
SOME EXPANSION THEOREMS FOR STOCHASTIC PROCESSES, II

BY HIROHISA HATORI

1. Let F(Z) be the spectral function of a continuous (weakly) stationary process
£00 with mean zero, and consider X(f)=f(t)+8&, — oo</<oo, where f(t) is a
numerical valued function. Assume that

(i) Γ \λ\2r+2«dF(λ)<co,
tJ — OO

(ii) H(u) is of bounded variation in (—00, oo),

(iii) Γ I u r« 1 dH(u) |<oo,
J -oo

(iv) \f(u) |^C(1+| u \r+a) for all u and a positive constant C, and

r ftK)(

where r is a non-negative integer and a is a constant with 0^α<l. From the con-
ditions (i)— (v) it follows that

This is an expansion theorem for the integral

which has been treated by Kawata [3] for r=Q and a =1/2 with somewhat different
conditions, and extended by the author [1] for r=Q, 1, 2, ••• and 0^<*<1 with the
above conditions (i)— (v). In this paper, we shall show (1.1) for X(t)=f(t)+φ(t)8(t),
where φ(u) is a numerical valued function. If 0(s)>0, — oo<s<oo, then, for this
process X(t\ the correlation coefficient of X(t) and X(s) is a function of t— s only.
In section 2, Taylor expansion of 8(t) is discussed and, in section 3, the expansion
theorem for

Γ χ(t-—}dH(s)
J-oo \ n /

is given, where X(t)=f(t)+φ(f)8(t), -oo<t<oo.
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2. Let X(f) be a stochastic process with E{\ X(t) |2} <oo, -oo<^<oo. If

l.i.m. X(τ)=X(t) i.e. E{\ X(τ}-X(f) |2}->0 as r— t,

then X(/) is called to be continuous at t. Let K(t) be of bounded variation in any
finite interval and consider a division of an interval (A, B):

Δ\ A = tt<tι< — <tn=B.

If

l.i.m. Σ X(τ*) [K(tk)-K(tk-l)] = S ( max (4-^-0 — o),
Δ k=l vA=l,2, ,w /

where tk-ι^τk^h, (k=l, 2, •••, «), then S is denoted as

We can easily prove the following

LEMMA 1. Being continuous in an interval [A, B], X(f) is uniformly continuous
in [A, B]. Moreover,

(BX(t)dK(t)
JA

exists in the above sense.

LEMMA 2. If X™(t) (k=l, 2, •••, r) exist in the sense that

Ytt-i)/γ_ι_ vv χa-u(f\
U+/z

y

j A - "L (*=1, 2, -, r),
/^

fe=l, 2, - , r) are cantinuous in [a, b], then

(2.1)

+ , \.. f * (ft-Or-1JΓCr>(0 Λ (a s.).
V A 1; . Jα

Proo/. The existence of the integral in (2. 1) is ensured by Lemma 1. Y being
any random variable with E{\ Y 2} <oo, the numerical valued function φ(t)=E[X(t) Y}
is differentiate r times and φ^(t)=E{X^(t) Ϋ} is continuous in [a, b]. So we have

r-l (r)<X)(a\ 1 (*δ

¥<*)= Σo ̂ f1- (b-af+ (r_ί} , ^ (δ-01- VCr)(0 Λ

or

1 (t> F =°Λττ Γ (A-O'-'̂ '
>"— 1) ! Jα
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Choosing

as y, we have

E )̂ dt

which implies (2. 1).

In the following, let £(£), — oo<£<oo, be a continuous (weakly) stationary
stochastic process with E{8(t)}=Q for all t. We note that 8(t) is continuous in
the sense stated at the beginning of this section, if and only if the covariance
function p(u) of 8(t) is continuous.

THEOREM 1. Let F(λ) be the spectral function of £(£). If

(2.2) Γ \λ\^
J -oo

where r is a non-negative integer and a is a constant with 0^

> c*vf\ 2

, then

(2.3) 8(t+u)-

. It is well known that, under the assumption (2.2), £α)(0 (^=1, 2, •••, r)
exist and are continuous (weakly) stationary processes whose covariance functions are

dF(λ)

respectively. Hence, by Lemma 2, we have with probability 1 that

(2.4)

and so

dτ
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[(r-l)iγ

(t-\-u-τ)r-l(t-{-u-σ}r-ldτdσ

(2.5)
ι rt+u rt+u

1 ft+U Γt

^K^wJ, J t

-^-1 dτdσ

ί2ϊ dF(λ)

dF(λ)

This estimation implies with Minkowski's inequality that

(2.6) = (r-1)! Jo

Since | e^λ—112^-«>-^0 as £->0 and | &&—1 |2α-«>^22(1-α), by the assumption (2.2)
and Lebesgue's theorem it holds that

,. Γ°°
(2. 7) lim \ I e^—l |2(1-α) | λ |2r+2α dF(λ)=Q.

Hence, for any positive number e, there exists a positive number η such that

— oo J

And so, we have

(2.8) +« for

which proves Theorem 1. (The proof of the case r=0 will similarly be done with
slight modifications.)

REMARK 1. In the case α=0, we can prove (2. 3) for X(t) in Lemma 2. Because,
choosing a positive number δ such that
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^(τ)-X^(t)\2}<ε for \τ-t\<δ,

131

we have

u r.

In the following, let f(t) and φ(t) be numerical valued functions.

THEOREM 2. In addition to the assumptions of Theorem 1, we assume for some
fixed t that

(2.9)

and

(2.10)

r

f(t+u)= Σ , , *uk+o(\ u |r+α) as
k=0 K \

ψ(t+u)= Σ Ψ

 Ί , uk+o(\ u \r+a) as u->0.
k=k=0 k I

Putting X(s)=f(s)+φ(s)8(s), — oo<s<oo, we have

21

(2.11) X(t+u)- Σ
k\

=o(\u\2r+2a) as

Proof. It can be easily seen that Xm (k=l, 2, •••, r) exist and

^*>(0=/«)(0+ Σ(ί)#cv)(θ5c*-v)W (*=1, 2, •••, r).
v=o vx/

Putting

r V c ) \ r / Λ C W ^ Λ

Σ2-u*=J* and
r Ω<.V)(f\

by (2. 9), (2. 10) and Theorem 1 we have

(2.12) |4|=0(|«|'+«),

and

(2.13)

Since

(2.14)

*=o k \

E{\R\2}=o(\u\Zr+2a) as M-» 0.

Γ r &&(+} ΊΓ r ff^ff] Ί

+4+ Σ ̂ ϊr^+4. Σ ̂ f^-iίHΛί_k=o k I JL*=o k ! J

k+l>r

2 Σ •
k=0
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by (2.12) and (2.13) we have

X(t+u)- Σ

\u

which proves Theorem 2.

In the following, we shall give some examples as applications of Lemma 2.

EXAMPLE 1. For g(t) in Theorem 1, we assume that

(2.16) Γ λ2n dF(λ)<oo (n=l, 2, ...).
J — oo

Since

where

we get that

(2.17)

if and only if

(2.18)

Rn=8(t+u)-
k \

8(t+u)=
n=0 H I

lim

k \

dF(λ)=0.

EXAMPLE 2. For £00 in Theorem 1, we assume that there exists a positive
constant δ such that

(2.19)
[n!]2

as n-*oo.

Then we have (2.17) for any t and w with \u\<δ, because
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(2. 20)

= 0(1) as for \u\<δ.

EXAMPLE 3. Let {ίn} be a sequence of real numbers with tn^tQ (n=l, 2, •••)
and tn-^t as n-^co. Under the assumption (2.19), the random variable g(t) for any
fixed t is determined with probability 1 by the sequence {8(tn)\ n=l,2, •••} of the
random variables.

EXAMPLE 4. Under the assumption (2. 16) for any fixed positive integer n, we
have with probability 1 that

(2.21) L

Since, by Theorem 1,

(2.22)

where

(2. 23)

we have

E{\Rk\
2}=o(h2n) as

8(t+kK)= Σ

(2.24)

and so

(2. 25)

™ Γ w / M \ ~] PC vV/^ w

=Σ Σ (2 ) (-!)-**» ^^/r+ Σ
ϊ=0 1_*=0 V/? ' J V ! fc=0

Σ
A;=0

E - Σ (-ir-k8(t+kh)-8™(t)

as A-0,

which gives (2.21).
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REMARK 2. The result of Example 4 has been proved by Kawata [2] in a dif-
ferent method. From Remark 1, we have (2.21) by assuming the existence and
the continuity of £Cn)(0 at the point t without the stationarity of

3. In the preceeding section, we have denned the integral

If it holds that

then I is denoted as

X(t) dK(t).

l.i.m. \ X(t)dK(f)=I,
A-^-OO JA
J3-»oo

X(t) dK(t).

LEMMA 3. If X(t) is continuous in (—00, oo) and there exists a non-negative
valued function g(t) such that

(3.1)

and

(3.2)

then there exists

VE{\X(t)\2}^g(t)

Γ
J—

for all t

|<oo,

S
oo
.. X(t) dK(f).

Proof. Since

(3.3) rJA
X(f) dK(t) dK(t} I

we have by (3.2) that

(3.4)

and

(3. 5) l.i.m. (* X(t) dK(t)=Q,
B,Bf—*oo Jjg

which ensure the existence of the integral

X(t) dK(f).
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THEOREM 3. Let H(u) be a numerical valued function of bounded variation in
(—00, oo) and we assume that

(3.6) Γ \u\r^
J-oo

where r is a non-negative integer and a is a constant with 0^
<oo, is a continuous stochastic process such that

If X(t\ —

(3. 7)

for all s and some constant C and

(3.8)

then it holds that

E

(3.9)

X(t+u)- Γ~Γ~
k \

=o(\u\2r+2a) as

51 - Σ <-ff*τ> r
*=o k\ nk J_

as n—*oo.

Proof. (3.6) and (3.7) ensure with Lemma 3 the existence of the integral

Put

(3.10)

Then we have that

S
°o / ς \

x(t-—
-oo V ^

dH(s)- Σ
tonk ^ dH(s)

Γkl V

nr+a

(3.11)

where

for u*Q and ^(0)=0.

M.rV- A !
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Since, by (3. 8),

(3.12) Φ(u)=o(l) as

we can choose a positive number δ such that

(3.13) Φ(u)^l for \u\<δ.

On the other hand, we have

si « ι-~[cα+ι t+u r.)+ έo ̂
(3.14)

=K for |«|^5,

which implies with (3. 13) that

(3. 15) ψ(- ~] <K+1 for all s,

Next, (3. 12) shows that

(3. 16) limφ(-—\ -0 for any fixed s.
n-*<χ> \ H I

Since K is a constant independent of 5 and n, it is obtained by (3. 6), (3. 15), (3. 16)
and Lebesgue's theorem that

(3. 17) lim Γ φ (-—} 1 5 r« | dH(s} | =0
n->°° J_oo \ W /

and so

(3. 18) lim nr+a V ETUT) - 0,
7i-*oo

which gives (3. 9).

From Theorem 2 and Theorem 3, we get the following

THEOREM 4. Let f(s) and φ(s) be continuous in (—00, oo), H(s) be of bounded
variation and 8(s\ — oo<s<oo, be continuous (weakly] stationary stochastic process
whose spectral function is F(λ). //, in addition to the assumptions (2. 2), (2. 9) (2. 10)
and (3. 6), we assume that

(3.20)
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for all s and some positive constant C, then we have

S °° / ς \ r (— Ή^^fΛ Γ°°- 4- ̂ }dH(s} -*s Mπ^1 L
(3. 21)

, -<χ><s<oo.

REMARK 3. The continuity of /(s) and 0(s) is used to ensure the existence of
the integral

only.

REMARK 4. Let 6*^(0 0=1, 2, ••-, TV) be stationary processes satisfying the con-
ditions similar to the one on £(0 in Theorem 4 and φv(t) (y=l, 2, •••, TV) be numerical
valued functions satisfying the conditions similar to the one on φ(f) in Theorem 4.
Then we have (3. 21) for

X(t)=M+Σφv(t)8v(t), -oo<α<oo.
V=l

The author expresses his sincerest thanks to Prof. I. Amemiya who has given
valuable advices.
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