ON CURVATURES OF SPACES WITH NORMAL
GENERAL CONNECTIONS, II

By TomiNosukt OTSUKI

In this paper, the author makes a formula (§ 2) related to the curvature tensors
of a normal general connection y and ByB, where B is a tensor field of type (1, 1)
satisfying some conditions, making use of the results in a previous paper [14], and
then he shows that the formula applied to the case in which 7 is a classical affine
connection is a generalization of the Gauss’ equations in the theory of subspaces
of Riemannian geometry (§4). He also shows that regarding the set of general
connections as a vector space over the algebra of all tensor fields of type (1, 1), the
calculations in connection with the above purpose can be simplified.

§1. Preliminaries.

Let ¥ be an n-dimensional differentiable manifold. Let 7 be a general connec-
tion given on X which is written in terms of local coordinates #* of X as

(.1 7 =0u;Q(Pid*u 41"} du@du™),

where du,=0d/0u’. We denote the tensor of type (1, 1) with local components P! by
A(y) and denote the components PJ, I'{, of 7 with respect to u* by Piy), I',G)
respectively, in case of treating several general connections. Let Q=0du;QQIdu* be

a tensor of type (1, 1), then the products @y and 7@ of r and @ are general con-
nections given by

1.2 Qr=0wQ Q(Pidu*+ I}, du@du”)
and
1.3 7Q=0u;,Q(P;dQFdu’)+ 1%, ,(QFdu)Qdur),®
that is
1.2) PUQN=QLPE), I'u (@=Ll 5 ()
and
/ 7 — P17 k j =] k ] ank
1.3) Pi(TQ)—Pk(T)Qz! Fin(?’Q)—Fkh(T)Qz +Pi(n) o

LEMMA 1.1. Let y be a general connection and Q=0u;QQidu* be a tensor field.
The covariant derivatives Q! , of Q) with respect to v can be written as

Received July 17, 1963.
1) See [11], §1.
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1.4 1= QAT — A Q).
Proof. By virture of (2.15) in [7], we have by definition

=P SO Py, QUPE— PIQLAY,

z,h: 12 ouh
where we put

oP?
Ay ()=Tiatr)— 7D

The right of the above equation can be written as

a(QrcP +)

I,QLPE+ P PIQLTS,

=1, QP)— ' (PRN=11,GrQA1) —2(NQ). q.ed.

Lemma 1. 2. A necessary and sufficient condition in ovder that the tensor field
I with the components 6} is covariantly constant with vespect to a gemeral connec-
tion 7 is that v is commutatwe with A(y).

Proof. By means of LEmmA 1.1, we have

(1.5) 0 =110 A — AQ)7) = (r P— Pr)
and
A(yP—Py)=0.
These relations lead to the assertion of this lemma. g.ed.

By (6.28) in [7], the components of the curvature tensor of y are given by

ort,, ar
our ouk

Rifnk=[P{( D )+ Phalbu—Thul b | P2

1.6)
— 08 w750, 1 A

Now, let y be normal and let @ be the tensor such that @ is the inverse of
P on its image and identical with P on its kernel regarding P as a homomorphism
of the tangent bundle 7(¥) of X. Then the components "Rin: and ”Ria: of the
curvature tensors of the contravariant part ‘y=@Qy and the covariant part “y=7rQ
of y can be written respectively as®

My M,y ,
.7 Rinem Al T = DB M M~ A4 M) AT
and

o"r:, 0"’k
(1 8) ”Ri]h,chAl< a hlc _ a K +//[L //1"t ”Ff}c//rfnh)AT;

2) See [14], LEMMAS 2.1 and 2.2.
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where we put "/'7,=11,(7), "I't,=1%,("y) and A=PQ=QP is the canonical pro-
jection of the normal general connection 7.

Putting N=1—A, we have
1.9 'Nip=Nil'l,=T},(Ny) and "Nij,=A4},Ni=I},N).

Let “D and 7D be the covariant differential operators of ’y and “y respectively. By
means of Lemma 1.1 and A(7)=4("7)=A, we have

‘DP?
=i P = AD)P- 1) =T (r- PA— AP-'p)
and
"DP}
= LT P =2 DP-"D=T{,("r- PA—AP- ")),
that is
'DP} "DPy
1.10) W _[”h(QrP_AT) and T —F]h(TA PrQ).

Accordingly, we get from (1.9) and (1. 10)

’ Va
O NU=Th@P—p) and D

Now, making use of these relations for (3.3) in [14], we have
[bp (1D DR (D
ou™ ou* our
=Pil'LQrP— APl Qr P—n) -+ {W(ND P (QrP— A — I (Qr P—n)hn (NPT
=IW(AyP—Pl i QrP—p)+ 11Ny P (QrP—1) —I' W (QrP—nI i (N1 P)
=l (AyP— Pr+NrP)(QrP— 1) — I (QrP— )N P)
=G P—Ppl @y P—7)+ 4G NG P),»
hence
Riwe=PiP{ Ru' PP +1{n(P— P (QrP—1)— 1 (rP— Pl (QrP—1)
(1.12)

(1.11) +7"Ni,=1"(r—PrQ).

P /N )+’N P20 —’N{,,)’N,‘,,kP';‘

H{ N (Ny P) =1 (b NI (NYP).
Analogously, from (3.6) in [14], we get

Rine=P}" Rtk PP+, (r—PrQ) L (y P—Fr)— ] s — Pr@Q) [, (y P— Pr)
1.13)
I (PrN)CL(NY) =] (Pr N L (Ny).

3) Since A(yN)=PN=0, yN is a tensor of type (1, 2). The second term can be written
as I}, (yN)I'L, (NyP).
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§2. The curvature tensor of a general connection ByB.

Let 7 be a normal general connection on ¥ as in §1. Let B be a projection of
T(X) such that

2.1 AB = BA.

Putting

2.2) A= AB,

A is a projection of T(¥) such that

2.3) AA=AA=A4, BA=AB=A, NA=/AN=0, NB=BN=B—A.
Let be assumed furthermore that

2.4) PB = BP,

then we have easily
25) PA=AP, QB=BQ, QA=AQ, QN=NQ,

where N=1—AB.
Now, let us consider a general connection 7=
putting

2.6) P=iy)=BPB and (Q=BQB,

ByB, then 7 is normal, because

we have easily
PQ=QP=A, PN=NP=0.
Now, let ‘#=07 and "#=7Q be the contravariant part and the covariant part
of the normal general connection 7. By virtue of (2.5), we get easily
2.7 '7=Qf=B@QnB=B(1)B and "7=70=B(Q)B=B("7)B.

Let "Ri'n and “Ri’ni be the components of the curvature tensors of the con-
travariant part and the covariant part of the general connection 7 respectively. By
means of (1.2%), (1.3’) and

A'7)=Bi('r)B=BAB= A,

we have
4
T~ T
Pl N7

=By PhpBI+ PECp) Sot | 9%

— B 04!
= A}, F{CnBl"l‘Az dur  our

A aB: 94}

= A Ak B+ A = - Bit Al o — e
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Making use of (2.3) we get easily
0A7

2.8 ' A1, = A4 Ak, Bt— N1 e

Applying the formula (1.7) for the contravariant part 'F of 7, we have

A Tl 7//—l _ —
Do — Lo T T b T 7

/Ri]’”‘=A{< out  out

Substituting (2. 8) into the right, it can be written as

t p
'Pi’nk:B%'quthg Al (l/]‘th‘F 3N ><’AtlkAq aaAk )
- X N - AP
+ 2 (MRt T ) (e )
On the other hand, we have
o oA
FLCr A=A +Ai -
0A] — 0A! - 0A!
7 L e 1 i
- ALhAz (')u"' AZ—I_A{ auh - AlhAz+ alt”’
and
7 ’ 717 k aNL
i Ay Ny= A5 (rN)=A4 (/TN Af =
- a 0A%
= &4 S+ 22 ),
Making use of these, the above equation can be written as
Revi=BY Rt —(Don A r8)— B S0 W) Py
Ii aAl NAVARCT
+ Pk(A fN) Az uk Ny ) I3 (7 A).
We have
Al_aéiNL AP= géthNzAp_
and

ka(ITA) AP TA),

since A(7yA)=AQrA)=(AQ)yA=QyA="yA. Therefore, the right of the above equa-
tion can be written as

' Rini= By R B — I (AQr N 7u(Qr )+ T (AQrN)I'%,(Qr A).

Now, regarding the second term and the third term of the right of the equation,
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I'},(AQrN) are the components of a tensor of type (1,2) but I}, .(QrA) are not so,

because Z(AQ;’N) AQPN AAN=AN=0 but X(QyA)=QPA=A+0. Since AQrN
is a tensor and N2=N, we have

T (AQrN)=T"},(AQrN)N'},

and since A(NQyA)=NA=0, NQyA is a tensor. Accordingly, we have the formula
of 'Rin in tensorial form as follows:

(2. 9) ’Ez]hk:B%/quthg—l—%h(le‘Q N)F (NQ]’A)"“F k(AQrN)P1 /L(NQFE).
Analogously, we obtain
2.10)  "Row=By"Ry?ucBf =T (A QN B (NyQA) 4T (Ar QNI 3(N7Q A).

Lastly, making use of (2.9) and (1.12), we compute the components of R/ of
the curvature tensor of the general connection 7=ByB in terms of the components
of y and B. We have easily

7P— Pj=B(yP—Py)B, Q7P—7=BQyP—7)B,
7N=DByNB, N7P=BNyPB.
Accordingly, we have
Rim=PiPYRY, . P™
i GP—PR Q7P —7) — TGP — PP (Q7 P—7)
Iy GN)CE(N7P)— T N (N7P)
= {ByP?PY Ry} PmBI — T}, (P2 AQr N7 (NQy AP)
I (P2AQrNT2,.(NQy AP))
I GP—Ppri(@pP—7) TGP —PPT(Q7P—
m(rN)Fik(NrP)~F G4 (N7P)
=B} {P?PY Ru'ncP%
I3, (rP—Pp)BRl4(QrP—1)—1I" 1y (r P— Pp) Bl 4, (QrP—7)
+ I3, (N)BLT 4 (Ny P)— B (f N)BRl 4, (N P)} B
— I, (PPAQrN)T 1 (NQy AP)+ (P2 AQrN)I ' (NQr AP).
By virtue of (1.12), the right of the equation can be written as
=Bg,RthkB" T (BGP—P) 7. (L—B)(QrP—7)B)
'y (BGrP— P, (1—B)QrP—7)B)
—F,,h(BrN)F (1—B)NyPB)+I'}.(ByN)I5,(1—B)NyPB)
—Ti(P2AQr N2 (NQr AP) + Ty, (P*AQr NI (NQy AP).

By means of (2.2)~(2.5), we have P*AQyN=PBy (1—AB) and NQyAP=Q(1—AB)
yBP. Making use of the property that the general connections in the parentheses
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belonging to each 74, of the right of the above equation are tensors and simply
writing 4, )k (r2) by {71}{r2}, we can take the following changes:

—{BGP—PpH(1—B)(QrP—1)B}
—{BrN}{(1—-B)NyPB}
—{PBy1—-AB)}{Q(1—AB)yBP}
=—{Br(1—-B)P—PBy(1—-B)}{QrBP—yB}
—{Br1—B)}{(1-A)BP}—{PBr(1—-B)}{Q1—B)yBP}
=—{Br(—B)}{PQyBP—PrB+(1—A)yBP}
+{PBy(1—B)}{QrBP—rB—Q(1—B)rBP}
=—{Br1—B)}{rBP}—{PBy(1—B)}{yB}+{Br(1—B)}{ PrB}
=—{Br1-B)H(1—B)yBP}—{PBy(1—B)}{(1-B)B}
+{By(l1—B)H{P(1—B)rB}.
Thus, we obtain a formula showing a relation between the curvatures of the
normal general connections y and ByB:
ﬁi’hk=Bf;quth§
— Pi{I'%n(Br(1—B)[ (1= B)yB)— 1 ' (Br(1—B)[5,((1—B)rB)}
— (T (Br(L—B) (1= By B)— [ (By(1— B)I%,(1— B)rB)} P!
+I (Br(L=B) PRI (L—B)yB)— '] (By(1— B)) PLl (1 —B)yr B).

(2.11)

§3. Induced general connections.

Let y be a general connection of ¥ given by (1.1) in terms of local coordinates
u* of X. Let 9 be an m-dimensional submanifold of ¥ with the imbedding map
o P—k.

Let us take a field Z of (n—m)-dimensional tangent subspaces of X given on
«()) such that ¢ (Ty(¥) and Z(«(y)) is complement with each other in 7., (¥) for
any point y of 9. In local coodinates v?, a=1, ---, m, of ¥), let ¢ be written as

3.1 w = ul(ve).

Let {X., X3}, =1, ---, m, A=m+-1, ---, n, be a local field of n-frames of X on «%))
such that
3.2) X.=X10/ow, XIl=ow/[dv and X,=XIid/oweZ

and {Y% Y?*} with local components Y%7, Y7, be its dual. Then, we say the general
connection of 9):

3.3) 1*=00,Q Y iH(Pidiu 4Ty, duw®dut) ®

4) For the differential forms d2u* of order 2, (*d?s* are naturally defined by

o 2.
T opat — L% gy,

* 20—
= v
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the induced general connection on 9) from y by means of the complementary field
Z. We can easily prove that the general connection 7* does not depend on the
local coordinates u*, v« and it is determined only by the submanifold (c, ) of ¥, Z
and 7.

THEOREM 1. Let (¢,Y) be an m-dimensional submanifold of X and Z be  field
of tangent subspaces of X defined on «%) complementary to ¢x(T(%). Let v bz a
general connection of X and B be a projection of T(X) such that the vmage and the
kernel of B at each point of (%) are identical with the tangent space of «(%)) and
Z, respectwely. Let v* and (ByB)* be the winduced general connections on ) from y
and ByB by means of Z, respectively. Then, we have y*=(ByB)*.

Proof. By the assumptions in the theorem, we have

3.4) BiXi=X! and BiXi=0
on ¢«(9), hence we have
(3.5) B!l = XiYe«

On the other hand, representing 7 by (1.1), ByB can be written in terms of local
coordinates as

ByB=0u;,QBi{PLd(Bfdu*)+1"}, Bfdu@du"},
hence we have
(ByBy*=00sQY X (Bi{ Pid(Bf du’)+ 1"}, B du@du' })
=0v,QY i+ { PLd(B¥du*)+ 1'%, B durQdu"}.
Since *(B¥du*)= B} Xidve=XEdv*=c*du*, we get
(ByB)*=0v.QY ;*{ PLd*u*+ 1'%, du*Qdu™} =r*. q.ed.

THEOREM 2. Under the assumptions in THEOREM 1, let Ri'u: be the components
of the curvature tensor of the gemeral connection ByB, then YiRuX:X*X¥ are
the components of the curvature tensor of the induced general connection r*.

Proof. Let us take a family of m-dimensional surfaces such that it is written as
3.6) w=ul(v, -, ™ pmrL e pm)

which are identical with (3.1), when p"+l=...=9"=0, and the family simply covers
a neighborhood of ¥. Then, v', ---,v* can be regarded as local coordinates of X.
Making use of the coordinates, we have on the surface «%))

X1=67, Bl=0), Bi=0, Y!=8, qa p=1, -, m; i=m+1, -, n
Now, we put
ByB=0v;Q{Pid*v*+ T}, dv@dv"},
then we get on the surface «%))
Pi=BiPiB:=0,
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=B Bt +PL G0 [ =0, 10
and so
Roo= | Po( G = 220 ) 4 rer— s P
ov° ov*
—08, A™ 405, . A™
~{2( o o )+Lers— | P

—8 A2 408 A8, O,=—PiA5,+T,P5,

where indices /, m run on 1, 2, ---, » and indices «, 8, 3, 9, 7, p run on 1, 2, ---, m.
On the other hand, in the local coordinates »! --- v™ of ), (ByB)* can be written
as

(ByB)*=0v,Q Y& *{ Pid?v*+ I}y, dv'@dv™}
=00, Y Ped?va+T,dv-@dv* )
=00, { Ped?v+ It dvQdv°}.

Hence, the components of the curvature tensor of (ByB)*=y* with respect to the
coordinates v* are R.A.. Accordingly, if R/ are the components of the curvature
tensor of ByB with respect to the coordinates #!, ---, u®, they are given by
Ygﬁ;-’thﬁXf,‘ XE. q.ed.

§4. The Gauss’ equation and the general connection ByB.

In this section, we apply the formula (2.11) to the case, in which y is an affine
connection, that is A(y)=1. Then P=Q=A=1, (2.11) turns in

Ei]hk=B'17;quhchg
—I'}, (ByA1—B)%,(1—B)rB)+ I}y, (ByA—B)['4,((1—B)yB).

Now, By(1—B) and (1—B)yB are tensors of type (1, 2). We write the com-
ponents of these tensors in terms of 7. By means of LEmma 1.1, we have

I (BrA—B)=I"}(BG(1—B)~1—B)))=Bil'4((1—B)—1—B)y)
=Bj(9;,, —Bin)=—BiBi .,
I =ByB)=I"{((1-B)r—r(1—-B)B)=1"},((1—B)y—r(1—B))B}
=—(0],, —Bi.)B{=Bi. Bl
Hence, the above equation can be written as

(4- 1) Ei]hk:BfJ(quhk‘i‘Bf,hBé.k_B?.kaLI.h)Bg-
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Now, let 9) be an m-dimensional submanifold of X with the imbedding map
¢ P—% such that «(T,(W)), yeV), is the image of T.u,(X) under B. Let «(9) be
locally written by (3.1) and let {X., X3}, a=1, -, m, ==m+1, ---, n, be a local field
of #n-frames of ¥ such that B(X.,)=X. B(X))=0 and putting X, = XI9/0w,
X;=X{o/ow, Xi=0w/ov on «f)). Taking the dual frame {Y+ Y*}, Y*=Yidu,

‘=Yidw, we have
BI=X1Y¢ and 0l=Bi+ XY
Since we have
By BLy By B =By (X} Y)W XY )uBi=B X7, Y 4. BY,
we get from (4.1) the equation

ViR mXiXt XE=YiR uXiX2 Xk

“4.2)
FYUX LY =X Y ) XIXEXE,
Putting
4.3 YiXi  Xt=Hb., Y, XIXE=HD,
we get
4.4) Y'}Ei’nkXﬁX? Xt =YiRmXI Xt X +H)HP —H) HY,

a, B,0,t=1,2, -, m; i=m+1, e .

As is well known, on «9) HS, H%,, are the components of the second fundamental
tensor of the surface «(%)), in case of Riemannian geometry. By virtue of THEOREM
2, the left of (4.4) are the components of the curvature tensor of the induced connec-
tion 7* from y on ¥) by means of the field 1—B. Accordingly, the formula (4.4)
is the Gauss’ equation in classical differential geometry. Thus, we can regard the
formula (2.11) as a generalization of the Gauss’ equation.
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