A GEOMETRIC CONDITION FOR SMOOTHABILITY OF COMBINATORIAL MANIFOLDS

By Keiko Kudo and Hiroshi Noguchi

§1. Introduction.

Let us commence with the terminology. For a complex $Y,|Y|$ will denote the polyhedron covered by Y and Y^{\prime} will stand for the first barycentric subdivision of Y. We say that a subcomplex X of Y is complete if the intersection of a (closed) simplex of Y and $|X|$ is either empty or a simplex of X. A combinatorial manifold is a polyhedron with a distinguished class of simplicial subdivisions which are formal manifolds, [5, p. 825]. For a combinatorial manifold P, the boundary of P is written ∂P and the interior $P-\partial P$ is written Int P, and a closed combinatorial manifold will be a compact combinatorial manifold without boundary. Let X be a subcomplex of Y where $|Y|$ is a combinatorial manifold. (Note that X^{\prime} is a complete subcomplex of Y^{\prime}.) Then $N(X, Y)$ denotes the star neighborhood of X in Y, that is, the polyhedron consists of simplices of Y, which contain simplices of X.

It is well known that $\partial N\left(K^{\prime}, L^{\prime}\right)$ (that is, the boundary of the star neighborhood of the first barycentric subdivision of K in the first barycentric subdivision of L) is a closed combinatorial ($m-1$)-manifold if the polyhedron $|L|$ is a combinatorial m-manifold without boundary and K is a finite complete subcomplex of L; [4, p. 293].

For convenience, we say that a polyhedron Q is imbedded precewise linearly in euclidean space R if there are (linear) simplicial subdivisions X and L of Q and R respectively such that X is a subcomplex of L, where it may be assumed without loss of generality that X is a complete subcomplex of L.

Now let us explain the condition for smoothability.
Definition 1. Let M be a closed combinatorial n-manifold imbedded piecewise linearly in euclidean ($n+r$)-space $R, r \geqq 1$. We say that M is in smoothable position in R if the following is satisfied. Let K_{0} and L_{0} be simplicial subdivisions of M and R respectively, where K_{0} is a complete subcomplex of L_{0}. Then there exist piecewise linear homeomorphisms ρ_{i} : $M_{i} \rightarrow \partial N\left(K_{\imath}{ }^{\prime}, L_{i}{ }^{\prime}\right)$ for each $0 \leqq i \leqq r-1$, where $M_{0}=M$ and for $1 \leqq i \leqq r, M_{\imath}=\rho_{i-1}\left(M_{\imath-1}\right)$ and where K_{\imath} and L_{ι} are simplicial subdivisions of M_{\imath} and $\partial N\left(K_{\imath-1}{ }^{\prime}, L_{\imath-1}{ }^{\prime}\right)$ respectively such that K_{\imath} is a complete subcomplex of L_{\imath}. In the text, however, W_{\imath} stands for $\partial N\left(K_{\imath-1}{ }^{\prime}, L_{\imath-1}{ }^{\prime}\right)$ and L_{\imath} will be the subcomplex of $L_{\imath-1}{ }^{\prime}$ covering W_{\imath} for each $1 \leqq i \leqq r$.

Note that M_{\imath} is a closed combinatorial n-manifold, which is combinatorially equivalent to M, and W_{\imath} is a closed combinatorial ($n+r-i$)-manifold, for each $1 \leqq i \leqq r$, satisfying $M_{i} \subset W_{\imath}$ and $W_{1} \supset W_{2} \supset \cdots \supset W_{r}$.

Received July 24, 1963.

The result of this paper is the following:
Theorem A. If a closed combinatorial n-manifold M is in smoothable position in ($n+r$)-space $R, r \geqq 1$, then M is smoothable. ${ }^{1)}$

Theorem A has the following implications. After Whitehead [5, p. 827] a combinatorial n-manifold M is a π-manifold if a regular neighborhood $U(M, R)$ of M in ($n+r$)-space R is combinatorially equivalent to the product of M and a combinatorial r-cell C^{r}, written $U(M, R) \equiv M \times C^{r}$, for large values of r. Now suppose that a combinatorial π-manifold M be closed. Then, since the star neighborhood $N\left(K_{0}{ }^{\prime}, L_{0}{ }^{\prime}\right)$ is a regular neighborhood, $N\left(K_{0}{ }^{\prime}, L_{0}{ }^{\prime}\right) \equiv M \times C^{r}$ and there is a piecewise linear homeomorphism $\rho_{0}: M_{0} \rightarrow \partial N\left(K_{0}{ }^{\prime}, L_{0}{ }^{\prime}\right) \equiv M \times S^{r-1}$ defined by taking $\rho_{0}(x)=\left(x, x_{0}\right)$ for $x \in M_{0}$ where $S^{r-1}=\partial C^{r}$ is a combinatorial $(r-1)$-sphere and x_{0} is a fixed point of S^{r-1}. Let C^{r-1} be a combinatorial ($r-1$)-cell of S^{r-1} containing x_{0} in the interior. It is clear that $M \times C^{r-1}$ is a regular neighborhood of $M \times\left\{x_{0}\right\}$ $\left(=M_{1}\right)$ in $M \times S^{r-1}\left(=W_{1}\right)$. Then $N\left(K_{1}{ }^{\prime}, L_{1}{ }^{\prime}\right) \equiv M \times C^{r-1}$ by [4, Theorem 23], and there is a piecewise linear homeomorphism $\rho_{1}: M_{1} \rightarrow \partial N\left(K_{1}{ }^{\prime}, L_{1}{ }^{\prime}\right) \equiv M \times S^{r-2}$ defined by taking $\rho_{1}(y)=\left(y, y_{0}\right)$ for $y \in M_{1}$ where $S^{r-2}=\partial C^{r-1}$ and y_{0} is a fixed point of S^{r-2}, and so on. Hence M is in smoothable position in R, and therefore, by Theorem A,

Theorem B. Closed combinatorial π-manifolds are smoothable. ${ }^{2)}$

By [3, p. 619], Theorem 2 obtained by the second named author [2, p. 214] is a consequence of the result. That is,

Corollary. If a closed combinatorial n-manifold M is imbedded piecewise linearly in $(n+1)$-space R, then M is smoothable.
(Note that the Schoenflies conjecture is not required.)
To see the way to get Theorem A we have to have more terminology. For convenience, eliminating the restriction on the dimensions of sets questioned we alter the definition of [1, p. 52] as follows:

Definition 2. Consider a set X in euclidean space R. An i-plane (an i dimensional hyperplane) will be called transverse to X if it makes angles bounded away from zero with the secant lines of X. Let x be a point of X. An i-plane will be called transverse to X at x if it is transverse to some neighborhood of x on X. A set of i-planes is called a transverse i-plane field over X if for each point x of X there corresponds continuously an i-plane of the set, which is transverse to X at x.

[^0]Suppose that a closed combinatorial n-manifold M is in smoothable position in R. Using Definition $1, M_{r}$ is combinatorially equivalent to M. Therefore Theorem A follows from Theorem C below in accordance with Theorem 2.4 of Cairns; see [1, p. 53] or [6, p. 159].

Theorem C. Let a closed combinatorial n-manifold M be in smoothable position in euclidean $(n+r)$-space $R, r \geqq 1$. Then M_{r} admits a transverse r-plane field over M_{r}.

In fact Theorem C is a generalization of Theorem 1 of [2, p. 214] and the establishment of Theorem C is the purpose of the paper. The method used here is so simple that the Schoenfies conjecture needed in the previous paper is no longer required in this paper.

§ 2. Lemmas.

For distinct points x and y of euclidean space $R, \overleftrightarrow{x y}$ denotes the line through x and y. Let X and Y be subsets of R, the join of X and Y will be denoted by $X * Y$. The parallelism between planes and lines will be denoted by the symbol // between them.

Using Definition 2, Remark 1 of [2, p. 205] may be restated as follows:
Lemma 1. Let Q be a polyhedron imbedded piecewise linearly in euclidean space R and let K be a simplicial subdivision of Q. If an i-plane P^{i} through a point x of Q is not transverse to Q at x, then there are points s, t of $\operatorname{St}(x, K)$ (that is, the star of x in K) arbitrarily near x such that $\leftrightarrows \leftrightarrows_{\| t} / / P^{i}$.

Let a closed combinatorial n-manifold M be in smoothable position in $(n+r)$ space $R, r \geqq 1$. Then by Definition 1, there exist piecewise linear homeomorphisms $\rho_{i}: M_{i} \rightarrow W_{\imath+1}$ where i ranges $0 \leqq i \leqq r-1$. Recall that $\left|K_{\imath}\right|=M_{\imath},\left|L_{i+1}\right|=W_{\imath+1}$ $=\partial N\left(K_{\imath}{ }^{\prime}, L_{\imath}{ }^{\prime}\right)$ and $L_{\imath+1}$ is a subcomplex of $L_{\imath}{ }^{\prime}$.

It is well known that for each point x of $W_{\imath+1}$ any simplex α of L_{\imath} containing x has the dimension greater than 0 , and the intersection $\alpha \cap M_{\imath}$ is a non-empty proper subset of α; see [4, p. 294]. Since K_{\imath} is a complete subcomplex of L_{ι}, the intersection $\alpha \cap M_{\imath}$ is a simplex, say β, of K_{v}, which is a non-empty proper face of α. By γ we denote the non-empty proper face of α which is the face opposite β in α.

Let $v_{0}, v_{1}, \cdots, v_{q}$ be the vertices of $\alpha, \alpha=v_{0} * v_{1} * \cdots * v_{q}$. Then it may be assumed that $\beta=v_{0} * \cdots * v_{e}$ and $\gamma=v_{e+1} * \cdots * v_{q}$. By ($a_{0}, a_{1}, \cdots, a_{q}$) we denote the barycentric coordinates of x with respect to α. Then the points $y(x)$ and $z(x)$ of α are defined by x such that the barycentric coordinates of $y(x)$ and $z(x)$ with respect to α are

$$
\left(\frac{a_{0}}{\sum_{\imath=0}^{e} a_{i}}, \cdots, \frac{a_{e}}{\sum_{i=0}^{e} a_{i}}, 0, \cdots, 0\right) \quad \text { and }\left(0, \cdots, 0, \frac{a_{e+1}}{\sum_{i=e+1}^{q} a_{\imath}}, \cdots, \frac{a_{q}}{\sum_{i=e+1}^{q} a_{\imath}}\right)
$$

respectively. By the definition we immediately see that $y(x)$ and $z(x)$ are contained in the simplices β and γ respectively, and x is contained in the interior of the join $y(x) * z(x)$. There may be another simplex α_{1} of L_{\imath} containing the point x of $W_{\imath+1}$. Then, using α_{1} instead of α, we have the points $y_{1}(x)$ and $z_{1}(x)$ for x. However, it is trivial to check that $y_{1}(x)$ and $z_{1}(x)$ are $y(x)$ and $z(x)$ previously determined by α respectively. Therefore the points $y(x)$ and $z(x)$ are well defined for each point x of $W_{\imath+1}$.

Since the points $y(x)$ and $z(x)$ vary continuously if x ranges over $\alpha \cap W_{\imath+1}$, we deduce the following:

Lemma 2. The set of the lines $\overleftrightarrow{y(x) z(x)}$, where x ranges over $W_{\imath+1}$, is a continuous line field over $\mathrm{W}_{\imath+1}$.

Lemma 3. Let x be a point of $W_{\imath+1}$ and let s be a point of $\operatorname{St}\left(x, L_{\imath+1}\right)$. Then the intersection $\operatorname{Int}(s * z(x)) \cap W_{\imath+1}$ is empty.

Proof. Let $e_{0} * \cdots * e_{q-1}$ be a $(q-1)$-simplex of $L_{\imath+1}$ containing x and s where $q=n+r-\imath$ and where e_{j} is the barycenter of the $(j+1)$-simplex σ^{j+1} of L_{\imath} such that $\sigma^{1} \subset \sigma^{2} \subset \cdots \subset \sigma^{q}=\alpha$; and furthermore, one of the vertices of σ^{1} is contained in β and the other is contained in γ (for α, β and γ see above); see [4, p. 294].

Let y_{j} be the barycenter of the simplex $\sigma^{\jmath+1} \cap M_{\imath}$, and let z_{j} be the barycenter of the face opposite $\sigma^{\nu+1} \cap M_{2}$ in $\sigma^{\jmath+1}$. It is easily verified that the points $y(x)$ and $z(x)$ are in $y_{0} * \cdots * y_{q-1}(\subset \beta)$ and $z_{0} * \cdots * z_{q-1}(\subset \gamma)$ respectively, where these joins may be singular. Since y_{j}, z_{J} and e_{J} are collinear, $\left(e_{0} * \cdots * e_{q-1}\right) *\left(z_{0} * \cdots * z_{q-1}\right)$ is contained in $\left(y_{0} * \cdots * y_{q-1}\right) *\left(z_{0} * \cdots * z_{q-1}\right)$. Since s is contained in $e_{0} * \cdots * e_{q-1}, W_{\imath+1} \cap(s * z(x))$ is contained in $W_{\imath+1} \cap\left(y_{0} * \cdots * y_{q-1} * z_{0} * \cdots * z_{q-1}\right)$. From [4, p. 294], it is immediately seen that $W_{\imath+1} \cap\left(y_{0} * \cdots * y_{q-1} * z_{0} * \cdots * z_{q-1}\right)$ is contained in the cell δ dual to σ^{1} in α. Using the barycentric coordinate system with respect to α, it is calculated that the intersection of the dual cell δ and the join $s * z(x)$ is the point s, and then $W_{\imath+1}$ $\cap(s * z(x))=s$. This completes the proof.

Lemma 4. The set of lines $\overleftrightarrow{y(x) z(x)}$ obtained in Lemma 2 is a transverse line field over $W_{\imath+1}$ for each $0 \leqq i \leqq r-1$.

Proof. Suppose that $\overleftrightarrow{y(x) z(x)}$ is not transverse to $W_{\imath+1}$ at x. Then there are points s, t of $\operatorname{St}\left(x, L_{\imath+1}\right)$, such that $\overleftrightarrow{s t} / / \overleftrightarrow{y(x) z(x)}$ by Lemma 1. Since $\overleftrightarrow{s t} / / \overleftrightarrow{y(x) z(x)}$, the points $x, y(x), z(x), s$ and t are in a plane (or a line). Since $\overleftrightarrow{s t} / / \overleftrightarrow{y(x) z(x)}$ and the segment $y(x) * z(x)$ contains x in the interior, it is seen that the intersection $x * t \cap \operatorname{Int}(s * z(x))$ is not empty, where s, t may be replaced by t, s respectively if necessary. Since $t \in \operatorname{St}\left(x, L_{\imath+1}\right)$ and $\left|L_{\imath+1}\right|=W_{\imath+1}, x * t$ is contained in $W_{\imath+1}$. Therefore the intersection $\operatorname{Int}(s * z(x)) \cap W_{\imath+1}$ is not empty. This contradicts Lemma 3. Therefore the line $\overleftrightarrow{y(x) z(x)}$ is transverse to $W_{\imath+1}$ at x. Lemma 2 now completes the proof of Lemma 4.

§3. Proof of Theorem C.

The line $\stackrel{\breve{y(x) z(x)}}{ }$ and the segment $y(x) * z(x)$ and a simplex α of L_{r-1} containing x obtained in $\S 2$ for each x of W_{\imath} will be written $l_{i}(x), s_{i}(x)$ and α_{i} respectively where i ranges over $1 \leqq i \leqq r$ rather than $0 \leqq i \leqq r-1$. In particular, let x be a point of M_{r}, x is a point of all $W_{2}(i=1,2, \cdots, r)$. So there exist lines $l_{\imath}(x)$ for all $i=1$, \cdots, r. First we shall prove that the lines $l_{1}(x), \cdots, l_{r}(x)$ are linearly independent in R. Since L_{\imath} is a subcomplex of $L_{\imath-1}$, there is a simplex α_{i} of $L_{\imath-1}$ containing x for each simplex $\alpha_{\imath+1}$ of L_{\imath} containing x such that $\alpha_{\imath+1} \subset \alpha_{i}$. And since the segment $s_{i}(x)$ is contained in α_{i}, the join $s_{r}(x) * \cdots * s_{j+1}(x)$ is contained in $\operatorname{St}\left(x, L_{j}\right)$ for each $1 \leqq j \leqq r-1$. Since, by Lemma $4, l_{j}(x)$ is transverse to $\operatorname{St}\left(x, L_{j}\right)$, the line $l_{j}(x)$ is linearly independent of the plane which is spanned by $l_{r}(x), l_{r-1}(x), \cdots, l_{j+1}(x)$ for each $1 \leqq j \leqq r-1$. Hence the lines $l_{1}(x), \cdots, l_{r}(x)$ are linearly independent in R.

Let $P^{i}(x)$ be the \imath-plane spanned by $l_{1}(x), \cdots, l_{i}(x)$. Next we shall show that the set of r-planes $P^{r}(x)$, where x ranges over M_{r}, is the required field. Since each $l_{i}(x)$ varies continuously if x ranges over W_{v}, the set of r-planes $P^{r}(x)$ is a continuous field over M_{r}. On the other hand, by Lemma 4, $P^{1}(x)$ is transverse to $\operatorname{St}\left(x, L_{1}\right)$. Then, using induction on i, Theorem C will follow if it be shown that $P^{\imath}(x)$ is transverse to $\operatorname{St}\left(x, L_{2}\right)$ provided that $P^{i-1}(x)$ is transverse to $\operatorname{St}\left(x, L_{n-1}\right)$. Since $P^{i}(x)$ is spanned by $l_{i}(x)$ and $P^{i-1}(x)$, any line on $P^{i}(x)$ is parallel to a line $\overleftrightarrow{y z}$ where $y \in S_{i}(x)$ and $z \in P^{\imath-1}(x)$. Suppose that $P^{i}(x)$ is not transverse to $\operatorname{St}\left(x, L_{2}\right)$. Then there are points s and t of $\operatorname{St}\left(x, L_{2}\right)$ such that $\overleftrightarrow{s t} \| \overleftrightarrow{y z}$ where $y \in s_{i}(x)$ and z $\epsilon P^{i-1}(x)$, by Lemma 1 . We may choose s, t, y, z as vertices of a parallelogram (it may be degenerate). Let z_{1}, x_{1} be the midpoints of the segments $z * t, x * t$ respectively. Then $\overleftrightarrow{z_{1} x_{1}} \| \overleftrightarrow{z x}$ and z_{1} is the midpoint of the segment $y * s$. Let α_{i} be a simplex of $L_{\imath-1}$ containing $x * s$. Then, since $s_{\imath}(x) \subset \alpha_{i}, s * s_{i}(x) \subset \alpha_{i} \subset \operatorname{St}\left(x, L_{\imath-1}\right)$. Since $x_{1} \in x * t$ $\subset \operatorname{St}\left(x, L_{\imath-1}\right)$ and $z_{1} \in y * s \subset s_{i}(x) * s \subset \operatorname{St}\left(x, L_{\imath-1}\right), \overleftrightarrow{z x} / / \overleftrightarrow{z_{1} x_{1}}$ implies that $P^{\imath-1}(x)$ is not transverse to $\operatorname{St}\left(x, L_{i-1}\right)$.

This contradiction completes the proof.

References

[1] Cairns, S. S., Differentiable and polyhedral manifolds, Topology of 3 -manifolds and related topics. Prentice-Hall, INC. (1962), 48-54.
[2] Noguchi, H., The smoothing of combinatorial n-manifolds in ($n+1$)-space. Ann. of Math. 72 (1960), 201-215.
[3] Penrose, R., J. H. C. Whitehead, and E. C. Zeeman, Imbedding of manifolds in euclidean space. Ann. of Math. 73 (1961), 613-623.
[4] Whitehead, J. H. C., Simplicial spaces, nuclei and m-groups. Proc. London Math. Soc. 45 (1935), 243-327.
[5] Whitehead, J. H. C., On the homotopy type of manifolds. Ann. of Math. 41 (1940), 825-832.
[6] Whitehead, J. H. C., Manifolds with transverse fields in euclidean space. Ann. of Math. 73 (1961), 154-212.

Waseda University, Tokyo.

[^0]: 1) Theorem A was announced at the meeting on Differential Topology, Kyoto, October 1961.
 2) The authors were informed when this paper was completed that Theorem B was proved by J. Milnor, Microbundles and differentiable structures, Princeton University, 1961 (mimeographed).
