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ON RIEMANN SURFACES

BY MITSURU NAKAI

Introduction.

Let R be an open Riemann surface. By a density P(z) on R we mean a non-
negative continuously differentiable function of local parameters z=x+V — ly such
that the expression P(z)dxdy is invariant under the change of local parameters z.
Then we can consider the elliptic partial differential equation

(E) Δu(z)

which is invariantly denned on R. Throughout this paper, we always assume

on R. By a solution u of (E) on an open subset D of R we mean that u is twice
continuously differentiable function satisfying (E) on Z).υ An Evans' solution e(z)
of (E) on R is a solution of (£) on R satisfying

lim e(z) = 00,
Λ3*-*4oo

where Aoo is the Alexandroffs ideal boundary point of R. The purpose of this
paper is to give a sufficient condition for the existence of Evans' solution of (E)
on R.

Let (Rn)n=o be a normal exhaustion of R ana Ω0>n (n>0) be the continuous
function on Rn—Ro such that ft(7l is a solution of (E) on Rn—Ro with ί20fTO=l on
d7?o and ft,«=0 on dRn. Then there exists a continuous function ft on R—R0

such that ft is a solution of (J51) on R—Ro with ft=l on d/vΌ and

on R—Ro. Clearly Ω0(z) does not depend on the special choice of exhaustions
(Rn)^=l

We consider the condition

(Ω) <j= inf ft(X)>0.
z€R-Ro

It is easy to see that the condition (Ω) does not depend on the special choice of

Received September 10, 1962.
1) For fundamental properties of solutions of (£), refer to the list in pp. 152-153 in [4].
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RO. Hence the condition (Ω) depends only on the pair (R,P). The main result of
this paper is the following

THEOREM 1. Suppose that the condition (Ω) is satisfied. Then the equation
(E) possesses an Evans' solution of (E) on R.

For the proof of this theorem, first we construct the extension G(p, q) of the
Green function on R with respect to (E) to the Cech compactification J?* of R (§ 1).
Using this extended Green kernel G(p, q}, we define for each subset K of R* a
" transfinite diameter " D(K) and a modified " Tchebycheff s constant " E(K) of K
and then we prove E(K)^D(K) (Proposition 2, §2). Usually in the potential theory,
Fekete's relation E(K)=D(K) is proved for compact sets K by using symmetricity
and continuity of the kernel function. But our kernel G(p, q) not necessarily
satisfies symmetricity and continuity. In spite of this, we can prove the half of
Fekete's relation: E(K)^D(K). This fact may have the independent interest.
Next we prove D(Γ)=oo, where Γ is the Cech boundary R*—R of R (Proposition 3,
§ 3). After these preparations, we conclude the proof of Theorem 1 (§ 4).

Only in the proof of D(Γ)=oo, we use the assumption (Ω). The converse of
this is true. Namely, the following Theorem 2 holds which is proved in § 5. This
shows that without (Ω) the standard method due to Evans to construct Evans'
solution based on the transfinite diameter with respect to the Green kernel cannot
be applied.

THEOREM 2. The following conditions are mutually equivalent
(a) (β);
(b) inf G(z, w)>Q for each w in R\

zζR

(c) D(Γ)=oo.

Finally we give an application of Theorem 1 to the function theory. An
Evans-Selberg's potential on R is a harmonic function h(z) on R with one negative
logarithmic singularity in R such that \imR3z^A h(z)=oo. Applying Theorem 1,

we prove the following in § 6:

THEOREM 3 (Evans-Selberg-Kuramochi^}. There exists an Evans-Selberg's
potential on R if and only if R is of null boundary.

§ 1. Green kernel on Cech compactification.

LEMMA 1.1. There exists a unique compact Hausdorff space 7?*, called the
Cech compactification of R, such that

(C. 1) R is an open subspace of R*, or equivalently, Γ=R*—R, which is called

2) See Kuramochi [2].
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the Cech boundary of 7?, is compact in R*;
(C. 2) R is dense in R*\
(C. 3) any bounded continuous function^ on R is uniquely extended to R* so

as to be continuous on R*.

In fact, since R is completely regular, by a theorem of Cech,4) there exists a
unique compact Hausdorff space 7?* satisfying (C. 2) and (C. 3). As R is locally
compact, so (C. 1) is satisfied for this 7?*.5)

LEMMA 1,2. Any continuous function f on R is uniquely extended to R* so as
to be continuous on 7?*.

In fact, let {Kz)=max(/(2),0) and h(z)=g(z)—f(z) on R. Then (1+gO))-1 and
(l-j-^O))-1 are bounded continuous functions on R and so continuously extended to
7?*. Then the same is true for g(z) and h(z) and since R is dense in 7?*, these
extensions are unique. We denote these extensions by the same notations. If
g(p)=oo at some point p in 7?*, then there exists a neighborhood V of p such that
0(/>)>0 on V. Hence g(z)=f(z) on V^R and so λ(z)=0 on VnR. As VΓiR is
dense in V, so h(p)=0. Similarly, h(p)=oo implies g(p)=Q. Hence the expression
g(p)—h(p) has a definite meaning and gives a continuous extension of f(z)=g(z)
—h(z). Again, since R is dense in 7?*, the extension is unique. Q. E. D.

Let g(z,w) be the Green function on R with respect to (E) with its pole w in
R. It is positive, symmetric g(z,w)=g(w,z) and continuous on 7?x7?.6) If we fix
z in 7?, then g(z, w) is continuous on 7? with respect to w and so continuously
extended to 7?* in a unique way. We set

g(z,p)= lim g(z,w) (ί €/?*).

LEMMA 1.3. For any point p in Γ=R*—R,g(z,β) is a solution of (E) on R
and so extended continuously to 7?* in a unique way.

In fact, let z0 be an arbitrary point in R and ε be an arbitrary positive number.
We can find a neighborhood U of z0 with compact closure in R ana a positive
constant M such that g(z0, w)^M if w$U. We can also find a neighborhood V of
ZQ such that VdU and c-1g(z0,w)^g(zjw)^cg(zo)w) for any 2 in V and w in R—U<
where c=l+ε/M Hence |g(z, w;)— g(z0, w)\^ε for any £ in V and w in 7?— U.
Letting w—»p, we get

for any z in F. This shows that g(z,p) is continuous on 7? with respect to z.

3) Functions or continuous functions considered in this paper are all assumed to be
[—00, oo]-valued Bounded functions are functions whose ranges are compact in (—00,00).

4) See Cech [1].

5) See p. 163 in [5].

6) See pp. 154-157 in [4].
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Next take a countable dense subset (zm)m=ι of R. By induction, we can find
sequences (Um,n)n=ι (w=l,2, •••) of neighborhoods of p such that

r c . n - f l ) Um+l,n) ι \ '
7Z = 1

and
lim sup \g(zm,w)—g(zm,p)\=Q.

This is possible, since g(zm, w)—*g(zm, p) as w—>p for each m = l, 2, •••. Set Vn

= Un,nΓiR and fix a point wn in Vn Then

lim 0(2, Wn)=g(z,ρ)
n

for 2=£m (w=l, 2, •••)• On the other hand, by Harnack type inequality, (g(z, wn))n=ι
is a bounded sequence of solutions on each compact subdomain except a finite
number of terms. Hence by choosing a suitable subsequence, we may assume
(g(z, wn))n=ι converges to a solution u(z) of (E) on R. Thus u(z)=q(z,p) on the
dense subset (zn)n=ι of ?̂. Since 0(2,/>) is continuous on R, we conclude that
g(z,p) = u(z) on /?, which shows that g(z,p) is a solution of CE1) on R. Q. E. D.

DEFINITION. The Green kernel G(p,q) on ^* is defined by

G(p,q)=lιm i lim g(z, w)) (p,qςR*).

PROPOSITION 1. The Green kernel G(p,q) on R*xR* possesses the following
properties:

(G. 1) G(z, w)=g(z, w) for z and w in R;
(G. 2) G(ztp)=G(ptz) if z is in R;
(G. 3) G(z,p) is a solution of (E) on R except p\
(G. 4) G(p,q) is continuous in />€/?* for fixed q in R*.

This is a simple consequence of hitherto considerations. Notice that we do not
claim the symmetricity G(p,q) = G(q,p) for p and q in. Γ and the continuity of
G(p,q) with respect to q at Γ for fixed p in Γ.

From Proposition 1 and Harnack type inequality, it is easily seen that G(z,p)
is finitely continuous on RxΓ and hence continuous on RxR*.

§2. Quantities D(K) and E(K).

For each subset K of /?*, we set

)= inf

It is easy to see that (Dn(K))n=ι is non-decreasing and so we can define
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D(K)=\ιmDn(K).
n— >oo

Similarly, we set

nEn(K)= sup inf Σ G(p,pt).
Pl,-,pn£K pζK 1=1

Since the sequence (En(K))n=ι satisfies

(n+m)En+m(K)^nEn(K)+mEm(K) (n, m=l,2, •••),

we can define

PROPOSITION 2. E(K)^D(K).

Proof. Let n be an arbitrary positive integer. We set r=I/(n—l) and choose
n points pn,pn-i,'-,p2,pi in A" satisfying

(2.1) _Σ G(pn^,pj)^inf Σ G(p,pj)+r O'=l,2, , w-1).

We choose these n points inductively. Let pn be an arbitrary point in K. Assume
that pn,pn-ι,~ ,pn-ι+ι (ί^H—1) have been already chosen. Consider

h(p) = Σ G(P,PJ).
j=n-ι+l

Since mfP^κh(p)^Q, we can find a point pn-% in K such that h(pn-ι)^h(p)-{-r on
K. This is nothing but (2.1).7)

By the definition of Ei(K\ we can easily see that

inf _Σ G(p,pj)^iEl(K).

Hence by (2.1), we get

n

Summing up these n—1 inequalities, we get by the definition of Dn(K)

^ 2 / /l ~ ι=l

or

(2.2) 1

7) Since A(/>) is continuous on 7?*, we can choose a point ^>Λ_t in ^Γ satisfying h(pn-t}
^h(p) on /?Γ. Hence r in (2.1) is superfluous in this case. We want to emphasize here that
the above proof to show the relation E(K)^>D(K) is valid for any kernel bounded from
below.
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Since \\m
n
E
n
(K)=E(K\ it is easy to see that

Hence by making w/Όo in (2.2), we get D(K)^E(K).

§ 3. Evaluation of D(Γ).

In this section, we assume the condition (£?):

σ= inf Ωo(z)>Q.
R-Rodz

Under this assumption, we shall show that Z)(Γ)=oo, where_Γ =#*—/?.
Let (Rn)n=o be a normal exhaustion of ?̂. Set Γn^=Rn—^n We denote by

M(Γn) the totality of unit positive Borel measures on Γn. For each measure μ in
M(Γn), we put

Set
TFn= inf

Then we have8)

LEMMA 3.1. There exists a unique measure μn in M(Γn) such that

I(μn)=Wn

and the function Un(z) on R defined by

Un(z) = \ G(z, w)dμn(w)

is the solution of (E) on R — Γn and Un(z)^Wn on R and Un(z)=Wn on Γn.

Let Wn(z) be the continuous function on R such that wn is a solution of (E)
in Rn and wn=l on R—Rn We set

An=\ wn(z)P(z)dxdy.
JR

LEMMA 3.2. limAn=0.
n-*oo

Proof. The condition <7>0 implies that R is of null boundary.10 Hence (E)
does not possess bounded solution except the constant zero.10) By the maximum

8) See pp. 157-165 in [4].

9) See Theorem 1 in Ozawa [8].

10) See Ozawa [6] or Theorem 1 in Royden [9].
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principle, (wn) is a monotone decreasing sequence converging to a bounded solution
of (E) on R which must reduce to the constant zero. Hence P(z) ̂  wn(z)P(z) \ 0.
On the other hand, σ>0 implies

JR

Hence by Lebesgue's convergence theorem

lim A n = \ lim wn(z)P(z)dxdy = 0.
?i->co JR w-*oo

LEMMA 3.3. lim Wn=oo.
n— >oo

Proof. Let Gn(z, w) be the Green function on Rn with respect to (E). Then
Gn(z, w) / G(z, w) on RxR. By Green's formula

2πwn(w) = \ *dzGn(z, w)= — \ dz(*dzGn(z, w))+2π.
<)Γn vRfi

Since dz(*dzGn(z,w))=ΔzGn(z,w)=P(z)Gn(z>w)) we get

Gn(z,
n

Hence by making w/Όo, we get

From this, by Fubini's theorem

Un(z)P(z)dxdy = ( i( G(z,<w)P(z)dxdy}dμn(w)=2π.
R J r n \ j R I

Thus

(3.1) Un(z)P(z)dxdy=2π.
JR

By the maximum principle, Un(z)^Wnwn(z) on R. From this

( Un(z)P(z)dxdy^Wn( wn(z)P(z)dxdy.
JR JR

Hence by (3.1), we get 2π^WnΛn and so

lim inf T^M^li

LEMMA 3.4. D(Γ)^σzWm (m=l,2, -).

11) See Corollary 1 in Ozawa [8].
12) This relation is due to L. Myrberg [3] and Ozawa [7].
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Proof. Let Ωmtk(z) (k>m) be a continuous function on Rk—Rm such that Ωmιk

is the solution of (E) in Rk—Rm with Ωm<k=l on Γm and ^m>fc=0 on Γk. Clearly
(£?m,fc)fc=m+ι is an increasing sequence and so there exists a continuous function Ωm

on R—Rm which is a solution of (E) on R—Rm with £?TO = 1 on Γm and

\ιmΩm>k(z)=Ωm(z)

on R—Rm. Since Ωm>k^Ω0>k on Rk—Rm by the maximum principle, we have

on R—Rm. Hence in particular

inf ί
771

Let « be an arbitrary positive integer larger than 4 and pι,p2> ,pn be in Γ.
We choose n points qι,q2, ',qn in A^ inductively as follows. Let

and ^i be in Γm such that

Since hι(z)^Q on Rk—Rm, we have by the maximum principle, hι(z)^hι(qι)Ωm,k(z)
for 2 in Rk—Rm. Hence on R*—Rm

Hence in particular hι(pι)^hι(qι)Ωm(pι)^σhι(qι) and so

n 2 , ,n i, ,n

ι=2 Kj Kj

Next we choose q2,qa,~-,qn-2 in Γm satisfying

l, ,fe fc π fc+l, ,?ι

(3.3) ^Σ.GC^^+^Σ Σ G(ft,Pj')+ Σ G(pi,pj)^a (k=2,3, , w-2).

First let

and #2 be in Γm such that

fefe)=min A2(^).

Similarly as above, we have h2(P)^h2(q^lm(p) on R*—Rm and so

Σ
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From this with (3.2), we get

o2G(q^q^σ Σ Σ G(qit />/) V'lf G(^,Λ)^
ι=lj=3 τ<j

This is nothing but (3.3) for &=2. Next assume that gv, qk (k^n—3) have been
chosen in Γm satisfying (3.3). Let

)= Σ G(z,p,)+σΣ>
j=k+2 ι=i

and q/c+i be in Γm such that

Similarly as before, we have hk+ι(p)^hk+ι(qk+ι')Ωm(p') on R*—Rm and so

Σ
j=k+2

From this with (3.3), we have

1, •••,£ + ! fe + 1 n fc +

σ2 Σ G(qι,qj)+σΣ Σ G(qί,pj)-\-
Kj t = l j ? = fc+2 ι<,;

This is (3.3) for k+l. Thus we have constructed the system q^ -,qn-^ Next let

n
l, z)

τ=l

and qn-ι be in Γm such that

An-ι(^«-ι)=min hn-ι(z).
ztΓm

Similarly as before, we have hn-ι(p)^hn-ι(qn-ι)Ωm(p) on R*—Rm and so

G(pn-ι, Pn) + σHΣ G(qi9 pn-ι)^σG(qn-ι, p^ + σ^Σ G(q*, qn-ι).
ι=l 1=1

From this with (3.3) for k=n—2, we have

(3.4) σ^"'Σl

Kj

Finally let

and qn be in /"m such that
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hn(qn)=min hn(z).
z^Γm

Similarly as before, we have hn(p)^hn(qn)Ωm(p) on R*-Rm and so

From this with (3.4), we get

σ* Σ G(qi9qj^a = Σ G(pitpj).
^<J Kj

From this inequality, we get by the definition of Dn(Γm)

Since pι, -,pn are arbitrary in Γ, we get

n ( i ) or

Hence by making w/Όo, we get

(3.5)

Now let qin\~-9q%> be in Γm with

(3.6)

and let μn be in M(Γm) with μn(q[n^) = l/n (/=!,-••, w). Since M(Γm) is vaguely
compact,13) there exists a subsequence (/^/) of (μn) and a measure μ in M(Γm) with

Jw=liπin'->ooA<n' (vaguely). Let c be an arbitrary positive number. From (3.6)

min(c,
!<.;

/ί/2 Γ w'c
=-«r Vminfe G(z, w))dμn>(z)dμtl'(w) —.

z j <4
Hence

/n\ i . _,

^J

As μn>xμn converges to μxμ vaguely and mm(c,G(z,w)) is continuous on ΓmxΓm,
so by making ^'//Όo,

)^ min(c, G(*, w))dμ(z)dμ(w).

13) See Selection theorem, p. 162 in [4].
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Making c/co, we have D(Γm}^I(μ)^\nίv^M(Γm)I(v\ i.e.

From this with (3.5), we finally get

PROPOSITION 3. Z)(/')=oo.

This follows from Lemmas 3.3 and 3.4.

§ 4. Proof of Theorem 1.

Assume that the condition (Ω) is satisfied:

inf Ω0(z)>ΰ.
z€R—Ro

We have to prove the existence of an Evans' solution of (E) on /?.14)

By Propositions 2 and 3, we have E(Γ)=oo. Since E(Γ)=\imnEn(Γ), we can
find an increasing sequence («*)£=! of positive integers such that

(*=1,2, ).

By the definition of Enic(Γ), we can find nk points pk>l O'^l,2, , %•) in Γ such that

inf Σ G(A/O>2*«*

Then the function

is continuous on R* and a solution of (Z£) on R and ek(p)>l/2 on Γ. Thus we
can find a compact set Kk in J? such that

—^~ on R*—'Kk and a fortiori on R—Kk.LJ

Let z0 be a point in R and "K0 be a neighborhood of z0 with F0 compact in 7?.
Then there exists a constant c0 such that G(<ε0, ^)^c0 (wεR—Vo). Hence G(z^p)^cQ

for any /> in Γ. From this, ek(z0)^Co/2k+1. Thus the sequence (Σ/fc=ι^(2))n-ι is a
monotone increasing sequence of solutions of (E) on R such that Σ*-ι^(2o)^c0.
Hence

e(z)= Σ ek(z)
k=ι

14) The following method of construction is the standard one originally due to Evans.
The following proof is contained only for the sake of completeness.
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is a solution of (E) on R and e(z)^n/2 on R—^Jΐ=ιKk. Since UίUi/Ct is compact
in ?̂, the above inequality shows that \ιmRBZ^Aooe(z)=oo. Thus the function e(z) is

a required Evans' solution of (E) on R.

REMARK. The Evans' solution e(z) of (E) on R constructed above satisfies the
following condition:

(*) I* e(z)P(z)dxdy<oo.
JR

In fact, by the footnote12)

G(z,w)P(z)dxdy=2π
JR

for any w in R. Hence by Fatou's lemma

Γ Γ\ G(z, p)P(z)dxdy^lιmιnί \ G(ztw)P(z)dxdy=2π.

Thus

$.«
and so

e(z)P(z)dxdy= Σ \ ek(z)P(z)dxdy^2π.

It is the writer's conjecture that the condition (Ω) is equivalent to the existence
of Evans' solution satisfying the condition (*).

§ 5. Proof of Theorem 2.

To see the equivalence of (a) and (b), we have only to show that (a) is equi-
valent to

inf G(z, w)>0
zζR

for a fixed w in ^0. Let c>l and satisfy c>G(z,w)>c~1 for any z in 3R0 and
Gn(z, w) be Green's function of (E) on Rn. Then for sufficiently large n, c>Gn(z, w)
>c~l for z in dR0. Hence by the maximum principle

on Rn—Ro From this we get

cΩ0(z)>G(z)w)>c-1Ω()(z).

This shows that the equivalence of (a) and (b).
The implication (a)-»(c) is nothing but Proposition 3
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Finally we show that the implication (c)— >(b). Contrary to the assertion, assume
that

inf G(z, w)=0
Z£R

for a point w in R. Then there exists a point pmΓ such that G(w, p)=G(p, w)=Q
for a point w in R and so for every point w in R. Thus for any q in Γ, G(q,p)=Q.
Hence by putting qι=q2 = '~=qn=p, we get

0^ inf ί'ΣnG(pί9pJ)^l''ΣG(qi,qJ)=Q
pl, ,pnGΓ Kj τ<]

or

Λ»(Γ)=0.

Thus Z>(Γ)=limMZ)n(Γ)=0, which is a contradiction. Q.E.D.

From the above proof, we also get

THEOREM 2'. The following conditions are mutually equivalent:

(a) inf 00(2)=0;
ZζR— RQ

(b) inf GO, w)=Q for every w in R\
z£R

(c) 0(Γ)=0.

REMARK. The condition (Ω) is a sufficient but not necessary condition for the
existence of Evans' solution of (E) on R. As an example,15) let

R=(z',
and

Then (E1) possesses an Evans' solution

of (E) on 7?. To show that the condition (Ω) is not satisfied, let (Rn)n=o be the
exhaustion of R such that Rn=(z\ \z <1— 1/(«+2)) and ?^n(2) be the harmonic
function on Rn— R0 (n^l) with boundary value wn=l on ̂ 0 and wn=Q on 57?n.
Then by the maximum principle

Clearly wn converges to the harmonic function w on R—R0 with boundary value
w = l on dR0 and w=0 on 8R=(z; |z|=l). Hence

15) This example is due to Royden [9], p. 10.
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0<Ω0(z)^w(z)
and so

0^ inf Ω0(z)^ inf w(z)=0.
R-RQ3z R-RoBz

It is the Prof. Ozawa's conjecture that the non-existence of non-zero bounded
solution of (E) on R is equivalent to the existence of Evans' solution of (E) on R.16:>

§ 6. Proof of Theorem 3.

The " only if " part of Theorem 3 is easily seen and well known. So we have
only to show the " i f " part. Take a density P(z) with P(z)dxdy**Q on R and
P(z)dxdy=0 outside a fixed compact set in R. Let (Rn)™^Q be a normal exhaustion
of R. We assume that P(z)dxdy=0 on R—RQ. Then the function Ω0>n(z) (n^l)
is harmonic in Rn—Ro with boundary value Q0>n=l on 3R0 and Ω0>n=Q on dRn.
Hence Ω0 is the positive harmonic function on R—Ro with boundary value Ω0 = l on
dRo. Since R is of null boundary, by well known Mori's theorem,

σ= inf β0(z)>0,
zζR-Ro

i.e. the condition (Ω) is satisfied. Hence by Theorem 1, there exists an Evans'
solution e(z) of (E) on R. As

on R—Ri, so e(z) is harmonic on R—Ri. Let a>supz€R1e(z) and U—(z^R\e(z)>a).
We can find a positive number b such that

b{ *de(z)=2π.
JdU

Let the singularity function s(z) on R—dU be defined as follows:

( be(z)—ab on £7,
s(z) = { _

I —k(z,w) on R—U,

where k(z,w) is the harmonic Green's function on /?— £7 with its pole w in R—U.
Let L be a normal operator of Sario.17) Consider the equation

— s)=h— s.
By the definition of 5(2),

and so the above equation has a solution h(z) harmonic on R which is a desired
Evans-Selberg's potential on R with one negative logarithmic pole at w.ίΌ

16) Compare this with the conjecture in the remark of § 4.
17) See Sario [10].
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