we have

V(P W aed — @5 (Fupid )P0 + o (Prpd )y 07 =0
or by (2.1)

4) For a compact Kihler-Einstein space, see Yano [8], p. 273.
5) See Tachibana [4].
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(5.2) V(7 Wi — 205" (Prpid)prvt=0.
In this place, by (2.1) and (2.4), we see
07" (Proi )0t =—0 5" (s ) r0* = @i’ (70, 0" = 0 (107 ) "0 = N(0)s
so (b.2) turns to
V()7 e’ +2N(0) =0

or by (2.15)
(5.3) V"(Rir— R*) +2N(v),=0.
Operating * to (5.3) and using (2.17), we have
(5.4) 707 (Rier— R*1r) + 0" (P* Ry — pFR* 1) =0
but since by (3.21) we have

V*Rir—p*R¥ =0,
(5. 4) becomes
(5.5) P (Rir— R*4r) =0.

Moreover, »* being an infinitesimal conformal transformation, then making usc
of (3.14), (5.5) turns to

(5.6) p(R—R*)=0

from which it follows that p=0 if RR*.
Thus we have the following

THEOREM 7.2 In a proper K-space, an infinitesimal analytic conformal trans-
Sformation 1s necessarily an isometry.
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