SOME EXPANSION THEOREMS FOR
STOCHASTIC PROCESSES, 1

By Hironisa HATORI

1. Let @(#) (—oo<¢<0) be a continuous stationary stochastic process of the
second order (in the wide sense) with mean zero; that is,

(1. 1) E{&@t+u) & (B} =p(u)
is a continuous function of # only, and
1. 2) E{&(®)} =0, —co<t<co.

o(u) is called the correlation function of &(¢). We have, then,

L3 8(t)=S°° ¢it3 dZ(3)
and
(1. 4) o) = S“ e dFQ),

where F(A) is a bounded non-decreasing function such that F(co)—F(—o0)=p(0)
=E{| &@®) |}, and Z(4) is an orthogonal process such that E{| Z(X)—Z()|?} =FQ’
—0)—F(1—0). F() and Z(2) are called the spectral function and the random
spectral function of &(f) respectively.

Let

and consider

)

(1.6) ngmwX(t—s) K(ns) ds:S

- —o0

X( t—% )K(s) ds,

where f(#) and K(s) are numerical valued functions. Kawata [5] has shown that if
@) f(&)/A+]s[*®)eL(—oo, 00), (ii) f(t+u)—f({t)=0(u) for small «, (iii) (1+|s]) K(s)
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€L!(—o0, c0), (iv) K(s) is bounded and o(|s|™*?) as |s|—co and (V)

Sm | 2] dF(2)< oo,

then it holds that

@7 E{ EnS:X(t—s) Kns) ds—X(t)S:K(s) ds

=0|—— as n—co.
n

In the following, we shall make this result more complete.

2. Let F(2) be the spectral function of a continuous stationary process &(%).
If

@ 1) gf 27 dF(3) <o,

7 being a positive integer, then

e (k—l)(t+ h)_ e (k—l)(t)
h

2. 2) & ®(f)=Lim.
h—0

exists for k=1, 2, ---, , where @@()=g&(f). Now, we shall prepare the following
lemma which has been proved in [4], section 3.

LEMMA 1. Under the condition (2.1), we have with probability 1 that

@. 3) erW=1im. b 3 | 7 ) (—1y-te(t-+kh).
h—0 k=0

THEOREM 1. Let H(u) be of bounded variation in (—oo, o). If

@ 4 S” |+ dH(u) | < 0
and
@.5) S” | 2 |2r+2e dF(2) < oo,

then we have

@.6) E[ ’S: o (t——;—)dH(s)—— b2 (=1re®® r” s*dH(s)

=0 knk _

]
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1
=0( Wi as n—00,

where v is a non-negative integer and a is a constant satisfying 0 =a<1.

Before proving this theorem, we shall give an explanation on the definition of
the integral

r e (t—-sn— )dH(s).

—oo

In this paper, we are often concerned the integral of the type

r Y(s) dL(s),

—oo

where Y(s) is a stochastic process with E{] Y(s)|?} <co and L(s) is of bounded
variation in any finite interval. This integral is taken here as

B
I.i.m.L Y(s) dL(s),

A>—oo
B—oo

where Lim. means the limit in the mean of order 2 and the finite integral in this
definition is also as a Riemann-Stieltjes integral, the limit process being taken as
Lim..

Proof of Theorem 1. The existence of the integral

r e(t-——;-)dH(s)

—oo

in the above sense can be seen easily. (See [3].) By Lemma 1, we have with pro-
bability 1 that
v

e@=Lim. (—mp 5~ () g(t- 2]

=0

2.7

— 1.i.m.r e (z—% )dum, ()

m—oo J _oo
for k=1, 2, ---, #, where

0 for s<0,
2.8) Um, 1(S)=
[ms/n] 'k
(=my 5 (=D ( ) for s=0,
y=0 v
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so that we have

=[" e(taﬁ)dH@) 5 Mf o dH(s)

k=0 k! nk
2.9
~Lim. j : P (t—%)dLm(s) (as),
where
L= H)— 3 =L " ot i),
We thus get
o 1 o0 s 2
E{ I _ili‘lEm_m g (t—7 )dLm(s) ]
2. 10)
. o s o g N
Since
ey B s
& t*‘—— dLm(S)—l 1.1m. & t——— )dL'm(S)
[ o oo el
and

r 8(1—%)&%@)

A

is also the limit of the Riemann sum

ze|

o | (s~ Lats )
in the mean of Lim,, it follows from (2. 10) that

E(I1 :,ilﬂlﬁ’f{ g(t—in) g(t»—)]dLm(s) e

m— J

= tim{" (7 o =2 )aats) ALa@)

. 11)
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- lim.r r ( jlei(v—mm dF(Z))dLm(s)m

M= | oo} —o00

2
dF(4).

r ¢-i51 AL u(s)

= lims
m—oo ) _oo
Now, we have

r ¢ 11/ dLn(s)

= Sio e-vsiin dH(s)— FT'_, _mt [vzizo( [ 1)k (f )e—m /m] Sio s dH(s)

k=0 k!n*
2.12)
© T k 3
=S—m e—siin dH(s)_kg TToF (e—ix/m__l)lcj_oc s* dH(s)
o » 7 (sm)k )
— i82/n __ —22 /m __ 1)k
j_w[e S (i) ]dH(s)
and
_ T (sm)f l
182/n —ii/m__1)k
¢ k{-:\—-l:) k! nt (e b '
(2.13)
T | sm |k _lc |sale
§1+kz=:0 k nk 1+k§0 Rkl nk =A@ ).
Since A(4, s) is independent of m and
. » T (sm)*
i$2/n —22/m __ 1)k
e R
_ L, (—isA)
. 1saln
=¢ /Eo klnk
it holds by Lebesgue’s convergence theorem that
. b . T (—iSA)k
—182 /n — —iS2 In __
@ 14) lim | et dLats) Lo[e P ]dH(s).
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On the other hand, we see by (2.4) that

=" aa91am |)ZEB<A><oo

jm eg-isiin dLm(S)

—o00

and the polynomial B(4) of 4, whose degree is 27, is independent of m so that
(2. 11) implies with (2. 5) and (2. 14) that

2
dF (%)

E{I|% z'ro lim :jw e-1521m dL(s)

-

2
dF(4)

r [e‘”"”— 5, (istF ]dH(s)

k=0 k!nk

—oo

— ” ' Si — 1AM — r—1 52
(2.15) = (" ara |” ane)| S e =y s
1 oo
= dF(Z
= Gy L Y
oo [sl AT A | 2
AJ s ], 5 e st —ar o)
1 “ 2r+2a
i i KT

co s 2
] rame [ 1ot a5y da)
—00 1]
because
=l (—ish)E (—idr (0
—iS5An — —122/n (¢ — p)r—1
¢ Eo k! nk r—1D!wn" Le (s—2)" da.

Since it holds

I e—zxx/n_]_ |1—a§21_.,,
Is|
5 | egrxin__] ll—a xa(l s I_J;)r-l dxézl-a ] s |r+a
0
and

foo s| 2
(| 1am)1 [ et ae s |—ay-ide

I
0
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o 2

=z ( [ st )

repeated application of Lebesgue’s theorem gives with (2. 4) and (2.5) that

. (s
lim j e | emtrim—1 ['ma (| s |—x) de=0,
0

N—00

|s
0

o |
'limj | dH(s) |j | e 1 1=« ga(] s | —x)" dp=0

and

= =) |s] 2
limj | 4 |2r+2a dF(X)(ﬁ | dH(S) | j | gvetin—1 |t po(| s |—x)~t dx | =0.
—o0 oo 0

n—00,

Therefore we have

(2.16) lim w?+2« E{| I |*} =0,
which proves the theorem. The proof of the case »=0 will similarly be done
with slight modifications.

LEmMMA 2. Let H(u) be a function satisfying the conditions in Theorem 1,
and f(u) be Lebesgue-Stieltjes integrable with respect to the measure |dH(u)|. If
we assume that

, . 7 f(k)(t)

2. 17 f(t+u)—k§0 B uko(| w |7*) for small u
and

(2. 18) [ )| =CA+]w|") Sfor all u,

where C is a positive constant, then we have

5 (DO

=0 k! nk

@.19) j: f(t——;—)dH(s)= ji s dH(s)—I—o( ) as n—oo.

nr+a

This lemma has been stated in [1]. Let X(s)=f(s)+&(s), —oo<s<oo. And,
to ensure the existence of the integral

j: X (t— %)dH(s),

we assume that f(#) is Riemann-Stieltjes integrable with respect to dH(u). Then,
we have immediatly the following
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THEOREM 2. Under the conditions in Theorem 1 and Lemma 2, we have

)

é (_1)76 X(Ic)(t)

E {Hz X(t_ ';”)dH(s)_k:o—*m— S:Sk dH(s)

(2. 20)
1
=0 P as n—oo,
where X ®(O)=f® )+ W) for k=1,2, ---, 1.

3. In this section, we shall note that, by using the random spectral function
Z(4) of &(?), it can be made easy to lead the first halt of (2. 15):

) oo ) r — A)E 2
e |7 [en g G || ara,
which was a foundation of the proof of Theorem 1.
If
r 2 dF()< oo,
then
@ 1) 8'(t)=r i dZ() @s.).

This is well known [2]. Repeated applications of the method to prove this fact
show immediately that if

r 2 dF(3) < oo,
then
3.2 8<k><t>=j°° (iR et dZ() @.s)
for k=0, 1,2, ---, . Therefore, under the condition (2.5), we have
_ s\ & (=1)FEw
Ro=elt= | =5 e

(3.3)

_ j "_"m[em_smn_em 5o (—1sd)F* ]dz(x) (a.s.).

=0 klwuk



Since

3.4

we have
@3.5)

where

and so

(3.6
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Bl[" anaza|” gwazw |=|" s ara

for f, ge L*(dF),

EWPOP@) =R, DR, D dFOG),

R(s, =g t-s/m2_gita i" (—isd)*
! =0 klnk
) T (—sA)
— plta e—tslln_
¢ [ A ]

E{ 1) =EHY; P(s) dH(s) ]Z}

_E H ' P(s) dH(s) r P(o) dH(a)]

I

j ) j :, E{P(s) P(0)} dH(s) dH(o)

—oo

- j” | (S:, RG, z)l«Tl)de)dH(s)m

—00 o =0

281 dF () :

Sm R(s, 1) dH(s)

i [5G Jane izdF(Z).

w |p
j_w k=0 k!wnk

—oco
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