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Introduction.

In [1], Bellman and Cooke have discussed the behavior of solutions of a particular
type of the equation

(0.1) x'(t)=f(t,x(t\x(t-h})

as the retardation h tends to zero, and stated that the same method they used can
be applied to demonstrate the corresponding result for more general differential-
difference equations. The author [6] has discussed the same problems as above for
general equations (0.1), in which f(ty x, y) is a continuous function denned in a
bounded and closed domain and satisfies Lipschitz condition, and he obtained some
results as direct consequences of the dependence properties of solutions on the
retardation h, as well as the behavior of solutions as h tends to zero.

The purpose of this paper is to discuss the problems of dependence properties of
solutions of (0.1) on retarded arguments and initial values for the case where t
varies in the infinite interval.

§ 1. Existence of solutions.

In order to consider the problems stated above, it is useful to establish the
existence ana uniqueness of solutions of (0.1), which are defined for —oo<^<oo.
Hence, we first prove an existence theorem. The uniqueness, however, will be
proved in § 2 by means of a result concerning the continuity property with respect
to retarded arguments and initial values.

On the other hand, Doss and Nasr [3] have discussed the problem similar to the
above one for the equation (0.1), in which h<0 anάf(t,x,y) is continuous in the
region £0^<°°, |#|<cχ>, |τ/|<oo.
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Now, we shall prove the following

THEOREM 1. In the equation

(1.1) *'(*)=/(*, x(t\ x(t-h)\

it is supposed that the following conditions are satisfied:
(i) f(t,x,y) is continuous in the region IxDxD, where D is a domain in Rn

and /=(— oo, oo);
(ii) f(t,x,y) satisfies Lipschitz condition such that

(1.2) |/α, a?ι, yj-f(t, x2, yί)\ ̂

where k(t) is continuous in I and

(1.3) Γ k(f)dt=A<-±-;
J —00 &

(iii) for a given XQ in D,

(1.4) ~ \f(t,x0,x»)\dt=B<oo.

Then, we obtain the following results:
(a) the existence and uniqueness of solutions under the initial condition x(0)=xQ

are guranteed in the interval /, provided that every point such that X—XQ ^2AB/(l
-2 A) lies in D]

(b) the solution is a continuous function of the initial value;
(c) the limits lιmt^±ooX(t) exist, and they are one-to-one corresponding to the

solution]
(d) if the integral in (ii) is not convergent, the uniqueness in (a) is no longer

true.

In this theorem, it is not necessary for h to be positive. For the sake of
simplicity, however, the proof will be proceeded for the case /z>0. The slight
modification can be applied to prove the corresponding results for the case

Proof, (a) We define a sequence {xn(t)}n=o in the interval / as follows:

(1.5)

f(s, xn(s), xn(s—h))ds (»=0, 1, 2, •
o
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Now, we consider two cases:
I. The case Q^t<oo. It follows from (1.5) that

fί
\Xn+ι(t)—Xn(t)\ ^ \ k(s)(\Xn(s)—Xn-

Jo

(1.6)
aS'J-fi

where Λ(s)=
Especially, for w=0, we obtain from (1.3) and (1.5) that

(1.7) |Λ?ι(0~Λ?o|^ |/(5,Λ?o,Λ?o) |&^ \f(s, XQ,
JO J-00

Then, from (1.6) together with (1.3) and (1.7), it follows that

(1.8) \x»+ι(t)-Xn(t)\^B(2A)» (»=0, 1, 2, •••),

which implies the uniform convergence of the sequence {xn(t)}n=0 in the interval

It is noted that the upper bound 2AB/(1— 2A) of the sequence (1.5) is not
dependent on the retarded argument h.

II. The case -oo<^0. It follows from (1.5) that

f
\^\

Γ
^\J

On account of the same reason as in the case I, we obtain just the same estimation
as (1.8), which leads us to the uniform convergence of {xn(t)}n=Q in the interval

Putting x(t)=lιmn^o0Xn(t) (~oo<t<oo), it follows by the uniform convergence
that x(t) is a continuous solution of an integral equation

(1.9) x(i)=x0+ f(s, x(s), x(s-h))ds,
o

provided that the condition in (a) is fulfilled. It is apparent from (1.9) that x(t)
satisfies the equation (1.1) in the interval / and x(G)=x0.

The proof of the uniqueness of solutions and continuity dependence on initial
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conditions will be found in § 2.
(c) In order to prove (c), it is sufficient to establish the absolute integrability

of f ( t , x(t), x(t—h)) over the interval /. It follows from (ii) and (iii) that

S CO
\f(s,x(s\x(s—h))\ds

— 00

S f oo
I f(s, x(s\ x(s—h))—f(s, XQ, xQ)\ds+ \ \f(s, XQ, x0)\ds

— 00 J —00

- 1-2 A

Hence, the limits lim^±co x(t) exist and the uniqueness of solutions implies the
one-to-one correspondence of the limits to the solution.

(d) To prove (d), it is sufficient to consider an equation

*'(»=

under the condition x(Q)=e~1.
It is easily observed that x=exp(—et) is a bounded solution of (1.10) with x(ty=e~l

in the interval /. It is evident that for any constants a and β, αexp(— e^+β satisfies
the equation (1.10). From the equation ae~1-t-β=e-1, however, we can find an
infinite number of solutions with the same initial value e~l at ί=0.

Furthermore, by means of a simple calculation, we have

§ 2. Dependence properties of solutions on initial values and retarded arguments.

In order to study how the solution of (1.1) depends upon the retarded arguments
h under the analogous assumptions to those in Theorem 1, we suppose that h varies
on the interval [a,b]. For the sake of simplicity, it is supposed that a is non-
negative. Instead of the assumptions in Theorem 1, we suppose that the following
conditions are satisfied:

(i) f(t,x,y) is a continuous function defined in IxDxD\
(ii) f ( t , x, y) satisfies Lipschitz condition such that
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\f(t, xlt y1)-f(t, x,, ΪΛ,)| ^k(fK\xι

where k(f) is continuous in I, (t,x,y)zIxDxD, and

(iii) for any constant a in A,

\f(t,a,a)\dt<B<oo,

where B is an absolute constant and Do is a subdomain in D which is chosen so as
to satisfy that every x satisfying the inequality \x—a\^2AB/(l —2A) is contained
in D;

(iv) for sufficiently large T such that b<T, there exists a constant Ksuch that
\f(t,x,y)\^K in IQxDxD, where 70 represents the interval [—T,T].

Then, as proved in § 1, the existence of solutions of

x'(t)=f(t, x(t\ x(t—hi)\(2.1)

under the condition #(0)=^, where Xί€DQ, is guaranteed in the interval /, and
(2.1) is equivalent to an integral equation

(2.2) =Xi+\ f(s,x(s),x(s—hl))ds
Jo

in the interval 7.
Denoting by x(t, xτ, hi) the solution of (2.2), we obtain from (2.2) that

\x(t,

(2.3)

\ |/(5, X(S, Xi, hi), X(s — hι, Xi, hi))
Jo

—f(s, x(s, xz, hz\ x(s—hι. Xzj h2))\ds

\ |/(5, x(s, X2, hz), x(s—hι, x2, h2))
Jo

—/(5, x(s, x2, h2), x(s—h2, Xzj h2))\ds

\ k(s)(\x(s, Xi, hι)—x(s, x2, A2)|
Jo

+ \x(s—hι,Xι,hι)—x(s—hι,Xz, h2)\)ds
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+ \ k(s)\x(s—hι, x2, h2)—x(s—h2, #2, hz)\ds .
Jo ί

On account of the assumptions mentioned before, it follows from (2.2) tha*

\x(s—hι, x2, h2)—x(s—h2j X2, hz)\

S
s-hι

\f(u< x(u, x2, hz\ x(u—h2, x2, hz))\du
s-/z2

provided that — T^s—h2^u^s—hι^T. Then, if we consider the case 0
we obtain from (2.3) that

\X(t, Xi, hι) — x(t, X2, hz)\

^\Xι—Xz\-\-KA(hz—hι)+\ λ(s)\x(s,Xι, hι)—x(s, x2, h2)\ds,
J-Λl

where λ(s)=k(s)+k(s+h\\ which yields an estimation

(2.4) \x(t, xlt /*ι)-

For the case — oo<^0, we obtain just the same inequality as (2.4) by means
of a slight modification of the above method.

If hι = h2 in the inequality (2.4), it implies the equicontinuity of solutions with
respect to initial values. Furthermore, if Xι=x2 and hι = h2, we can establish the
uniqueness of solutions of (2.1) from (2.4), which implies the proof of the uniqueness
in (a) of Theorem 1.

On the other hand, if XI=XZ=XQ, any solution of (2.1) is an equicontinuous
function of the retarded argument h. Furthermore, since any solution is bounded,
it follows by a well known theorem that any sequence of solutions {x(t, x0, hn)} n=o
such that hn—

>0 («—>oo) contains a subsequence which is uniformly convergent as
H-+OO. The limiting function x(t,x0) will be expected to be a solution of the
differential equation

(2.5) x'(t)=f(t,x(t\ x(t)\ xφ)=x0.

To this end, consider the inequality (2.4) which corresponds to the case where
XI=XZ=XQ, and h2 = h,hι=Q. Then, by virtue of the same reason as before, we
obtain an inequality

I // to <* M ^ Kh

\X(t) XQ, rl)X\ΐ, XQ)\ — ~ Ί J „ .. ,
JL — ΔΆ.

which implies the uniform convergence of x(t, Xo, h) to x(t, Xo) as h-+Q. Here, it is
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noted that the interval of the uniform convergence is —T^t^T for any large T.
Thus, we obtain the following

THEOREM 2. Under the same assumptions (i), (ii), (iii), (iv), we obtain the
following results:

(i) for a fixed retardation, any solution of (2.1) is an equicontinuous function
of the initial value uniformly in t]

(ii) for a fixed initial value, any solution of (2.1) is an equicontinuous function
of h in the interval [a, b] uniformly in t, if t belongs to an interval 70;

(iii) as the retardation approaches zero, the solution of (2.1) with a fixed initial
value tends to the solution of (2.5) uniformly in /e/0.

§ 3. ε-approximate solutions.

Let Ui(t) (/=!, 2) be functions which are continuous in 0^/<oo, differentiable
in 0<ί<oo and satisfy the inequalities

(3.1) \u/(t)-f(t, Ui(f), uί(t-hl)}\^εl (t = l, 2)

for given constants εl (/=!, 2), where it is supposed that for a given function ψi(t)
the initial conditions

(3.2) uί(t-hl)=φi(t) (Q^t<ht,i= l,2)

are fulfilled. Then, we call Uί(t) (/=!, 2) the εr approximate solutions with respect
to the difference-differential equation

(3.3) x'(t)=f(t, x(t\ x(t-h^ (ι = l, 2),

respectively, where x(t—h^)=ψ^(f) (0^/
On the function f ( t , x, y) and others, we impose the following conditions which

are more general than those in the preceding sections:
(i) f(t,x,y) is continuous in the region I+xDxD, where Γ> represents the

interval 0^<oo, and sup\f\^K in I^xDxD, where 1% the interval Q^t^T for
any large T\

(ii) f ( t , x, y) satisfies the condition such that

\f(t, χι, yύ-Λt, x* ya)| ̂ ^XMd^-^D+Md^-^D),

where k(t) is continuous on ΓΓ and M(r) is piecewise continuous, non-negative, non-
decreasing for r^O, and M(0)=0 if and only if r=0',

(iii) ut(t-hι)=φi(f) (0

where ψi(t) (/=!, 2) are given continuous functions and lim^^-o ψt(t) (/=!, 2) exist',
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(iv)

Now, we consider three cases.
I. The case O^t^hi. Then, we obtain from (3.1) that

(3.4) ^|«ι(0)-M2(0)|+(eι+ε2)/+|/(5, u,(s\ u^s-h^-fts, uz(s), u2(s-ti))\ds

Then, by means of Bihari-Langenhop's inequality (cf. [2], [4]), it follows from (3.4)
that

(3.5)
/ / f h i \ r t \

^G"1 G |̂ ι(0) —^^^^(^-(εi + ε^/ϊi+V k(s)M(\φι(s) — φ2(s)\)ds -f \ k(s)ds ,
\ \ Jo / Jo /

where G~l(f) is defined as the inverse function of

dp
(3.6)

M(p)

and the constant in the bracket of G in (3.5) is supposed to be positive.
II. The case h^t^h*. Then, it follows that

where Λ(s)=£(s)+&(s+/&ι). Then, by means of the same inequality as above, we
obtain

(3.7)

+
o

III. The case h2^t^T. Then, it follows that
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which implies the inequality

\ul(t)-u2(t)\

(3.8) ^ G - G l w i ί O J - W a W I + t e i + e ^

)-ίpa(5)|)Λ) + [λ(s)ds } .
/ Jo /

Thus, we obtain the following

THEOREM 3. Under the conditions (i), (ii), (iii), (iv), we obtain the estimations
(3.5), (3.7), (3.8) for Uι(t) — u2(t)\, where Ut(t) (z = l,2) are ^-approximate solutions
defined by (3.1), and G~l(r) is defined as the inverse function of (3.6).

If we consider the case M(r) = r, that is, if f(t, x, y) satisfies Lipschitz condition,
it follows from (3.5) that

Y
G(r)^log — and G~\γ)=r* exp r.

7θ

Hence, we obtain the following

COROLLARY. Under the conditions (i), (iii), (iv) in Theorem 3, and the condi-
tion

(ϋ)' \f(t, χι, yι)—f(t, xzy yz)\^

where k(t) is a continuous function.
Then, we have the following estimations:

I. The case O^t^hi.

\u1(t)-u2(t)\

o

II. The case h^t^hz.

where λ(s)~k(s)-\-k(s+h ύ
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III. The case h^t^T.

\Ui(f)-U2(t)\

λ(s)ds
0

§ 4. Osgood conditions.

The author [5] has obtained the general theorems concerning the uniqueness
problems of difference-differential equations. In this section, as an application of
Theorem 3, we shall establish a uniqueness theorem very similar to Osgood condi-
tions in the theory of differential equations. Furthermore, as an application of a
fixed point theorem, a result which asserts the existence of solutions will be proved.

We first prove the following

THEOREM 4.υ In the equation

(4.1) xf(t)=f(t,x(t),x(t—h)\ /z>0,

we suppose that the following conditions are satisfied'.
(i) f(t,x,y) is continuous in 0^/<oo, |#|<oo,
(ii) f(tt x, y) satisfies the condition such that

(4.2)

where k(t) is continuous in 0^£<oo, M(r) is defined as in Theorem 3.
Then, there exists a solution of (4.1) under the initial conditions χ(t)=0

(— &ΐiί<0) and x(Q)—xϋ in the interval 0^£<oo, provided that \x0\^r0, where rϋ

is a given constant.

Proof. For a given r0>0, we consider an equation

(43) Γ
Jro

where λ(t)=k(t)+k(t+tϊ). Since both of the right and left hand sides of (4.3) are
monotone increasing, r is uniquely determined as a function of t in the interval

, and r(Q) = r0. Furthermore, (4.3) is equivalent to a differential equation

rr=λ(f)M(r)

under the initial condition r(0)= r0.

1) The result was simply stated in [7].
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Let A be a family of functions x(f) which are continuous and \x(t)\^r(f) in
, and x(t)=Q (— /z^<0). Then, we define a transformation T such that

(4.4) Tx(t)=x,-{-f(s, x(s), x(s-h)}ds
Jo

for any x(t) in A. Then, it follows from the hypotheses that

^ r0 + ί
J

for any Λ?(ί) in A, which implies TA^A. Thus, by using Tychonov's fixed point
theorem in the topology suitably chosen, it follows that there exists a fixed point
in A, which corresponds to a solution of (3.1) under the conditions x(ty = Xo and

)=Q (-h^t<Q), if \x0\^r0.
This completes the proof of Theorem 4.

COROLLARY. Under the same assumptions as in Theorem 4, if

*k(t)dt

is convergent, but

Γ dp
Jro M(p)

diverges as r^-j-°°> then there exists a bounded solution of (4.1) under the conditions
and x(Q)=x0, provided that \xQ\^rQ.

Proof. From the equation (4.3) and the above assumptions, r is determined as
a bounded function of t in the interval 0^/<oo. Then, proceeding the same
method as in the proof of Theorem 4, it is observed that A defined before is a
family of bounded functions in 0^/<oo. Hence, a fixed point in A, that is, a
solution of (4.1) is also bounded in 0^<oo.

In order to apply Theorem 3 to the uniqueness problems, we use the notation
G(r,ro) instead of G(r) and impose on it the assumption limro-,+0 G(r, r0) = +oo for
fixed r. Then, we obtain limr0->+o G~l(r, r0)=0. In fact, if the result does not hold,
there exists a positive constant ε such that G"1 ,̂ ro)^e for 0<r0<^, where y is
any sufficiently small number. By the monotonicity of the function G(r, r0) with
respect to r, it follows that
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(4.5) n = G(G~\r,, r0), r0)^G(ε, r0)

for any fixed rι(>r0). On the other hand, it follows from the hypothesis that

liiiir^+o G(ε, r0)=-foo, which contradicts the inequality (4.5), since n is fixed. It is

noted that such a condition as above corresponds to Osgood condition concerning
the uniqueness of solutions in the theory of differential equations. Thus, we
obtain the following

THEOREM 5. In Theorem 3, we suppose an additional condition such that

limr0->+oG(r)=+°o. Then, we have the following results:
(a) Uι(Q) = Uz(Q\ φι(f) = φ2(t), and h\=hz. Then, the uniqueness of solutions is

obtained',

(b) φ\(f)=φz(t\ hι=h2. Then, the equicontinuity of solutions with respect to
initial values is obtained',

(c) φι(f) = φ2(t), #ι(0) = M2(0). Then, the equicontinuity of solutions with respect
to retarded arguments is obtained.
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