SOME EXPANSION THEOREMS FOR STOCHASTIC PROCESSES, II

By Hirohisa Hatori

1. Let $F(\lambda)$ be the spectral function of a continuous (weakly) stationary process $\mathcal{E}(t)$ with mean zero, and consider $X(t)=f(t)+\mathcal{E}(t), -\infty < t < \infty$, where f(t) is a numerical valued function. Assume that

(i)
$$\int_{-\infty}^{\infty} |\lambda|^{2r+2\alpha} dF(\lambda) < \infty,$$

(ii) H(u) is of bounded variation in $(-\infty, \infty)$,

(iii)
$$\int_{-\infty}^{\infty} |u|^{r+\alpha} |dH(u)| < \infty,$$

(iv) $|f(u)| \leq C (1+|u|^{r+\alpha})$ for all u and a positive constant C, and

(v)
$$f(t+u) = \sum_{k=0}^{r} \frac{f^{(k)}(t)}{k!} u^{k} + o(|u|^{r+\alpha}),$$

where r is a non-negative integer and α is a constant with $0 \leq \alpha < 1$. From the conditions (i)-(v) it follows that

(1.1)
$$E\left\{\left\|\int_{-\infty}^{\infty} X\left(t-\frac{s}{n}\right) dH(s) - \sum_{k=0}^{r} \frac{(-1)^{k} X^{(k)}(t)}{k! n^{k}} \int_{-\infty}^{\infty} s^{k} dH(s)\right\|^{2}\right\} = o\left(\frac{1}{n^{2r+2\alpha}}\right).$$

This is an expansion theorem for the integral

$$\int_{-\infty}^{\infty} X\left(t-\frac{s}{n}\right) dH(s),$$

which has been treated by Kawata [3] for r=0 and $\alpha=1/2$ with somewhat different conditions, and extended by the author [1] for $r=0, 1, 2, \cdots$ and $0 \le \alpha < 1$ with the above conditions (i)-(v). In this paper, we shall show (1.1) for $X(t)=f(t)+\phi(t)\mathcal{E}(t)$, where $\phi(u)$ is a numerical valued function. If $\phi(s)>0$. $-\infty < s < \infty$, then, for this process X(t), the correlation coefficient of X(t) and X(s) is a function of t-s only. In section 2, Taylor expansion of $\mathcal{E}(t)$ is discussed and, in section 3, the expansion theorem for

$$\int_{-\infty}^{\infty} X\left(t - \frac{s}{n}\right) dH(s)$$

is given, where $X(t) = f(t) + \phi(t) \mathcal{E}(t), -\infty < t < \infty$.

Received March 15, 1963.

HIROHISA HATORI

2. Let X(t) be a stochastic process with $E\{|X(t)|^2\} < \infty, -\infty < t < \infty$. If $\lim_{\tau \to t} X(\tau) = X(t)$ i.e. $E\{|X(\tau) - X(t)|^2\} \to 0$ as $\tau \to t$,

then X(t) is called to be continuous at t. Let K(t) be of bounded variation in any finite interval and consider a division of an interval (A, B):

$$\Delta: A = t_0 < t_1 < \cdots < t_n = B.$$

If

1.i.m.
$$\sum_{k=1}^{n} X(\tau_k) [K(t_k) - K(t_{k-1})] = S \qquad \left(\max_{k=1,2,\dots,n} (t_k - t_{k-1}) \to 0 \right),$$

where $t_{k-1} \leq \tau_k \leq t_k$, $(k=1, 2, \dots, n)$, then S is denoted as

$$\int_{A}^{B} X(t) \ dK(t).$$

We can easily prove the following

LEMMA 1. Being continuous in an interval [A, B], X(t) is uniformly continuous in [A, B]. Moreover,

$$\int_{A}^{B} X(t) \, dK(t)$$

exists in the above sense.

LEMMA 2. If $X^{(k)}(t)$ $(k=1, 2, \dots, r)$ exist in the sense that

$$X^{(k)}(t) = \lim_{h \to 0} \frac{X^{(k-1)}(t+h) - X^{(k-1)}(t)}{h} \qquad (k=1, 2, \dots, r),$$

where $X^{(0)}(t) \equiv X(t)$, and $X^{(k)}(t)$ $(k=1, 2, \dots, r)$ are cantinuous in [a, b], then

$$X(b) = X(a) + \frac{X'(a)}{1!}(b-a) + \dots + \frac{X^{(r-1)}(a)}{(r-1)!}(b-a)^{r-1}$$

(2.1)

$$+\frac{1}{(r-1)!}\int_{a}^{b}(b-t)^{r-1}X^{(r)}(t)\,dt \qquad (a.s.).$$

Proof. The existence of the integral in (2.1) is ensured by Lemma 1. Y being any random variable with $E\{|Y|^2\} < \infty$, the numerical valued function $\varphi(t) \equiv E\{X(t) \cdot \overline{Y}\}$ is differentiable r times and $\varphi^{(r)}(t) = E\{X^{(r)}(t) \cdot \overline{Y}\}$ is continuous in [a, b]. So we have

$$\varphi(b) = \sum_{k=0}^{r-1} \frac{\varphi^{(k)}(a)}{k!} (b-a)^k + \frac{1}{(r-1)!} \int_a^b (b-t)^{r-1} \varphi^{(r)}(t) dt$$

or

$$E\left\{\left[X(b) - \sum_{k=0}^{r-1} \frac{X^{(k)}(a)}{k!} (b-a)^k - \frac{1}{(r-1)!} \int_a^b (b-t)^{r-1} X^{(r)}(t) dt\right] \cdot \bar{Y}\right\} = 0.$$

Choosing

$$X(b) - \sum_{k=0}^{r-1} \frac{X^{(k)}(a)}{k!} (b-a)^k - \frac{1}{(r-1)!} \int_a^b (b-t)^{r-1} X^{(r)}(t) dt$$

as Y, we have

$$E\left\{\left|X(b)-\sum_{k=0}^{r-1}\frac{X^{(k)}(a)}{k!}(b-a)^{k}-\frac{1}{(r-1)!}\int_{a}^{b}(b-t)^{r-1}X^{(r)}(t)\,dt\,\right|^{2}\right\}=0,$$

which implies (2.1).

In the following, let $\mathcal{E}(t)$, $-\infty < t < \infty$, be a continuous (weakly) stationary stochastic process with $E\{\mathcal{E}(t)\}=0$ for all t. We note that $\mathcal{E}(t)$ is continuous in the sense stated at the beginning of this section, if and only if the covariance function $\rho(u)$ of $\mathcal{E}(t)$ is continuous.

THEOREM 1. Let $F(\lambda)$ be the spectral function of $\mathcal{E}(t)$. If

(2.2)
$$\int_{-\infty}^{\infty} |\lambda|^{2\tau+2\alpha} dF(\lambda) < \infty,$$

where r is a non-negative integer and α is a constant with $0 \leq \alpha < 1$, then

(2.3)
$$E\left\{\left| \mathcal{E}(t+u) - \sum_{k=0}^{r} \frac{\mathcal{E}^{(k)}(t)}{k!} u^{k} \right|^{2} \right\} = o(|u|^{2r+2\alpha}) \text{ as } u \to 0.$$

Proof. It is well known that, under the assumption (2.2), $\mathcal{E}^{(k)}(t)$ ($k=1, 2, \dots, r$) exist and are continuous (weakly) stationary processes whose covariance functions are

$$\rho_k(t) = \int_{-\infty}^{\infty} \lambda^{2k} e^{it\lambda} dF(\lambda)$$

respectively. Hence, by Lemma 2, we have with probability 1 that

(2.4)

$$R \equiv \mathcal{E}(t+u) - \sum_{k=0}^{r} \frac{\mathcal{E}^{(k)}(t)}{k!} u^{k}$$

$$= \frac{1}{(r-1)!} \int_{t}^{t+u} (t+u-\tau)^{r-1} \mathcal{E}^{(r)}(\tau) d\tau - \frac{\mathcal{E}^{(r)}(t)}{r!} u^{r}$$

$$= \frac{1}{(r-1)!} \int_{t}^{t+u} (t+u-\tau)^{r-1} \left[\mathcal{E}^{(r)}(\tau) - \mathcal{E}^{(r)}(t) \right] d\tau$$

and so

$$E\{|R|^{2}\} = \frac{1}{[(r-1)!]^{2}} E\left\{\int_{t}^{t+u} (t+u-\tau)^{r-1} \left[\mathcal{E}^{(r)}(\tau) - \mathcal{E}^{(r)}(t)\right] d\tau \\ \cdot \int_{t}^{t+u} (t+u-\sigma)^{r-1} \overline{\left[\mathcal{E}^{(r)}(\sigma) - \mathcal{E}^{(r)}(t)\right]} d\sigma\right]$$
$$= \frac{1}{[(r-1)!]^{2}} \int_{t}^{t+u} \int_{t}^{t+u} (t+u-\tau)^{r-1} (t+u-\sigma)^{r-1}$$

$$\begin{split} \cdot E\{[\mathcal{E}^{(r)}(\tau) - \mathcal{E}^{(r)}(t)] \overline{[\mathcal{E}^{(r)}(\sigma) - \mathcal{E}^{(r)}(t)]}\} d\tau d\sigma \\ &= \frac{1}{[(r-1)!]^2} \int_{t}^{t+u} \int_{t}^{t+u} \{\rho_r(\tau-\sigma) - \rho_r(\tau-t) - \rho_r(t-\sigma) + \rho_r(0)\} \\ \cdot (t+u-\tau)^{r-1}(t+u-\sigma)^{r-1} d\tau d\sigma \\ &= \frac{1}{[(r-1)!]^2} \int_{t}^{t+u} \int_{t}^{t+u} \left[\int_{-\infty}^{\infty} \{e^{i(\tau-\sigma)\lambda} - e^{i(\tau-t)} - e^{i((t-\sigma)\lambda} + 1\} \right] \\ \cdot \lambda^{2r} dF(\lambda) \right] (t+u-\tau)^{r-1}(t+u-\sigma)^{r-1} d\tau d\sigma \\ &= \frac{1}{[(r-1)!]^2} \int_{t}^{t+u} \int_{t}^{t+u} \left[\int_{-\infty}^{\infty} (e^{i\tau\lambda} - e^{it\lambda}) \overline{(e^{i\sigma\lambda} - e^{it\lambda})} \right] \\ \cdot \lambda^{2r} dF(\lambda) \left] (t+u-\tau)^{r-1} d\tau d\sigma \\ &= \frac{1}{[(r-1)!]^2} \int_{-\infty}^{\infty} \left| \int_{t}^{t+u} (e^{i\tau\lambda} - e^{it\lambda}) (t+u-\tau)^{r-1} d\tau \right|^2 \lambda^{2r} dF(\lambda) \\ &= \frac{1}{[(r-1)!]^2} \int_{-\infty}^{\infty} \left| \int_{0}^{u} (e^{i\xi\lambda} - 1) (u-\xi)^{r-1} d\xi \right|^2 \lambda^{2r} dF(\lambda) \\ &\leq \frac{1}{[(r-1)!]^2} \int_{-\infty}^{\infty} \left\{ \int_{0}^{|u|} |e^{i\xi\lambda} - 1|^{1-\alpha}\xi^{\alpha}(|u| - \xi)^{r-1} d\xi \right\}^2 |\lambda|^{2r+2\alpha} dF(\lambda). \end{split}$$

This estimation implies with Minkowski's inequality that

(2.6)
$$\sqrt{E\{|R|^2\}} \leq \frac{1}{(r-1)!} \int_0^{|u|} \left\{ \int_{-\infty}^{\infty} |e^{i\xi\lambda} - 1|^{2(1-\alpha)} |\lambda|^{2r+2\alpha} dF(\lambda) \right\}^{\frac{1}{2}} \xi^{\alpha}(|u| - \xi)^{r-1} d\xi.$$

Since $|e^{i\xi_{\lambda}}-1|^{2(1-\alpha)} \rightarrow 0$ as $\xi \rightarrow 0$ and $|e^{i\xi_{\lambda}}-1|^{2(1-\alpha)} \leq 2^{2(1-\alpha)}$, by the assumption (2.2) and Lebesgue's theorem it holds that

(2.7)
$$\lim_{\xi \to 0} \int_{-\infty}^{\infty} |e^{i\xi\lambda} - 1|^{2(1-\alpha)} |\lambda|^{2r+2\alpha} dF(\lambda) = 0.$$

Hence, for any positive number ε , there exists a positive number η such that

$$\left\{\int_{-\infty}^{\infty} |e^{i\xi\lambda} - 1|^{2(1-\alpha)} |\lambda|^{2\tau+2\alpha} dF(\lambda)\right\}^{\frac{1}{2}} < \varepsilon \quad \text{for} \quad |\xi| < \eta.$$

And so, we have

(2.8)
$$\sqrt{E\{|R|^2\}} < \frac{\varepsilon}{(r-1)!} \int_0^{|u|} \xi^{\alpha}(|u|-\xi)^{r-1} d\xi < \frac{\varepsilon}{(r-1)!} |u|^{r+\alpha} \text{ for } 0 < |u| < \eta,$$

which proves Theorem 1. (The proof of the case r=0 will similarly be done with slight modifications.)

REMARK 1. In the case $\alpha = 0$, we can prove (2. 3) for X(t) in Lemma 2. Because, choosing a positive number δ such that

EXPANSION THEOREMS FOR STOCHASTIC PROCESSES, II

$$\sqrt{E\{|X^{(r)}(\tau) - X^{(r)}(t)|^2\}} < \varepsilon$$
 for $|\tau - t| < \delta$,

we have

$$\begin{split} \sqrt{E\{|R|^2\}} &\leq \frac{1}{(r-1)!} \left| \int_{t}^{t+u} \sqrt{E\{|X^{(r)}(\tau) - X^{(r)}(t)|^2\}} \cdot |t+u-\tau|^{r-1} d\tau \right| \\ &\leq \frac{\varepsilon}{(r-1)!} \left| \int_{t}^{t+u} |t+u-\tau|^{r-1} d\tau \right| \leq \frac{\varepsilon}{(r-1)!} |u|^r. \end{split}$$

In the following, let f(t) and $\phi(t)$ be numerical valued functions.

THEOREM 2. In addition to the assumptions of Theorem 1, we assume for some fixed t that

(2.9)
$$f(t+u) = \sum_{k=0}^{r} \frac{f^{(k)}(t)}{k!} u^{k} + o(|u|^{r+\alpha}) \quad as \quad u \to 0$$

and

(2.10)
$$\phi(t+u) = \sum_{k=0}^{r} \frac{\phi^{(k)}(t)}{k!} u^{k} + o(|u|^{r+\alpha}) \quad as \quad u \to 0.$$

Putting $X(s) = f(s) + \phi(s) \mathcal{E}(s), -\infty < s < \infty$, we have

(2.11)
$$E\left\{\left\|X(t+u)-\sum_{k=0}^{r}\frac{X^{(k)}(t)}{k!}u^{k}\right\|^{2}\right\}=o(|u|^{2r+2\alpha}) \quad as \quad u\to 0.$$

Proof. It can be easily seen that $X^{(k)}$ $(k=1, 2, \dots, r)$ exist and

$$X^{(k)}(t) = f^{(k)}(t) + \sum_{\nu=0}^{k} \binom{k}{\nu} \phi^{(\nu)}(t) \mathcal{E}^{(k-\nu)}(t) \quad (k=1, 2, \dots, r).$$

Putting

$$f(t+u) - \sum_{k=0}^{r} \frac{f^{(k)}(t)}{k!} u^{k} = \mathcal{I}_{1}, \ \phi(t+u) - \sum_{k=0}^{r} \frac{\phi^{(k)}(t)}{k!} u^{k} = \mathcal{I}_{2} \text{ and } \mathcal{E}(t+u) - \sum_{k=0}^{r} \frac{\mathcal{E}^{(k)}(t)}{k!} u^{k} = \mathcal{I}_{2}$$

by (2.9), (2.10) and Theorem 1 we have

(2.12)
$$| \Delta_1 | = o(| u |^{r+\alpha}), | \Delta_2 | = o(| u |^{r+\alpha})$$

and

(2.13)
$$E\{|R|^2\}=o(|u|^{2r+2\alpha})$$
 as $u\to 0$.

Since

by (2.12) and (2.13) we have

$$\sqrt{E\left\{\left|X(t+u)-\sum_{k=0}^{r}\frac{X^{(k)}(t)}{k!}u^{k}\right|^{2}\right\}} \\
(2.15) \leq |\mathcal{L}_{1}| + \sum_{\substack{0 \leq k, l \leq r \\ k+l > r}} \frac{|\phi^{(k)}(t)|}{k!}\frac{\sqrt{\rho_{k}(0)}}{l!}|u|^{k+l} + |\mathcal{L}_{2}|\sum_{k=0}^{r}\frac{\sqrt{\rho_{k}(0)}}{k!} \cdot |u|^{k} \\
+ \sqrt{E\{|R|^{2}\}}\left\{\sum_{k=0}^{r}\frac{|\phi^{(k)}(t)|}{k!}|u|^{k} + |\mathcal{L}_{2}|\right\}$$

 $= o(|u|^{r+\alpha}),$

which proves Theorem 2.

In the following, we shall give some examples as applications of Lemma 2.

EXAMPLE 1. For $\mathcal{E}(t)$ in Theorem 1, we assume that

(2.16)
$$\int_{-\infty}^{\infty} \lambda^{2n} dF(\lambda) < \infty \qquad (n=1, 2, \cdots).$$

Since

$$E\{|R_{n}|^{2}\} = \frac{1}{[(n-1)!]^{2}} \int_{-\infty}^{\infty} \left| \int_{0}^{u} (e^{i\xi\lambda} - 1)(u-\xi)^{n-1}d\xi \right|^{2} \lambda^{2n} dF(\lambda)$$
$$= \int_{-\infty}^{\infty} \left| e^{iu\lambda} - \sum_{k=0}^{n} \frac{(iu\lambda)^{k}}{k!} \right|^{2} dF(\lambda),$$

where

$$R_n = \mathcal{E}(t+u) - \sum_{k=0}^n \frac{\mathcal{E}^{(k)}(t)}{k!} u^k,$$

we get that

(2.17)
$$\mathscr{E}(t+u) = \sum_{n=0}^{\infty} \frac{\mathscr{E}^{(n)}(t)}{n!} u^n \equiv \lim_{n \to \infty} \sum_{k=0}^n \frac{\mathscr{E}^{(k)}(t)}{k!} u^k$$

if and only if

(2.18)
$$\lim_{n\to\infty}\int_{-\infty}^{\infty}\left|e^{iu\lambda}-\sum_{k=0}^{n}\frac{(iu\lambda)^{k}}{k!}\right|^{2}dF(\lambda)=0.$$

EXAMPLE 2. For $\mathcal{E}(t)$ in Theorem 1, we assume that there exists a positive constant δ such that

(2.19)
$$\int_{-\infty}^{\infty} \lambda^{2n} dF(\lambda) = o\left(\frac{[n!]^2}{\delta^{2n}}\right) \quad \text{as} \quad n \to \infty.$$

Then we have (2.17) for any t and u with $|u| < \delta$, because

$$E\{|R_n|^2\} = \frac{1}{[(n-1)!]^2} \int_{-\infty}^{\infty} \left| \int_{0}^{u} (e^{i\xi\lambda} - 1)(u-\xi)^{n-1} d\xi \right|^2 \lambda^{2n} dF(\lambda)$$

$$\leq \frac{4}{[(n-1)!]^2} \int_{-\infty}^{\infty} \left\{ \int_{0}^{|u|} (|u|-\xi)^{n-1} d\xi \right\}^2 \lambda^{2n} dF(\lambda)$$

$$= \frac{4|u|^{2n}}{[n!]^2} \int_{-\infty}^{\infty} \lambda^{2n} dF(\lambda)$$

$$\leq \frac{4\delta^{2n}}{[n!]^2} \int_{-\infty}^{\infty} \lambda^{2n} dF(\lambda)$$

$$= o(1) \quad \text{as} \quad n \to \infty \quad \text{for} \quad |u| < \delta.$$

EXAMPLE 3. Let $\{t_n\}$ be a sequence of real numbers with $t_n \neq t_0$ $(n=1, 2, \cdots)$ and $t_n \rightarrow t$ as $n \rightarrow \infty$. Under the assumption (2.19), the random variable $\mathcal{E}(t)$ for any fixed t is determined with probability 1 by the sequence $\{\mathcal{E}(t_n); n=1, 2, \cdots\}$ of the random variables.

EXAMPLE 4. Under the assumption (2.16) for any fixed positive integer n, we have with probability 1 that

(2.21)
$$\lim_{h\to 0} \frac{1}{h^n} \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} \mathcal{E}(t+kh) = \mathcal{E}^{(n)}(t).$$

Since, by Theorem 1,

(2.22) $E\{|R_k|^2\}=o(h^{2n})$ as $h\to 0$,

where

(2.23)
$$\mathscr{E}(t+kh) = \sum_{\nu=0}^{n} \frac{\mathscr{E}^{(\nu)}(t)}{\nu !} (kh)^{\nu} + R_{k},$$

we have

(2.24)
$$\sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} \mathcal{E}(t+kh)$$
$$= \sum_{\nu=0}^{n} \left[\sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} k^{\nu} \right] \frac{\mathcal{E}^{(\nu)}(t)}{\nu !} h^{\nu} + \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} R_{k}$$
$$= \mathcal{E}^{(n)}(t) h^{n} + \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} R_{k}$$

and so

$$E\left\{\left|\frac{1}{h^n}\sum_{k=0}^n\binom{n}{k}(-1)^{n-k}\mathcal{E}(t+kh)-\mathcal{E}^{(n)}(t)\right|^2\right\}$$

(2.25)

$$\leq \left\{\frac{1}{|\boldsymbol{h}|^n} \sum_{k=0}^n \binom{n}{k} \sqrt{\{|\boldsymbol{R}_k|^2\}}\right\}^2 = o(1) \quad \text{as} \quad \boldsymbol{h} \to 0,$$

which gives (2.21).

HIROHISA HATORI

REMARK 2. The result of Example 4 has been proved by Kawata [2] in a different method. From Remark 1, we have (2.21) by assuming the existence and the continuity of $\mathcal{E}^{(n)}(t)$ at the point t without the stationarity of $\mathcal{E}(t)$.

3. In the preceeding section, we have defined the integral

$$\int_{A}^{B} X(t) \, dK(t).$$

If it holds that

$$\lim_{\substack{A \to -\infty \\ B \to \infty}} \int_{A}^{B} X(t) \ dK(t) = I,$$

then I is denoted as

$$\int_{-\infty}^{\infty} X(t) \ dK(t).$$

LEMMA 3. If X(t) is continuous in $(-\infty, \infty)$ and there exists a non-negative valued function g(t) such that

(3.1)
$$\sqrt{E\{|X(t)|^2\}} \leq g(t)$$
 for all t

and

(3.2)
$$\int_{-\infty}^{\infty} g(t) |dK(t)| < \infty,$$

then there exists

$$\int_{-\infty}^{\infty} X(t) \ dK(t).$$

Proof. Since

(3.3)
$$E\left\{\left\|\int_{A}^{A'} X(t) \, dK(t)\right\|^{2}\right\} \leq \left\{\int_{A}^{A'} g(t) \, dK(t) \, \|\right\}^{2},$$

we have by (3.2) that

(3.4)
$$\lim_{A,A'\to\infty} \int_{A}^{A'} X(t) \, dK(t) = 0$$

and

(3.5)
$$\lim_{B,B'\to\infty}\int_{B}^{B'}X(t)\,dK(t)=0,$$

which ensure the existence of the integral

$$\int_{-\infty}^{\infty} X(t) \, dK(t).$$

THEOREM 3. Let H(u) be a numerical valued function of bounded variation in $(-\infty, \infty)$ and we assume that

(3.6)
$$\int_{-\infty}^{\infty} |u|^{r+\alpha} |dH(u)| < \infty,$$

where r is a non-negative integer and α is a constant with $0 \leq \alpha < 1$. If $X(t), -\infty < t$ $<\infty$, is a continuous stochastic process such that

(3.7)
$$\sqrt{E\{|X(s)|^2\}} \leq C(1+|s|^{r+\alpha})$$

for all s and some constant C and

(3.8)
$$E\left\{\left|X(t+u)-\sum_{k=0}^{r}\frac{X^{(k)}(t)}{k!}u^{k}\right|^{2}\right\}=o(|u|^{2r+2\alpha}) \quad as \quad u\to 0,$$

then it holds that

(3

$$=o\left(\frac{1}{n^{2r+2\alpha}}\right)$$
 as $n\to\infty$.

Proof. (3.6) and (3.7) ensure with Lemma 3 the existence of the integral

$$\int_{-\infty}^{\infty} X\left(t - \frac{s}{n}\right) dH(s).$$

Put

$$I = \int_{-\infty}^{\infty} X\left(t - \frac{s}{n}\right) dH(s) - \sum_{k=0}^{r} \frac{(-1)^{k} X^{(k)}(t)}{k! n^{k}} \int_{-\infty}^{\infty} s^{k} dH(s)$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} X\left(t - \frac{s}{n}\right) - \sum_{k=0}^{r} \frac{X^{(k)}(t)}{k! n^{k}} \left(-\frac{s}{n}\right)^{k} dH(s).$$

(3.10)

$$= \int_{-\infty}^{\infty} \left[X\left(t - \frac{s}{n}\right) - \sum_{k=0}^{\prime} \frac{X^{(k)}(t)}{k!} \left(-\frac{s}{n}\right)^{k} \right] dH(s).$$

Then we have that

$$n^{r+\alpha}\sqrt{E\{|I|^2\}} \leq n^{r+\alpha} \int_{-\infty}^{\infty} \sqrt{E\left\{\left|X\left(t-\frac{s}{n}\right)-\sum_{k=0}^{r} \frac{X^{(k)}(t)}{k!}\left(-\frac{s}{n}\right)^k\right|^2\right\}} |dH(s)|$$
(3.11)

$$= \int_{-\infty}^{\infty} \psi\left(-\frac{s}{n}\right) \cdot |s|^{r+\alpha} |dH(s)|,$$

where

$$\psi(u) = |u|^{-r-\alpha} \sqrt{E\left\{ \left| X(t+u) - \sum_{k=0}^{r} \frac{X^{(k)}(t)}{k!} u^{k} \right|^{2} \right\}}$$

for $u \neq 0$ and $\psi(0) = 0$.

Since, by (3.8),

 $(3.12) \qquad \qquad \phi(u) = o(1) \qquad \text{as} \quad u \to 0,$

we can choose a positive number δ such that

 $(3.13) \qquad \qquad \psi(u) \leq 1 \qquad \qquad \text{for} \quad |u| < \delta.$

On the other hand, we have

$$\begin{split} \psi(u) &\leq |u|^{-r-\alpha} \left[\sqrt{E\{|X(t+u)|^2\}} + \sum_{k=0}^r \frac{\sqrt{E\{|X^{(k)}(t)|^2\}}}{k!} |u|^k \right] \\ &\leq |u|^{-r-\alpha} \left[C(1+|t+u|^{r+\alpha}) + \sum_{k=0}^r \frac{\sqrt{E\{|X^{(k)}(t)|^2\}}}{k! \ \delta^{r+\alpha-k}} |u|^{r+\alpha} \right] \\ &\leq C \left[\delta^{-r-\alpha} + \left(1 + \frac{|t|}{\delta}\right)^{r+\alpha} \right] + \sum_{k=0}^r \frac{\sqrt{E\{|X^{(k)}(t)|^2\}}}{k! \ \delta^{r+\alpha-k}} \\ &\equiv K \qquad \text{for} \quad |u| \geq \delta, \end{split}$$

which implies with (3.13) that

(3.15)
$$\psi\left(-\frac{s}{n}\right) < K+1 \qquad \text{for all } s,$$

Next, (3.12) shows that

(3.16)
$$\lim_{n \to \infty} \psi\left(-\frac{s}{n}\right) = 0 \qquad \text{for any fixed } s.$$

Since K is a constant independent of s and n, it is obtained by (3.6), (3.15), (3.16) and Lebesgue's theorem that

(3.17)
$$\lim_{n \to \infty} \int_{-\infty}^{\infty} \psi\left(-\frac{s}{n}\right) |s|^{r+\alpha} |dH(s)| = 0$$

and so

(3.18)
$$\lim_{n \to \infty} n^{r+\alpha} \sqrt{E\{|I|^2\}} = 0,$$

which gives (3.9).

From Theorem 2 and Theorem 3, we get the following

THEOREM 4. Let f(s) and $\phi(s)$ be continuous in $(-\infty, \infty)$, H(s) be of bounded variation and $\mathcal{E}(s), -\infty < s < \infty$, be continuous (weakly) stationary stochastic process whose spectral function is $F(\lambda)$. If, in addition to the assumptions (2.2), (2.9) (2.10) and (3.6), we assume that

(3.19)
$$|f(s)| \leq C(1+|s|^{r+\alpha})$$

and

(3.20)
$$|\phi(s)| \leq C(1+|s|^{r+\alpha})$$

136

(3.14)

for all s and some positive constant C, then we have

(3.21)
$$E\left\{\left|\int_{-\infty}^{\infty} X\left(t - \frac{s}{n}\right) dH(s) - \sum_{k=0}^{r} \frac{(-1)^{k} X^{(k)}(t)}{k! n^{k}} \int_{-\infty}^{\infty} s^{k} dH(s)\right|^{2}\right\}$$
$$= o\left(\frac{1}{n^{2r+2\alpha}}\right) \qquad as \qquad n \to \infty,$$

where $X(s) = f(s) + \phi(s) \mathcal{E}(s), -\infty < s < \infty$.

REMARK 3. The continuity of f(s) and $\phi(s)$ is used to ensure the existence of the integral

$$\int_{-\infty}^{\infty} X\left(t - \frac{s}{n}\right) dH(s)$$

only.

REMARK 4. Let $\mathcal{E}_{\nu}(t)$ ($\nu=1, 2, \dots, N$) be stationary processes satisfying the conditions similar to the one on $\mathcal{E}(t)$ in Theorem 4 and $\phi_{\nu}(t)$ ($\nu=1, 2, \dots, N$) be numerical valued functions satisfying the conditions similar to the one on $\phi(t)$ in Theorem 4. Then we have (3.21) for

$$X(t) = f(t) + \sum_{\nu=1}^{N} \phi_{\nu}(t) \mathcal{E}_{\nu}(t), \quad -\infty < t < \infty.$$

The author expresses his sincerest thanks to Prof. I. Amemiya who has given valuable advices.

References

- HATORI, H., Some expansion theorems for stochastic processes, I. Kōdai Math. Sem. Rep. 15 (1963), 111-120.
- [2] KAWATA, T., Remarks on prediction problem in the theory of stationary stochastic processes. Tôhoku Math. Journ. (2) 6 (1954), 13-20.
- [3] KAWATA, T., Some convergence theorems for stationary stochastic processes. Ann. of Math. Stat. 30 (1959), 1192-1214.

TOKYO COLLEGE OF SCIENCE.