A GEOMETRIC CONDITION FOR SMOOTHABILITY
OF COMBINATORIAL MANIFOLDS

By KEeiko Kupo aAnDp Hirosar NocucH1

§1. Introduction.

Let us commence with the terminology. For a complex Y, | Y| will denote
the polyhedron covered by Y and Y’ will stand for the first barycentric subdivision
of Y. We say that a subcomplex X of Y is complete if the intersection of a
(closed) simplex of Y and | X| is either empty or a simplex of X. A combinatorial
manifold is a polyhedron with a distinguished class of simplicial subdivisions which
are formal manifolds, [5, p. 825]. For a combinatorial manifold P, the boundary of
P is written 0P and the interior P—oP is written Int P, and a closed combinatorial
manifold will be a compact combinatorial manifold without boundary. Let X be a
subcomplex of Y where |Y| is a combinatorial manifold. (Note that X’ is a
complete subcomplex of Y”.) Then N(X, Y) denotes the star neighborhood of X in
Y, that is, the polyhedron consists of simplices of Y, which contain simplices of X.

It is well known that o N(K’, L) (that is, the boundary of the star neighbor-
hood of the first barycentric subdivision of K in the first barycentric subdivision of
L) is a closed combinatorial (m—1)-manifold if the polyhedron | L | is a combinatorial
m-manifold without boundary and K is a finite complete subcomplex of L; [4, p. 293].

For convenience, we say that a polyhedron @ is imbedded piecewise linearly in
euclidean space R if there are (linear) simplicial subdivisions X and L of @ and R
respectively such that X is a subcomplex of L, where it may be assumed without
loss of generality that X is a complete subcomplex of L.

Now let us explain the condition for smoothability.

DerINITION 1. Let M be a closed combinatorial z-manifold imbedded piecewise
linearly in euclidean (n+7)-space R, r=1. We say that M is in smoothable position
in R if the following is satisfied. Let K, and L, be simplicial subdivisions of M
and R respectively, where K, is a complete subcomplex of L,. Then there exist
piecewise linear homeomorphisms p;: M;—0oN(K,/, L.’) for each 0=<i=r—1, where
My=M and for 1=i=<r, M,=pi-:(M,~;) and where K, and L, are simplicial subdivi-
sions of M, and dN(K,-i’, L._,’) respectively such that K, is a complete subcomplex
of L. In the text, however, W, stands for oN(K,-,’, L.—y’) and L, will be the
subcomplex of L,_,’ covering W, for each 1<i=r.

Note that M, is a closed combinatorial z-manifold, which is combinatorially
equivalent to M, and W, is a closed combinatorial (z+#—i)-manifold, for each
1=/=<v, satisfying M;c W, and WD W,>:--D W,.
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The result of this paper is the following:

THEOREM A. If a closed combinatorial n-manifold M s in smoothable position
in (n47v)-space R, r=1, then M is smoothable.¥

Theorem A has the following implications. After Whitehead [5, p. 827] a
combinatorial n-manifold M is a w-manifold if a regular neighborhood U(M, R)
of M in (n-+7)-space R is combinatorially equivalent to the product of M and a
combinatorial 7-cell C7, written U(M, R)y=Mx C7, for large values of ». Now sup-
pose that a combinatorial w-manifold M be closed. Then, since the star neighbor-
hood N(Ky, L)) is a regular neighborhood, N(K,/, Ly/)=MxC" and there is a
piecewise linear homeomorphism po: My—0N(Ky', Ly/)=Mx S* defined by taking
oo(x)=(x, ;) for xeM, where S~'=0C" is a combinatorial (»—1)-sphere and z, is
a fixed point of S™-1. Let C'! be a combinatorial (r—1)-cell of S™-* containing z,
in the interior. It is clear that MxCr*! is a regular neighborhood of Mx {x,}
(=M, in MxS-1(=W.). Then NK,, L/)=MxCr* by [4, Theorem 23], and
there is a piecewise linear homeomorphism p;: M;—dN(Ky/, L//)=Mx S™-2 defined
by taking 01(y)=(y, yo) for yeM; where S"2=0C"-! and y, is a fixed point of S™-2,
and so on. Hence M is in smoothable position in R, and therefore, by Theorem A,

THEOREM B. Closed combinatorial n-manifolds ave smoothable?

By [3, p. 619], Theorem 2 obtained by the second named author [2, p. 214] is
a consequence of the result. That is,

CorOLLARY. If a closed combinatorial n-manifold M is imbedded piecewise
linearly in (n-+1)-space R, then M is smoothable.
(Note that the Schoenflies conjecture is not required.)

To see the way to get Theorem A we have to have more terminology. For
convenience, eliminating the restriction on the dimensions of sets questioned we
alter the definition of [1, p. 52] as follows:

DerINITION 2. Consider a set X in euclidean space R. An i-plane (an i-
dimensional hyperplane) will be called fransverse to X if it makes angles bounded
away from zero with the secant lines of X. Let x be a point of X. An i-plane
will be called transverse to X at x if it is transverse to some neighborhood of x on
X. A set of i-planes is called a transverse i-plane field over X if for each point x
of X there corresponds continuously an i-plane of the set, which is transverse to
X at x.

1) Theorem A was announced at the meeting on Differential Topology, Kyoto, October

1961.
2) The authors were informed when this paper was completed that Theorem B was

proved by J. Milnor, Microbundles and differentiable structures, Princeton University, 1961
(mimeographed).
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Suppose that a closed combinatorial »#-manifold M is in smoothable position in
R. Using Definition 1, M, is combinatorially equivalent to M. Therefore Theorem
A follows from Theorem C below in accordance with Theorem 2. 4 of Cairns; see
[1, p. 53] or [6, p. 159].

TureoREM C. Let a closed combinatorial n-manifold M be in smoothable posi-
tion in euclidean (n+r)-space R, r=1. Then M, admits a transverse r-plane field
over M,.

In fact Theorem C is a generalization of Theorem 1 of [2, p. 214] and the
establishment of Theorem C is the purpose of the paper. The method used here
is so simple that the Schoenflies conjecture needed in the previous paper is no
longer required in this paper.

§2. Lemmas.

For distinct points & and y of euclidean space R, ;g;' denotes the line through
x and y. Let X and Y be subsets of R, the join of X and Y will be denoted by
XxY. The parallelism between planes and lines will be denoted by the symbol //
between them.

Using Definition 2, Remark 1 of [2, p. 205] may be restated as follows:

LEmMA 1. Let Q be a polyhedron imbedded piecewise linearly in euclidean
space R and let K be a simplicial subdivision of Q. If an i-plane P* through a
point x of Q is not transverse to Q at x, then there are poinits s, t of St(x, K) (that

is, the star of x in K) arbitrarily near x such that st /] P

Let a closed combinatorial #-manifold M be in smoothable position in (n-+7)-
space R, »=1. Then by Definition 1, there exist piecewise linear homeomorphisms
pi: Mi—W.,.1 where i ranges 0=i=r—1. Recall that |K,|=M, |Li|= Wi
=0N(K,/, L) and L,,, is a subcomplex of L.’.

It is well known that for each point & of W.,: any simplex « of L, containing
x has the dimension greater than 0, and the intersection an M, is a non-empty
proper subset of «; see [4, p. 294]. Since K, is a complete subcomplex of L, the
intersection N M, is a simplex, say 3, of K,, which is a non-empty proper face of
a. By y we denote the non-empty proper face of a which is the face opposite
in a.

Let v, vy, -++, vq be the vertices of a, a=vo*v*---*v,. Then it may be assumed
that p=vek--xv, and y="ves 1% - *vq. By (a0, a1, -+, ay) we denote the barycentric co-
ordinates of x with respect to «. Then the points y(x) and z(x) of « are defined
by x such that the barycentric coordinates of y(x) and z(x) with respect to a are

ea" e eae . 0,--, 0\ and {0, ---, 0, _Z’e*_l,...,_q‘.l&_
2 ai 2 s 2 I 2 @
1=0

1=0 1=e+1 1=e+1
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respectively. By the definition we immediately see that y(z) and z(x) are contained
in the simplices 8 and y respectively, and x is contained in the interior of the join
y(x)*z(x). There may be another simplex a; of L, containing the point x of W,.,.
Then, using «, instead of a, we have the points y,(x) and z(x) for x. However,
it is trivial to check that y.(x) and z,(x) are y(x) and z(x) previously determined
by a respectively. Therefore the points y(x) and z(x) are well defined for each
point & of Wiy

Since the points y(x) and z(x) vary continuously if x ranges over an Wi, we

deduce the following:

;s .
LemMA 2. The set of the lines y(x)z(x), where x ranges over Wi, is a con-
tinuous line field over W,...

LEMMA 3. Let x be a point of Wy and let s be a point of St(x. L..1). Then
the wntersection Int(sxz(x))N\ Wi 1S empty.

Proof. Let epx---x¢,; be a (g—1)-simplex of L,,, containing x and s where
g=n+r—1 and where ¢, is the barycenter of the (j-+1)-simplex ¢/*! of L, such
that ¢'co®C---Co?=a; and furthermore, one of the vertices of ¢! is contained in g
and the other is contained in y (for «, 8 and 7 see above); see [4, p. 294].

Let y, be the barycenter of the simplex ¢?*'NM,, and let z, be the barycenter
of the face opposite ¢?*'N M, in ¢/*1. It is easily verified that the points y(x) and
2(x) are in yo*---*Yq— (CP) and zox---*kz4-; (Cy) respectively, where these joins may
be singular. Since y,, 2z, and e, are collinear, (e *e€g—1)*(zp% - *2,_;) is contained
in (Yox-- *xYg_1)*(2o%--%24—1). Since s is contained in egx---*e;—;, W1 N (sk2(x)) is con-
tained in Wit N @ok--*Yg1%20%--xZg—1). From [4, p. 294], it is immediately seen
that W1 N (Yok - *Yq-1%2e%-+-%2,_1) is contained in the cell ¢ dual to ¢ in a. Using
the barycentric coordinate system with respect to «, it is calculated that the
intersection of the dual cell § and the join s+z(x) is the point s, and then W..,
N (sxz(x))=s. This completes the proof.

>
Lemma 4. The set of lines y(x)z(x) obtained in Lemma 2 is a transverse line
field over W,.1 for each 0=i=r—1.

Proof. Suppose that y(x)z(x) is not transverse to W..; at . Then there are
. > A —  —
points s, ¢ of St(x, L...), such that st// y(x)z(x) by Lemma 1. Since st//y(x)z(x),

the points x, y(x), 2(x), s and ¢ are in a plane (or a line). Since st //y(x)z(x) and
the segment y(x)*z(x) contains x in the interior, it is seen that the intersection
x+t N Int(s+z(x)) is not empty, where s, { may be replaced by ¢, s respectively if
necessary. Since teSt(x, L..1) and | L., |= Wi, &t is contained in W,,;. There-
fore the intersection Int(s«z(x))N W..: is not empty. This contradicts Lemma 3.

>
Therefore the line y(x)z(x) is transverse to W,,: at . Lemma 2 now completes
the proof of Lemma 4.
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§3. Proof of Theorem C.

The line ;(x)z(ac) and the segment y(x)*z(x) and a simplex « of L,—, containing
x obtained in §2 for each x of W, will be written /;(x), si(x) and «; respectively
where ¢ ranges over 1=i=y rather than 0=i/=r—1. In particular, let & be a point
of M,, x is a point of all W, (=1, 2, .-+, 7). So there exist lines /,(x) for all i=1,
---, 7. First we shall prove that the lines /i(x), ---, l,(x) are linearly independent in
R. Since L, is a subcomplex of L,-,’, there is a simplex a; of L,—, containing =
for each simplex a,,, of L, containing « such that a,,,Ca;. And since the segment
si(x) is contained in «a; the join s.(x)*--xs,,;(x) is contained in St(x, L;) for each
1=j=r—1. Since, by Lemma 4, [;(x) is transverse to St(z, Lj), the line [;(x) is
linearly independent of the plane which is spanned by /,(x), l,-1(x), -+, l,,1(x) for
each 1=j=r—1. Hence the lines /;(x), ---, I,(x) are linearly independent in R.

Let Pi(x) be the :-plane spanned by (), ---, li(x). Next we shall show that
the set of #-planes P7(x), where x ranges over M., is the required field. Since each
l;(x) varies continuously if x ranges over W, the set of r-planes P7(x) is a con-
tinuous field over M,. On the other hand, by Lemma 4, P(x) is transverse to
St(x, L;). Then, using induction on i, Theorem C will follow if it be shown that
Py(x) is transverse to St(x, L,) provided that Pi-'(x) is transverse to St(x, L.-.).
Since Pi(x) is spanned by li(x) and Pi~‘(x), any line on Pi(x) is parallel to a line

;; where yes;(x) and ze P*~(x). Suppose that Pi(x) is not transverse to St(x, L.).

Then there are points s and ¢ of St(x, L.) such that ZZ // g;; where yes;(x) and z
ePi-(x), by Lemma 1. We may choose s, ¢, 9, z as vertices of a parallelogram (it
may be degenerate). Let z;, 2, be the midpoints of the segments z*f, x*f respectively.

Then ;1_.1:1 // zz and z; is the midpoint of the segment y*s. Let a; be a simplex of
L,-; containing a*s. Then, since s,(x)Cas, s¥si(x) Ca;CSt(x, L.—;). Since x;ex*t

—

CSt(x, L,—;) and z,ey*sCsi(x)*sCSt(x, L.-1), o // ziz, implies that P*~(x) is not
transverse to St(x, L;_,).
This contradiction completes the proof.
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