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§1. Introduction and summary.

In the previous papers [7], [8], [11] and [12], we have discussed on the several
approximations to the probability distributions and noted their applications. The
purposes of this paper are to continue and extend our discussions, hence this paper
which is a continuation of [8] and [11] may be seen as the Part III of them.

Poisson approximations to binomial distribution and to Poisson binomial distri-
bution were treated ([2], [3]), but in [2] the expressions of the evaluations for the
error term are not quite simple ones. In §2, using the analogous technique to
that in [8], we evaluate the errors of the approximation in term of p under some
restrictive conditions, and remark that when binomial distributionis replaced by
negative binomial distribution, the similar results hold. Based upon these results,
we can deal with some of its applications to the sampling inspection theory.

Binomial approximation to Poisson binomial distribution was treated by LeCam
[6]. In § 3, we shall show that first approximating term of the above approximation
can be expressed as the sum of binomial distribution and its difference of the second
order. The error terms of the approximations of the approximation are evaluated
in terms of the square sum of Δpk where Δpk=pk—pv

The evaluation of the error of the normal opproximation to the binomial distri-
bution is given in [3] and [7]. In §4, we shall treat the normal approximation to
the Poisson binomial distribution which seems to be not investigated ever. For
evaluation of the error of approximation, we utilize the results of our previous
paper [7], and obtain the similar expression to the results of [7].

Finally in order to show the applicability of our results in § 1, we shall proceed
to some problems on sampling inspections by attributes based on prior distribution,
and add some remarks and tables.

In [9] and [10], we have also stated some results concerning with those pro-
blems from the other view points.

Received August 12, 1962 revised July 10, 1963.
1) Meaning of the notations of pk and p are described in [8].

i
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§2. Poisson approximations to binomial distribution and negative binomial
distribution.

Poisson approximation to Poisson binomial distribution was discussed in [8],
and the method we have used there enables us to simplify the results of [11]; the
evaluation term of the error of the approximation can be expressed by a polynomial
of p. Thus we have the following

THEOREM 1. Let X, Y and Z are random variables whose probability distribu-
tions are given by

=k)=t>(k: n, p)=(

P(Y=k)=π(k: h, d) =
k\

respectively, then we have

(2. 2) P(l'+\.^X^l

(2. 3) P

(2.4)

and ΔίP(») which are the i-th differences of Poisson distribution term have the same
meaning as in [11], where

(2.5) \R0\<p or --/>+5£2, |Λι|<5£2 or

// m [11], Jί /5 replaced by Y, we have the similar relations substituting h and
d in the place of λ and p respectively and changing the signs before the terms of
order p and pB.

Proofs are quite similar to those stated in [8] and [11], but need the cumbersome
calculations, so we shall omit their proofs. We wish to remark some propositions.

REMARK. We can utilize our approximation formula for negative binomial
distribution as cited above, only changing the two signs which is the quite simple
procedure. The errors caused by those formulas are expected to be the same as in
the case of the Poisson approximation to binomial distribution. For such a circum-
stance we may quote the paper by Patil [13] which shows the close connections
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between the binomial distribution and negative binomial distribution.
In this place we wish to remark also that our Poisson approximation formula

can be utilized for the calculation of imcomplete beta function.

CALCULATIONS. We have calculated the differences between the value of the
first and the second approximation formula and the value of the binomial distribu-
tion by making the tables of the first and the second differences as in Fig. 1.

1) We find the following region of (n, p) with the error bounded by 0.001,
which means our formula ensures the precision of three decimals under 0. When
we use the first approximation formula, the region is 10^w^40, p<Q.15 and the
second approximation gives the region 5^^10, £<0.25 and 10^n^40, />^0.30.

2) In practice, for the sake of convenience of the simple calculations, frequently
binomial distribution is replaced by the Poisson distribution. But the error caused
by such an approximation seems to be not estimated by simple term.

In this place we show the result of this evaluation which has proceeded by
evaluation of the first approximation term and by noticing the fact that the second
approximation term is negligible. The evaluation of the first approximation term
was done by the fact that the difference of the second order is maximized at

(see Fig. 2).
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Fig. 2. Areas with error
bounded by 1/300—1/20.

§3. Binomial approximations to Poisson binomial distribution.

Let Xk be a random variable such that P(Xk=l)=pk and P(Xk=ty=\—pκ—qk,
then Σk=Ά=S is a Poisson binomial distribution random variable. In this section
we shall treat the case when pk is not small but its variation σ^Σk^Pfc—p)2 (where
p=(l/ri)Σΐ=ιPk) is very small, we have already solved the case when max^ is
very small. The problem of this section was firstly discussed by LeCam [6], on
the other hand our object is to show that the distribution of S can be approximated
by use of the difference of the term of the binomial distribution, and to estimate
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the evaluation of the error associated with this approximation formula.
Relations between binomial distribution and Poisson binomial distribution are also

discussed by Feller [2].
We shall set forth our discussion in three steps for the sake of simplicity.

1. Taylor's expansion.

As we have done in [8] and [11], we start from the following characteristic
function:

(3. 1) E(e^)=fn(t)= Π
fc=l

From (3. 1), we have

(3. 2) log /„(*)= Σ log{ 1+^^-1)}= Σ log{ (£*'
Jc=l Λ=l

where p=(l/n)Σkpk and Δpk=pk—p, q=l—ρ. Restricting p<l/2 which does not
lose its generality, we further obtain

(3. 3) log/n(0=Λlog(£*'+?)+Σ log , _
peu+q

Assuming Δpk (k=l, 2, •••, n) are all so small that 2\dpk\/(q—p)<l/2 we can expand
the second term of (3. 3):

(3.4)

or

(3.5)

or

(3.6)

where

(3.7)

and

i |///>JS;κ
+1 |e"-i| '+1



and α
have

(3.8)

or

(3.9)

or

(3. 10)

where
In

(3. 11)
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=maXfc|Λ/te|. Operating the exponential calculus to the above both sides, we

1 / -̂1 1]
•exp

:-l
peu+q

we must note that Σϊ=ι^*=0 and θJ = Σϊ.ι^j*).
the above expression, if we pay our attention to (3. 9), for example, we have

2 2 *=ι •expj-y.

1 jf
Ύ \£

where $'s where unspecified complex valued quantities such that |$|^1 and

\Jl\= ~7Γ~ ffP TΛ or\4

3 ' l-2α/(l-2j5)
\t\2

(3.12)

I>eχPi 2

|2 / n
' V__

3 l-

- 3 l-

where σ|=Σΐ

+±

2. Theorems.

We shall state our theorems in the following two steps.
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THEOREM 2. Let τnax*Δpk=a, 2a/(l-2p)<l/2 and let Y be a random variable
such that

P(Y=k)=b(k: n, ί)=(ϊ)ί*(l-£)"-*,

then we have

(3. 13) P(l'+l^S^ΐ)=P(lr+l^Y^l) ^σϊ d2P(l'+l^Y'^Z)+R

where Yf is a random variable such that P(Y'=k)=b(k: n—2,p) and Δ2P has the
same meaning as in Theorem 1, so that we have

.; n—2, p)—b(l: n—2} p ) } — {ft(/'+l: n—2, p)—b(lr: n—2, p ) }

say, and

v*σ}-l Λ , J . Q/ <*p Y
^-— -lj+lj^3^τ-— j ,

l-

+ J_ _ 2α __ X
^ 3 l-2(p+a) )

1 « I αX / 1 1 2α \ I / / 1 1 2«
3 l-2jS ΊeXp (l-2j5)2 \ 2 + 3 1-20 / {/ \ 2 + 3 1-2/3

Proof. For the proof of our theorem, we need only to follow the way as we
showed in [8]. Hence by the formula (2. 8) in [8], we have from (3. 11) and (3. 12)

2π j—π \k=ιr+ι

sin (t/2)

(3.15) =-7Γ— (" (peu+q)n Σ e~ίkt dt
Zπ j-π k=i'+ι
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sin (t/2)
dt,

where /i, /2 are defined by (3. 11).
Hence we have

(3.16)

and that

(3.

and

(3.18)

-2°*

r, r i
2 Jo 3 l-2(Λ+α

•exp
2 (l-

3 1-

^,2—2 / 1ί7»7Γ / 1
xplϊ^Wlτ-

-rϊ=r+^)

3 1-
-1

We state the following theorem also, of which proof is omitted since it can be
done as the proof of Theorem 2.

THEOREM 3. Using the same notations as in Theorem 2, we have

(3. 19) P

where

and
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^Y^l)--σl,d2Σ P(Y'=k)
Li V +1

(3. 20)

1 ί£
+ 3

#2=O((4) tfwd 1™ is ίAβ random variable distributed as

§4. Normal approximation to the Poisson binomial distribution.

In this section, we shall show the normal approximation to Poisson binomial
distribution using the results of our previous paper [7].

In fact, detailed evaluations which we noted in [7] are quoted and some of them
are modified so as to apply to the present studies.

Let μ=E(S) and σ2=V(S), then we have μ=ΣΐPκ=np, a2=ΣΐPkQk(qk = l-pk)
and normalized random variable S'=(S—μ)/σ and the characteristic function of
S' is

(4. 1) fs,(t) <= Π (pke
ίt/σ+ qjc) - e~^t/σ

k=l

We shall devide our discussions in some steps for the sake of simplicity

1. Taylor's expansion of fs (f).

Taking logarithm of the both sides of (4. 1), we have under restrictions pk<l/2,

log fs>(t) = -i — 1+ Σ log (p*&t/β+qύ

(4.2)

= -i- 1+ Σ
σ fc=ι

= -i-^ /+ Σ Me1"'-!)- 4- Σ
σ k=ι Z *=ι

where

Γ> v-i
/v 2-ι

From (4. 2), we have further
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log /*(/)=

-f

t2 i n / it y i n

2 6 i * \ σ / 24 i

/ it
\ σ .120 ?

-- Σ
720 i

/ // \6

*( — )
\ σ )

(4.3)

- — ΣPϊ(—}6 1 \ σ /
?ϊ77r

5040
/ « y i » / a y

fc( — + .IΠOOΛ Σ^Cfc —\ (7 / 40320 i \ σ /

where

(4.4)
n / f \10 n / / \11

* ^Σί*£*(—) +Σί*Λ(—) 'i \ σ J i V <7 /

and Afc, Bk, •••, ̂  are the polynomials of forth order in pk and
having the same meaning as in (1, 3) of [7] p. 48.

Hence we have

is a constant

Y)
where

1 Γ ί n } / it \
~\ ΣPrtfo-P*? (— 1
ί96 L I *=ι J V σ /

(4.5)

1296

1

it
— 1+9

24 x64

*/ / \12
7—) .0

1 Γ ί 7 1 I 2 ί w

- ĵ ΣM*to*-Λ)
x24 L I *=ι J l * =

/ / \ 8

(— )\ (T /
r

24 *=ι
and

(4. 6)

i](v)"-

^ 1-6̂ * I ί— J

f)4.

-exp r — V
(7 /

1 A
24"6ίι •(—YL
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2. Expansion of fs,(f){sin (t/2σ)}~l.

From (4. 5), (4. 6) and Taylor expansion of {smtfβσ)}-1 (see the Lemma 3 of
[12] p. 40), we have

(4.7) f8,(

where

L= —+ —ΣΛ *( *-/>*)— ι(tf)2+ — ΠΣ/>* *( *-/>*)—/ 3 i (7 36(7 L [ i 0"

(48)
n 1

+3 Σ pkQ/c(l—ftpkQk) —r (it)3—3(it

Λf and N have the analoguous forms as in [7], (2. 2) except the first term of M
from which t/l2σ adds to L.

3. Theorems.

We are now in the position to prove the following

THEOREM 4. For σ>5 or Σ*-ιί*tf*>25 Λ»d Pk<l/2, we have

(4. 9)

/>ι ιm(4.10)

and

(4. 11) H ̂ 0.08 - +0.23 -

Proof. From the Levy's inversion formula, we have

Σ

Σ

e-$\t_e-ί&t

=Λ+/2, say,
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hence we have the results of 2,

11

2πσ }-βV^\ it 6 Λ=I k k k \ a )

)
9 / _t '

/ ίί

(4. 13)

Δπσ J-^VV

1 Γ°° ί σ I n ί it \ 2 1
= -9 — \ -T + -F- ΣM*(Φ>-/>*)( — 1Zπσ J_oo [ ίί Ό i \ σ i J

4- say,

where

(4. 14) #'= -J- + i Σ Prtfa-Pύί—
^ 6 1 \ σ

and S and T are the second term and the third term of (4.13) respectively and we
shall take V1Γ for β when we calculate the evaluation of the error terms R, S

and T.
It is also easy to see from the results of Uspensky [15] and [7] that

(4.15) l/ . l + IΛ'l^^ 3" 2 .

Absolute value of S and T can be majorated by the similar method as we
have adopted in [7]. From the evaluation of S, thus we have

36τr0 2 Jo

= Si + S2
say,

and

or

i ofi 6 * Σ Piqi fa-Pύ2- - \P-a*iP\er™ dt
3θ7Γί76 1 1 3 J o

Jo
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where akι=3(qι—pi)/(qk—pk).
The delicated and longsome calculus shows that Si is bounded by 0.053/σ2 and

82 can be majorated by the second term of the last expression of the inequality in
our previous paper (cf. Remark 1). Hence we can say

0.053+0.027 _ 0.08
(4.17) |i|= -z -—f-

and for T we can also apply the discussions of the paper cited above [7] and have
the result

Summarizing (4. 12~4.18) the proof of our Theorem is completed.

REMARKS. 1) For the result of our theorem, |ω| can be majorated in the
following form also;

A 1 £

(4.19) H^-^p-+0-3*''2.

The fact may be clear from our proofs of Theorem 4.
2) The evaluation of the error term ω seems to be comparable to the one

obtained in [7] which is the special case in which all the '̂s are equal, and seems
to be nearly best possible in this form in the sense that the more examined calculus
may serve to improve only the minor details of our evaluations.

§5. Applications to the theory of the sampling inspection.

In this paragragh, we shall discuss the theory of sampling inspection applying
the previous result on the Poisson approximation to binomial and negative binomial
distribution.

1. Average outgoing quality (AOQ) and Dodge and Romig's table of sampling
inspection.

The probabilities of finding Y defectives in n samples drawn from the lot of
size N ana of percent defective p are

(5. 1) P(r, n\N,p)= r,L , (O^r^ min(n, Np))

If the condition N^n is satisfied, (5.1) can be replaced by the binomial dis-
tribution

P(r I n, p)=b(r: n, p)=(?)pr(l-pr~r

and if the conditions /><! but np=λ=const, is added to it, then we have
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(5.2) P(r\n,p)=p(r; V=^~

The detailed approximation theory concerning the relation (5. 2) is discussed in
§2 and [11].

In 1928, Dodge and Romig have constructed the valuable tables of sampling
inspection using the above equality (5. 2). They have introduced some principal
notions " Lot Tolerance Percent Defective " (LTPD) and " Average Outgoing Quality "
(AOQ) and " AOQ limit" (AOQL). Under the some restriction on LTPD or on
AOQL, they decided the sample size n and its acceptance number c of the sampling
plan so as to minimize the average amount of inspection / at average percent
defective p.

2. AOQ and AOQL with due regard to prior distribution of p.

Dodge and Romig [1] have calculated AOQ and AOQL as

(5.3) A.OQ = p-L(p)

and

(5. 30 AOQL - max p - L(p)
p

where

(5.4) L(p)=ΣP(r\L) (h = np)

is the probability of accepting the lot submitted to the inspection, assuming that
the percent defectives of the lots do not vary from the lot to the lot, which is the
same to assume that prior distribution is the one point distribution with a mass 1
at p, and it is easy to see that this assumption gives the maximized AOQ. Hence if we
wish to determine the optimal sampling inspection plan under the restriction that
this AOQL is equal to the preassigned quantity, then the values of AOQL in many
practical cases are smaller than the AOQL. This fact was pointed out and discussed
by Hamaker [5] who proposed the utilization of prior distribution of p.

3. Distribution of the lot percent defective p and AOQ.

From the author's experiences, the lot percent defectives p seem to distribute
as gamma-distribution in many cases, and this distribution can be decided by its
two parameters wτhich are the lot average percent defective p and coefficient of
variation vp. Hald [4] has calculated the loss function to find optimal inspection
plans in many important cases.

When the probability density function of prior distribution φ(p) is given by the
following one of beta distribution

(5.5)
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we have AOQ as

where L(p) = Σr=oP(r I n, p). Hence, we have

(*> to ΛOQ= λl f1

 (Λ)

^ ; ^ '

and the probability of accepting the lot as

Jo

Now, if we assume that

Jθ Λl~Γ*2

is small but np=h and n (σp/p)=d are moderate where

we can approximate the beta distribution by gamma distribution and deform the
above quantities (5. 6) and (5. 7) as follows:

(5. 60 AOQHΪ. Σ h'(h'+d)...(h'+r-ld)
r=0 ^ !

(5. 70 L= Σ
r=o r!

where hf—h-\-d and ^ d/h— V^ is the coefficient of variation of the gamma dis-
tribution of the lot percent defectives. We can also obtain the following equality
for average amount of inspection / as

(5.8) I=n+(N-n) L=n+N L (N^ri)

where L can be calculated for vp^l/2 by our approximation formula in §1.

4. Construction of the table of sampling inspection.

As noted in 2, that AOQL=maxp AOQ=AOQ]npl=x is a monotonely increasing
function of vp is easily seen, while Dodge and Romig's table corresponds to the
case when vp=Q. Hence if we have any information concernig with the distribu-
tion of the lot percent defectives, we can decide the sampling inspection plan to
minimize / under the restriction A.OQL^y. As Campbell (see [1]) calculated and
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constructed the table showing the relation of x and y based on the Poisson distribu-
tion in (5. 2), (5. 3) and (5. 4), we can tabulate it for vp=l, V~2/2, 1/2 starting
from the (5. 60 and (5. 7')> replacing Poisson distribution by negative binomial dis-
tribution and have the table (Table I). For the numerical calculation of AOQL or
AOQ, we can use the binomial expression for negative binomial distribution

TABLE I

c

0
1
2
3
4
5
6
7
8
9

10
11
12
13

x y

1.0 0.37
1.62 0.84
2.27 1.37
2.95 1.95
3.64 2.54
4.35 3.17
5.07 3.81
5.80 4.47
6.55 5.15
7.30 '5.84
8.06 6.54
9.22 7.23
9.59 7.95

10.37 8.68

x y

1.0 0.25
1.55 0.53
2.10 0.82
2.66 1.11
3.21 1.40
3.77 1.70
4.32 1.99
4.88 2.29
5.44 2.59
5.99 2.88
6.55 3.18
7.11 3.48
7.66 3.78
8.22 4.08

x y

1.0 0.30
1.57 0.64
2.15 1.00
2.73 1.39
3.31 1.74
3.89 2.13
4.49 2.51
5.07 2.89
5.66 3.28
6.25 3.66
6.84 4.05
7.43 4.43
8.02 4.82
8.61 5.25

x y

1.0 0.33
1.59 0.73
2.19 1.15
2.80 1.59
3.41 2.02
4.03 2.49
4.66 2.96
5.28 3.42
5.91 3.89
6.53 4.35
7.16 4.82
7.79 5.29
8.42 5.78
9.04 6.22

No. 1 No. 2 No. 3

Vp =

No.

0, 1, FX2/2, 1/2

1, 2, 3, 4

TABLE II
-| / -j o . / r\ /n

No. 4

\ P
N \

500
1,000
2,000
3,000
4,000
5,000

10,000

AOQL-1%

0.1%
n c

25 0
25 0
53 1
53 1
53 1
53 1
53 1

1%
n c

53 1
82 2

111 3
111 3
140 4
140 4
170 5

AOQL-5%

1%
n c

11 1
11 1
16 2
16 2
16 2
22 3
22 3

5%
n c

16 2
28 4
40 6
52 8
58 9
64 10
88 14

\£
N \\

500
1,000
2,000
3,000
4,000
5,000

10,000

AOQL- 2%

0.1% 1%
n o n e

17 0 17 0

17 0 58 2

37 1 58 2

37 1 80 3

37 1 101 4

37 1 101 4

37 1 101 4

AOQL- 10%

1% 5%
n c n c

4 0 16 3

4 0 21 4

12 2 21 4

16 3 21 4

16 3 25 5

16 3 25 5

i
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[13] and we can apply the Poisson approximation stated in §2 vp/np^l/2 for simple
calculation.

Under this restriction on AOQL, we decide the sampling inspection plan (n, c)
which minimize / (Table II), where v'p stands for the coefficient of variation of
the distribution with the mean at p, Table II shows a part of the table thus con-
stracted, and complete table will be published (for example see [10]).

For example, if we have some information that prior distribution of p has lot

average defective ^=0.01 and coefficient of variation vp= V2/2 at usual production
process, but seems to have the coefficient of variation to be vp=1./2 at worst,
then we have for N= 3,000 the required sample inspection plan (80,3) when AOQL
=2%.

5. Variation of the outgoing quality.

So far we have treated the average outgoing quality (OQ, say) which means
the outgoing quality for the long run or for the sufficiently large number of lots.
But for finite number of the lots, we must consider the variation of OQ, or the dis-
tribution of OQ. This study were taken up by Steck and Owen firstly. We shall
discuss this problem for the cases when the prior distribution is given by the
gamma distribution.

Put L be the number of lots submitted to the inspection and p and vp are
the average outgoing quality and the coefficient of variation of prior distribution
respectively. Then we can show by calculating the characteristic function of OQ
that for sufficiently large L the distribution of OQ is approximated by normal dis-
tribution with mean ^4=AOQ and variance <;0

2

Q where

(5. 9) Λ-AOQ-J Σ (h+d)(L^...(L+d+r-ld

r\

(5. 10)

B=F'(*Ίr)'£> (h+2d}(k+3d)"rl
h+2d+r~ld) (!+</)-<

For the purposes to obtain the quantities A ana <70

2

Q, we can use the PatiΓs

expressions for vp=l, V2/2 and 1/2 and when vp^l/2, our approximation formula
(2. 3), (2. 4) are useful for quick checks of the variation of OQ.
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