A GEOMETRIC CONDITION FOR SMOOTHABILITY OF COMBINATORIAL MANIFOLDS

By Keiko Kudo and Hiroshi Noguchi

§1. Introduction.

Let us commence with the terminology. For a complex Y, |Y| will denote the polyhedron covered by Y and Y' will stand for the first barycentric subdivision of Y. We say that a subcomplex X of Y is *complete* if the intersection of a (closed) simplex of Y and |X| is either empty or a simplex of X. A combinatorial manifold is a polyhedron with a distinguished class of simplicial subdivisions which are formal manifolds, [5, p. 825]. For a combinatorial manifold P, the boundary of P is written ∂P and the interior $P - \partial P$ is written Int P, and a closed combinatorial manifold will be a compact combinatorial manifold without boundary. Let X be a subcomplex of Y where |Y| is a combinatorial manifold. (Note that X' is a complete subcomplex of Y'.) Then N(X, Y) denotes the *star neighborhood* of X in Y, that is, the polyhedron consists of simplices of Y, which contain simplices of X.

It is well known that $\partial N(K', L')$ (that is, the boundary of the star neighborhood of the first barycentric subdivision of K in the first barycentric subdivision of L) is a closed combinatorial (m-1)-manifold if the polyhedron |L| is a combinatorial *m*-manifold without boundary and K is a finite complete subcomplex of L; [4, p. 293].

For convenience, we say that a polyhedron Q is imbedded *piecewise linearly* in euclidean space R if there are (linear) simplicial subdivisions X and L of Q and R respectively such that X is a subcomplex of L, where it may be assumed without loss of generality that X is a complete subcomplex of L.

Now let us explain the condition for smoothability.

DEFINITION 1. Let M be a closed combinatorial *n*-manifold imbedded piecewise linearly in euclidean (n+r)-space $R, r \ge 1$. We say that M is in *smoothable position* in R if the following is satisfied. Let K_0 and L_0 be simplicial subdivisions of Mand R respectively, where K_0 is a complete subcomplex of L_0 . Then there exist piecewise linear homeomorphisms $\rho_i: M_i \rightarrow \partial N(K_i', L_i')$ for each $0 \le i \le r-1$, where $M_0 = M$ and for $1 \le i \le r$, $M_i = \rho_{i-1}(M_{i-1})$ and where K_i and L_i are simplicial subdivisions of M_i and $\partial N(K_{i-1}', L_{i-1}')$ respectively such that K_i is a complete subcomplex of L_i . In the text, however, W_i stands for $\partial N(K_{i-1}', L_{i-1}')$ and L_i will be the subcomplex of L_{i-1}' covering W_i for each $1 \le i \le r$.

Note that M_i is a closed combinatorial *n*-manifold, which is combinatorially equivalent to M, and W_i is a closed combinatorial (n+r-i)-manifold, for each $1 \leq i \leq r$, satisfying $M_i \subset W_i$ and $W_1 \supset W_2 \supset \cdots \supset W_r$.

Received July 24, 1963.

The result of this paper is the following:

THEOREM A. If a closed combinatorial n-manifold M is in smoothable position in (n+r)-space R, $r \ge 1$, then M is smoothable.¹⁾

Theorem A has the following implications. After Whitehead [5, p. 827] a combinatorial *n*-manifold M is a π -manifold if a regular neighborhood U(M, R) of M in (n+r)-space R is combinatorially equivalent to the product of M and a combinatorial r-cell C^r , written $U(M, R) \equiv M \times C^r$, for large values of r. Now suppose that a combinatorial π -manifold M be closed. Then, since the star neighborhood $N(K_0', L_0')$ is a regular neighborhood, $N(K_0', L_0') \equiv M \times C^r$ and there is a piecewise linear homeomorphism $\rho_0: M_0 \rightarrow \partial N(K_0', L_0') \equiv M \times C^r$ and there is a fixed point of S^{r-1} . Let C^{r-1} be a combinatorial (r-1)-sphere and x_0 is a fixed point of S^{r-1} . Let C^{r-1} be a combinatorial (r-1)-cell of S^{r-1} containing x_0 in the interior. It is clear that $M \times C^{r-1}$ is a regular neighborhood of $M \times \{x_0\}$ $(=M_1)$ in $M \times S^{r-1} (=W_1)$. Then $N(K_1', L_1') \equiv M \times C^{r-1}$ by [4, Theorem 23], and there is a piecewise linear homeomorphism $\rho_1: M_1 \rightarrow \partial N(K_1', L_1') \equiv M \times S^{r-2}$ defined by taking $\rho_1(y) = (y, y_0)$ for $y \in M_1$ where $S^{r-2} = \partial C^{r-1}$ and y_0 is a fixed point of S^{r-2} , and so on. Hence M is in smoothable position in R, and therefore, by Theorem A,

THEOREM B. Closed combinatorial π -manifolds are smoothable.²⁾

By [3, p. 619], Theorem 2 obtained by the second named author [2, p. 214] is a consequence of the result. That is,

COROLLARY. If a closed combinatorial n-manifold M is imbedded piecewise linearly in (n+1)-space R, then M is smoothable.

(Note that the Schoenflies conjecture is not required.)

To see the way to get Theorem A we have to have more terminology. For convenience, eliminating the restriction on the dimensions of sets questioned we alter the definition of [1, p. 52] as follows:

DEFINITION 2. Consider a set X in euclidean space R. An *i*-plane (an *i*-dimensional hyperplane) will be called *transverse to* X if it makes angles bounded away from zero with the secant lines of X. Let x be a point of X. An *i*-plane will be called *transverse to* X at x if it is transverse to some neighborhood of x on X. A set of *i*-planes is called a *transverse i-plane field* over X if for each point x of X there corresponds continuously an *i*-plane of the set, which is transverse to X at x.

240

¹⁾ Theorem A was announced at the meeting on Differential Topology, Kyoto, October 1961.

²⁾ The authors were informed when this paper was completed that Theorem B was proved by J. Milnor, Microbundles and differentiable structures, Princeton University, 1961 (mimeographed).

Suppose that a closed combinatorial *n*-manifold M is in smoothable position in R. Using Definition 1, M_r is combinatorially equivalent to M. Therefore Theorem A follows from Theorem C below in accordance with Theorem 2. 4 of Cairns; see [1, p. 53] or [6, p. 159].

THEOREM C. Let a closed combinatorial n-manifold M be in smoothable position in euclidean (n+r)-space R, $r \ge 1$. Then M_r admits a transverse r-plane field over M_r .

In fact Theorem C is a generalization of Theorem 1 of [2, p. 214] and the establishment of Theorem C is the purpose of the paper. The method used here is so simple that the Schoenflies conjecture needed in the previous paper is no longer required in this paper.

§2. Lemmas.

For distinct points x and y of euclidean space R, xy denotes the line through x and y. Let X and Y be subsets of R, the join of X and Y will be denoted by X*Y. The parallelism between planes and lines will be denoted by the symbol // between them.

Using Definition 2, Remark 1 of [2, p. 205] may be restated as follows:

LEMMA 1. Let Q be a polyhedron imbedded piecewise linearly in euclidean space R and let K be a simplicial subdivision of Q. If an i-plane P^i through a point x of Q is not transverse to Q at x, then there are points s, t of St(x, K) (that is, the star of x in K) arbitrarily near x such that $\overrightarrow{st} // P^i$.

Let a closed combinatorial *n*-manifold M be in smoothable position in (n+r)space $R, r \ge 1$. Then by Definition 1, there exist piecewise linear homeomorphisms $\rho_i: M_i \rightarrow W_{i+1}$ where *i* ranges $0 \le i \le r-1$. Recall that $|K_i| = M_i$, $|L_{i+1}| = W_{i+1}$ $= \partial N(K_i', L_i')$ and L_{i+1} is a subcomplex of L_i' .

It is well known that for each point x of $W_{\iota+1}$ any simplex α of L_{ι} containing x has the dimension greater than 0, and the intersection $\alpha \cap M_{\iota}$ is a non-empty proper subset of α ; see [4, p. 294]. Since K_{ι} is a complete subcomplex of L_{ι} , the intersection $\alpha \cap M_{\iota}$ is a simplex, say β , of K_{ι} , which is a non-empty proper face of α . By γ we denote the non-empty proper face of α which is the face opposite β in α .

Let v_0, v_1, \dots, v_q be the vertices of $\alpha, \alpha = v_0 * v_1 * \dots * v_q$. Then it may be assumed that $\beta = v_0 * \dots * v_e$ and $\gamma = v_{e+1} * \dots * v_q$. By (a_0, a_1, \dots, a_q) we denote the barycentric coordinates of x with respect to α . Then the points y(x) and z(x) of α are defined by x such that the barycentric coordinates of y(x) and z(x) with respect to α are

$$\begin{pmatrix} \frac{a_0}{\sum\limits_{i=0}^{e} a_i}, \cdots, \frac{a_e}{\sum\limits_{i=0}^{e} a_i}, 0, \cdots, 0 \\ \sum\limits_{i=0}^{e} a_i \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0, \cdots, 0, \frac{a_{e+1}}{\sum\limits_{i=e+1}^{q} a_i}, \cdots, \frac{a_q}{\sum\limits_{i=e+1}^{q} a_i} \end{pmatrix}$$

KEIKO KUDO AND HIROSHI NOGUCHI

respectively. By the definition we immediately see that y(x) and z(x) are contained in the simplices β and γ respectively, and x is contained in the interior of the join y(x)*z(x). There may be another simplex α_1 of L_i containing the point x of W_{i+1} . Then, using α_1 instead of α , we have the points $y_1(x)$ and $z_1(x)$ for x. However, it is trivial to check that $y_1(x)$ and $z_1(x)$ are y(x) and z(x) previously determined by α respectively. Therefore the points y(x) and z(x) are well defined for each point x of W_{i+1} .

Since the points y(x) and z(x) vary continuously if x ranges over $\alpha \cap W_{i+1}$, we deduce the following:

LEMMA 2. The set of the lines y(x)z(x), where x ranges over W_{i+1} , is a continuous line field over W_{i+1} .

LEMMA 3. Let x be a point of W_{i+1} and let s be a point of $St(x, L_{i+1})$. Then the intersection $Int(s*z(x)) \cap W_{i+1}$ is empty.

Proof. Let $e_0 \ast \cdots \ast e_{q-1}$ be a (q-1)-simplex of L_{i+1} containing x and s where q=n+r-i and where e_j is the barycenter of the (j+1)-simplex σ^{j+1} of L_i such that $\sigma^1 \subset \sigma^2 \subset \cdots \subset \sigma^q = \alpha$; and furthermore, one of the vertices of σ^1 is contained in β and the other is contained in γ (for α, β and γ see above); see [4, p. 294].

Let y_j be the barycenter of the simplex $\sigma^{j+1} \cap M_i$, and let z_j be the barycenter of the face opposite $\sigma^{j+1} \cap M_i$ in σ^{j+1} . It is easily verified that the points y(x) and z(x) are in $y_0 \ast \cdots \ast y_{q-1}$ ($\subset \beta$) and $z_0 \ast \cdots \ast z_{q-1}$ ($\subset \gamma$) respectively, where these joins may be singular. Since y_j, z_j and e_j are collinear, $(e_0 \ast \cdots \ast e_{q-1}) \ast (z_0 \ast \cdots \ast z_{q-1})$ is contained in $(y_0 \ast \cdots \ast y_{q-1}) \ast (z_0 \ast \cdots \ast z_{q-1})$. Since s is contained in $e_0 \ast \cdots \ast e_{q-1}, W_{i+1} \cap (s \ast z(x))$ is contained in $W_{i+1} \cap (y_0 \ast \cdots \ast y_{q-1} \ast z_0 \ast \cdots \ast z_{q-1})$. From [4, p. 294], it is immediately seen that $W_{i+1} \cap (y_0 \ast \cdots \ast y_{q-1} \ast z_0 \ast \cdots \ast z_{q-1})$ is contained in the cell δ dual to σ^1 in α . Using the barycentric coordinate system with respect to α , it is calculated that the intersection of the dual cell δ and the join $s \ast z(x)$ is the point s, and then $W_{i+1} \cap (s \ast z(x)) = s$. This completes the proof.

LEMMA 4. The set of lines y(x)z(x) obtained in Lemma 2 is a transverse line field over W_{i+1} for each $0 \le i \le r-1$.

Proof. Suppose that $\overleftarrow{y(x)z(x)}$ is not transverse to W_{i+1} at x. Then there are points s, t of $St(x, L_{i+1})$, such that $\overrightarrow{st}//\overrightarrow{y(x)z(x)}$ by Lemma 1. Since $\overrightarrow{st}//\overrightarrow{y(x)z(x)}$, the points x, y(x), z(x), s and t are in a plane (or a line). Since $\overrightarrow{st}//\overrightarrow{y(x)z(x)}$ and the segment y(x)*z(x) contains x in the interior, it is seen that the intersection $x*t \cap Int(s*z(x))$ is not empty, where s, t may be replaced by t, s respectively if necessary. Since $t \in St(x, L_{i+1})$ and $|L_{i+1}| = W_{i+1}, x*t$ is contained in W_{i+1} . Therefore the intersection $Int(s*z(x)) \cap W_{i+1}$ is not empty. This contradicts Lemma 3. Therefore the line $\overrightarrow{y(x)z(x)}$ is transverse to W_{i+1} at x. Lemma 2 now completes the proof of Lemma 4.

242

§3. Proof of Theorem C.

The line y(x)z(x) and the segment y(x)*z(x) and a simplex α of L_{i-1} containing x obtained in §2 for each x of W_i will be written $l_i(x)$, $s_i(x)$ and α_i respectively where i ranges over $1 \leq i \leq r$ rather than $0 \leq i \leq r-1$. In particular, let x be a point of M_r , x is a point of all W_i $(i=1, 2, \dots, r)$. So there exist lines $l_i(x)$ for all $i=1, \dots, r$. First we shall prove that the lines $l_1(x), \dots, l_r(x)$ are linearly independent in R. Since L_i is a subcomplex of L_{i-1}' , there is a simplex α_i of L_{i-1} containing x for each simplex α_{i+1} of L_i containing x such that $\alpha_{i+1} \subset \alpha_i$. And since the segment $s_i(x)$ is contained in α_i , the join $s_r(x)*\dots*s_{j+1}(x)$ is contained in $St(x, L_j)$ for each $1 \leq j \leq r-1$. Since, by Lemma 4, $l_j(x)$ is transverse to $St(x, L_j)$, the line $l_j(x)$ is linearly independent of the plane which is spanned by $l_r(x), l_{r-1}(x), \dots, l_{j+1}(x)$ for each $1 \leq j \leq r-1$. Hence the lines $l_1(x), \dots, l_r(x)$ are linearly independent in R.

Let $P^i(x)$ be the *i*-plane spanned by $l_1(x), \dots, l_i(x)$. Next we shall show that the set of *r*-planes $P^r(x)$, where *x* ranges over M_r , is the required field. Since each $l_i(x)$ varies continuously if *x* ranges over W_i , the set of *r*-planes $P^r(x)$ is a continuous field over M_r . On the other hand, by Lemma 4, $P^1(x)$ is transverse to $St(x, L_1)$. Then, using induction on *i*, Theorem C will follow if it be shown that $P^i(x)$ is transverse to $St(x, L_i)$ provided that $P^{i-1}(x)$ is transverse to $St(x, L_{i-1})$. Since $P^i(x)$ is spanned by $l_i(x)$ and $P^{i-1}(x)$, any line on $P^i(x)$ is parallel to a line $\forall z$ where $y \in s_i(x)$ and $z \in P^{i-1}(x)$. Suppose that $P^i(x)$ is not transverse to $St(x, L_i)$. Then there are points *s* and *t* of $St(x, L_i)$ such that $\forall t'/yz$ where $y \in s_i(x)$ and *z* $\in P^{i-1}(x)$, by Lemma 1. We may choose *s*, *t*, *y*, *z* as vertices of a parallelogram (it may be degenerate). Let z_1, x_1 be the midpoints of the segments z * t, x * t respectively. Then $\overleftarrow{z_1x_1}//zx$ and z_1 is the midpoint of the segment y * s. Let α_i be a simplex of L_{i-1} containing x * s. Then, since $s_i(x) \subset \alpha_i, \forall s * s_i(x) \subset \alpha_i \subset St(x, L_{i-1})$. Since $x_1 \in x * t$ $\subset St(x, L_{i-1})$ and $z_1 \in y * s \subset s_i(x) * s \subset St(x, L_{i-1}), \overleftarrow{zx'}//\overleftarrow{z_1x_1}$ implies that $P^{i-1}(x)$ is not transverse to $St(x, L_{i-1})$.

This contradiction completes the proof.

References

- CAIRNS, S. S., Differentiable and polyhedral manifolds, Topology of 3-manifolds and related topics. Prentice-Hall, INC. (1962), 48-54.
- [2] NOGUCHI, H., The smoothing of combinatorial n-manifolds in (n+1)-space. Ann. of Math. 72 (1960), 201-215.
- [3] PENROSE, R., J. H. C. WHITEHEAD, AND E. C. ZEEMAN, Imbedding of manifolds in euclidean space. Ann. of Math. 73 (1961), 613–623.
- [4] WHITEHEAD, J. H. C., Simplicial spaces, nuclei and m-groups. Proc. London Math. Soc. 45 (1935), 243-327.

- [5] WHITEHEAD, J. H. C., On the homotopy type of manifolds. Ann. of Math. 41 (1940), 825-832.
- [6] WHITEHEAD, J. H. C., Manifolds with transverse fields in euclidean space. Ann. of Math. 73 (1961), 154-212.

WASEDA UNIVERSITY, TOKYO.