A TIME REVERSION OF MARKOV PROCESSES WITH KILLING

By NoBuvuki Ikepa, Masao Nacasawa AND KENiTi SATO

Let X be a conservative Markov process, and X be another Markov process
obtained from X through Kkilling by e %, where ¢, is a continuous non-negative
additive functional of X. The purpose of this paper is to prove temporally homo-
geneous Markov property of the reversed process z;=#: . of X from the killing
time &.»

Hunt proved for Markov chain x, that if ¢ is the last exit time from a finite
sub-set, then ., has temporally homogeneous Markov property [1]. This result
stimulated us to consider more general reversed processes. The problems of finding
appropriate random times from which one can reverse the direction of time and
preserve temporally homogeneous Markov property, an extension of this paper, will
be discussed in another place by one of the authors. There the proof of Theorem
3. 6 will be simplified from a general point of view.

§1. Notations and assumptions.

We use the same terminologies and notations on Markov processes as in [3].
Let X=(x:, {, ., Ps, 0:) be a conservative Markov process satisfying M;~M; in
[3], and having the strong Feller property.? The state space of X is denoted by
(E, B). Let ¢i(w) be a continuous non-negative additive functional of X. We fix
X and ¢; throughout this paper and make two assumptions.

AssuMpTION 1.1. There exist a o-finite measure m and a finite measurable
function p(¢, a, b) of >0, a and beE, such that

1 Pa[x;eA]=S bt @, bym(dh) (80, AeB);
A

2) p(t, a, b) is continuous as a function of &;
3) Fixed >0, p(t, a, b) is bounded as a function of (a, b);
4) Put
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1) The results of this paper were obtained in joint works at the Sixth Summer
Seminar of the Group of Probability and Statistics in 1961.

2) X is said to have the strong Feller property, if Ma[f(z:)]eC(E) for all feB(E) and

¢>0.
88
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9., b):S cp(t, a, b) dt,
0
then g.(a, b) is, as a function of g, a-harmonic in E\{b} (a>0).

AssumpTION 1. 2. ¢, satisfies
1.1) lim sup M.[p:]=0,*
tl0 a€E

and there exists a o-finite measure # such that

1.2 Ma[gwe—“ dgas]=S 0@, Bu(dh)<-+oo  (aeE, a>0).
0 E
Note that Assumption 1.1 implies
L.3) S (1, @, Bym(db)p(s, b, H=p(t+-s, a c).
E

§2. Transition density of Kkilled process.

Let X =(d, &, M., P, 6;) denote the killed process of X by e* (e-#-subprocess).
We can and shall take X satisfying Ms, Ms, and

@1 P, exists |0<E <oo]=1.
LemMa 2.1. For each fe B(E),
@.2) M\ D F@e e dis [ Ml e f@ol,
Proof. Put ti(w)=sup {s; ¢s(w)=t}, then z, is a Markov time, and we have

2| | M Aevlersd |
M {7 Mo S @y ds |

——-Swe‘sdsMa[x(KmMa[ @Il

0

3) By 1) and the right continuity of paths, m is positive for any non-empty open set.
Hence, p(¢, @, b))=0 by virtue of 2), and gu.(@, b) is defined <+oco.

4) Put u(a):Ma[S e—asdgos]. Then # is a-excessive and (1.1) is equivalent to the
0

uniform convergence of lim;joMa[e~=tu(x:)]=u(a).
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_ S " esds Ml oy £ ()]

0
$21
—_-Ma[S e dsf(xt)], completing the proof.
0

Put
t
2.3) at, &, )=pt, a, O~ M| | pt—s, 2. b)evdp |
0
then q(¢, a, b) is the transition density of X, precisely,

THEOREM 2. 2.

—

i) SA q(t, a, Bym(db)=P.[i.c Al;
i) 0=q@, a, )=p(, a, b);
i) SE a(t, a, bymdbyg(s, b, )=q(t+s, a, ¢

iv) For fixed (¢, b), q(¢, @, b) is bounded continuous function of «;
v) For fixed (a, b), q(¢, @, b) is right continuous in #>0;
vi) X has the strong Feller property.

Proof. 1) Let f=yx4, then, using Lemma 2.1, we have

SMa[ jo D(E—s, s, be—*s dgps] F(Bym(db)
_—_M{S; Mo f(ed)]e s dws:I:Ma[ Fw)l—e0)]

- Sﬁ(t, &, By m(db)— oL f@)].

ii) q@, a, b) =p(t, a, b) is obvious. From i), q(t, a, 5)=0 m-a.e. beE. Since
Assumption 1.1, 2) and definition (2. 3) imply that ¢(¢, a, b) is upper semi-continuous
in b, we have q(¢, a, b)=0 for all beE.

i) Sq(t, a, Bym(db)q(s, b, )= L4+ Is+1s,

where
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L= S P, a, bym(db)p(s, b, ¢)=p(t-+s, a, c),
12=—S ot a, b)m(db)Mo[ j o1, 5, O d%]

—— | m] (' pts—r, @, e ||

0

e [t s .
S| TR

Y N T
S I [ |

:Ma[(l—e-%)Mx,[gz p(s—7, v, e dsar]]y

using Lemma 2. 1. Finiteness of each term is seen from ii) and (1. 3). Therefore,
we have

ﬁ:lli=q(t+s, a, ¢).

vi) is proved before iv) and v). Put
fu(@)=M,[M] f(x.-n)e*t-]], for feB(E).
Then fu(a) is continuous by the strong Feller property of X, and
| fu(@)— Ml fz)e ]|
=|Ma[(L—e=*n ) Munl f(@:-n)e~?-]]|
Sl SIMal—e 1 =] f || Malpn]—>0 (R | 0),

uniformly in a by Assumption 1. 2. Hence M o f(@)] is continuous, and vi) is
obtained.

iv) q(t, a, b) is bounded in « by ii), and from iii)
q(t, @, ))=Malqt—to, 1, )] for 0<te<t,
which is continuous in a by vi).

v) Noting that q(t+s, a, b)=M,[q(t, x5, b)e*s], right continuity of paths and iv)
prove v), completing the proof of Theorem 2. 2.
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Put
@ 4) d.(a, b>=S°°e—«£q(t, @byt (a=0),
then
M[S el (i) dt]=SE¢a<a, B)f bym(db),
for fe B*(E).
LemMA 2. 3.
2. 5) gu(a, Hy=g.(a, b>+Ma[S:° Gul@s, Bees—ts d%] (@=0).
Proof.

S°° e—a5 dtMa[Szp(t_s, Xs,y b)e“ws d(ps]

0 0

=M, Swe“"s dgosgw plt—s, xs, b)e=t dt]
] s

=M, Sm k] dgasgm (7, xs, b)e=" dr]
. JO

0

=M, Swga(ws, b)e‘“***”sdgos],
0

which proves (2. 5).
LEMMA 2. 4. For each «>0 and fe B(E), we have
2. 6) M| \" e r@y dge |={ guta, b5 man),
and for each a=0 and feB(E),
@7 2| \" eormnpi@y doc |={auta 0 70man.
Proof is given in [3] (Theorem 4.1 and 4. 2). (2. 6) is derived {rom (1. 2), and
(2. 7) is proved making use of (2.5) and (2. 6)
§3. Time reversion of killed process.

DEFINITION 3.1. Put 2°={w; &(w)<oco, and &i_o(w) exists} and for wef’,

@B.1) 2(0) =T oy —1—o(®), 0§l‘<¢(w)-
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z(w) is called the reversed process of X.

In order to prove the temporally homogeneous Markov property of z, we
prepare some lemmas.

LemMmA 3. 2. If a sequence of finite measures p(dt) on [0, T] (T'<oo) converges

to a continuous finite measure p(dt) in weak*, then

S f(t)/«tk(dt)—>s Fudt) (hoo),
(0,71

[0, 71
for each bounded | with at most first kind of discontinuity.
Proof. For ¢>0, define a sequence {t,} as
£,=0,
ta=inf {; t<t=T, |ft)—fW) =},  (inf ¢=T),
then #;,<t..1, if t;<7T, and there exists such N that {y=7. Put
F(O= ZS ety oA D@,

then |f(®—fi(t)]<e. Therefore

3.2) l S fuan) - :ﬁ(t)/z(dt)[ ég:l FO—FDldt) <K,
where K=sups p ([0, T])<oo.
3.3) {STﬁa)y(dt)— { fe(t);uc(dt)‘

0 0,71

égf FE Tler trn)) — 2ty £}

+1 (T e TH—wm({T}}—0 (k—>c0).
3. 4 )S ﬂ(t)ﬂk(dt)——s f(t)pk(dt>}<eK.
0,71 [0,71]
Consequently, combining (3. 2), (3. 3) and (3. 4), we have
T
]S fwuan-\ f(f)/l/c(dt)‘<3.sK,
0 0,73}

for sufficiently large %, completing theZproof.

Lemma 3.3. For k=0, fy, f1, -+, fx€ B(E), and 0=t,<€t; <.+ <ly, we have

(3. 5) M al:]I:[o Size); t <t< 00] =M[S:JI=]CIO Si@e-e)ere dgo,].
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Proof. 1t suffices to prove (3. 5) for f, fi, .-+, fu€C(E). Since the discontinuity
points of x,(w) are at most countable, we have

[ e ety e

o Tk
=lim} Ma[ I fi(@ugrin-ty) (e—%k+m_e—wk+<z+1)h)]
7=0

10 21=0

. X . k . s .

= tim 5 3 1] G ine0s tebin< €St (DA |
L) ’(: .

1| 1l Sty te<d<oo |

=Ma[]l=—lb fi(ztj); l‘k<C<O°]
Here we made use of conservativity of X.
The next theorem is a generalization of Lemma 2. 4,

THEOREM 3.4. For k=1, f, f1, -+, fr€ B(E), and 0=t,<t:<---<tr, and a=0, we
have

Ma[gwjﬁo i@t Yoot dgpz:I

tpd=
3.6) =eSESE n(das) filan)a(ts, @, aymida) fila)qlta—ty, @z, aym(das) fas)
oottty iy ae)m(da) filado(a, as)

Proof. 1t is sufficient to prove (3. 6) for f,, f1, -+, fu€Ci(E), and @>0. The case
a=0 is obtained by approximation of a. Put

u(a)=Ma[S: e dgot] and  ox(@)=N{u(@)— e Mulu(@y)]),
for some a,>0. Then
3.7) P[SO oty (@) ds—»S: ¢ dgs, N—oo, for all t]:l,
(cf. [2] and [4]). For B>0, on account of Lemma 3. 2, we have

o o k
S e Btk dfcha[S Ho fj(xc_gj)e—at—-% dgﬁz]
tpd=

tg—1
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T k
U fi(@e-c e~ vp(ae) df]

13 I=0

T—oc0 N—oo

— lim nmST p—— M[S
tp—1

. . 7 T—tg k
= lim llmS e Btr—aly dtkMa[S Ho fj(xckn—ej)e—at-wwk vN(x,kH) dt:l
te—1 0 J=

T—00 N—sc0

T—tg,__
— lim limS S dtMa[fk(xL)e“"tMn[S

To0 N—oo )

k—1
e FEE dty, Hofj(xa,c-u)vN(xtk)e‘“k]]
Jj=

g1

= S: et dfMa[ﬁc(x‘)e%Mn[S .

p—1

k—1

e Btk b=ty r[ofj(.l‘zk—:j) ngtk]:I.
=

This is, if (3. 6) is valid for &k—1,

= S‘” ek dtke_“tkS' . gn(a’ao)ﬁ)(ao)q(tl, a1, Qo)+ q(ts—tx-1, Ak, ax-v)m(day) filar)g(a, ax).

tk—1

The right member of (3.6) is right continuous in # by Assumption 1.1 and
the left member of (3. 6) is also right continuous in # by the following calculation.
Consequently, we have (3. 6) by stripping off the Laplace transform. If k=1, 2.7)
and similar argument lead to (3.6). Let 2} 0.

1Ma[gm kﬁlﬁ(xt_tj)fk(x;_;k_h,)e‘”‘“” dg&c]——Ma[SZj__ﬁ:fj(xt~tj)fk($c—tk)€""'“ d%];

tg+h J=0

= k—1
gMa[StHh J=H0 fi(x“‘f) l f"<x5—‘k-h)—fk(xt—‘lc)le_n_w dsm:l

tgth &
‘|‘Ma[5 f/(xz-zj)e—“‘—“t dgo::l

tgp  I1=0

—0,
because Zi-i,—n(@)—>Ti-r, (@) (b | 0) except countable values of ¢, completing the proof.

Let v be a o-finite measure on E, and put
3.8) ra)=\ dbus, @,

3.9 E,={a; acE, 0<y(a)<oo} and E,=FE\E,.
LEMMA 3.5. If v satisfies f’p[&eK 1< o0 for every compact KCE\ then
(3.10) PlzcE]=0  4=0).

Proof. Choose a sequence of compact sets K, T E. By Theorem 3. 4,

5) Pu[B]:Sy(da)Pa[B].
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(3.11) f’p[ZzeEij]=SSn(da)q(t, b, aym(db)yz,~x ;(b)1(D).
The right side of the above is zero or infinity, but the left side is finite by the

assumption. Therefore f’,[zteEor\Kj]———O. Letting j—oo, we have (3. 10).

THEOREM 3. 6. Let v be an initial measure of X §atis,ﬂzing I:’y[zﬂ:‘K 1< o0 for
every compact KCE. Then the reversed process (zi, P,) of (&, P.) has temporally
homogeneous Markov property and

3.12) Plzedblzs—al=q(i—s, b, @) ZEZ; mdb)  (0=s<?).

The initial measure of the reversed process is
(3.13) P.[zedal=n(a)n(da).
Here n(a) is defined by (3. 8).

Proof. TFor fy, fi, -+, fxe B(E) and 0=¢#,<---<tx, we have

B[ I Aty 1<t

Il

I

M [Ijo Fie o s b<t |
)

Sn(dao)fo(ao)q(tl, @, ag)m(day) fi(as)--

. m(dllk—1)fk—1(ak—1)U(Qk—l)XE,,(ak-1)8q(l‘lc—-fk—h iy Ap-1) UCh) JSilarym(dax)
7(@x-1)

7(ax)
7(2ey_y)

by Lemma 3. 3, Theorem 3. 4 and Lemma 3.5. This proves the temporally homo-
geneous Markov property of (z;, P,) together with (3.12). (3.13) follows directly
from (2. 7) and Lemma 3. 3.

o k—
=M, ]gol fj(sz)xE,(Ztk_l)Sq(tk—~frc—1, Ary Zty_y) ———— frla)m(dar); te- 1<\C:|

ReMARK 3.7. Suppose that m is a sub-invariant measure for X. Then, as
shown in [3],

3. 14) S n(db)gob, @)=1  for (m4m)—ae. acE
E
holds under some additional conditions. Thus, in this case, the reversed process

(zt, Pn) of (&, Pn) has transition density ¢(¢, b, a@)m(db) and the initial measure
n(db). This gives a probabilistic interpretation of adjoint processes.
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ReMARK 3.8. Under the assumption of §6 of [3], we are able to prove a
theorem of reversed processes analogous to Theorem 3.6. In this case, Theorem
is ste.tted as: Under the notgtions of §6 of [3], the reversed process (z, f’y) of
(#:, P.) is a_version of (&, P1,), where X7=(#.. P3) is the super-harmonic transform
of X=(&, P.) by 7.
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