REDUCTION OF THE ORDER OF A LINEAR
ORDINARY DIFFERENTIAL EQUATION
CONTAINING A SMALL PARAMETER

By MASAHIRO IWANO AND YASUTAKA SIBUYA

Introduction.

Let an #™ order linear ordinary differential equation of the form
(E) W™ +-a,(x, w4+ ax(x, )w=0
be given, where o is a positive integer, x is an independent variable, ¢ is a parameter,
and the coefficients a; are functions holomorphic in (x, ¢) for
(Dl) lx]§50:0<l€l§7’0)|arg€I§00’
dy, 7, and 6, being positive constants. We assume that a; admits for x| <4, a
uniformly asymptotic expansion in powers of ¢

ar(x, &) = Z}O evar,(x)
y=

as e tends to zero in the domain 0 < |¢]| =7, |arge| =46, with the coefficients ax.
holomorphic for | 2| =4, In this paper we shall discuss reduction of the order of

the equation (E,) in the domain (D,).
First of all, by choosing a positive rational number ¢ suitably, we rewrite the

equation (E,) in a form
(E,) gnogy @ - en=Dop (2, )WV - 4-bu(x, e)w=0,

where the coefficients & still have the properties similar to those of ax, and moreover
we have bi(x, 0)=0 at least for a certain £ In fact, let N, be an integer such
that lim..,s ¥rax(x, ) exists and is not

identically equal to zero, then we may cho- ITV

ose ¢ SO as to have
©,0)

min { jo+N,—p} =0.2
J=1

In other words, we put

—J

o=max ﬂ (See Fig. 1).
J Fig. 1

Received July 7. 1962.
1) For simplicity’s sake, we write bx(z,0) to represent the coefficient bzo(x) in the

asymptotic expression bu(x, e)= 3172 ¢ br(x). Therefore, br(0, 0)="bx(0).
2) We assume that min{N;, Ny, ---, No}=0.
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Now we can assume without loss of generality that the algebraic equation
(Cl) n + b](Oy O)Zn—l + -+ bn(O; 0) =0

has only one #-ple root, since, otherwise, the reduction of the order of the equation
is always possible (See Sibuya [2]). Then the transformation

o

(T) w=y exp

reduces the equation (E,) to

Ey) enoy @ =em=Dopy(x, YY"V 4+, )Y,
where p;, have the properties similar to those of b, and we have
A) £:0,0) =0 (k=23 -, n).

In the following chapters we shall study the equation (E,) under the assumptions
(A,) and

(A,) pi(x,0) %0 for some &.%
Under these assumptions, the algebraic equation in 4:
(& —{py(x, 042 4 - + pu(x, 0} =0

has only one #-ple root =0 for £ =0, but it has at least two distinct roots for
£+#0. Therefore, x=0 is possibly a turning point of the equation (E,).

Generally speaking, the domain | x| =, can be divided into a finite number of
subdomains in each of which the solution of (E,) behaves quite differently. These
subdomains can be constructed with the aid of positive rational numbers

0<p<p< < pm
in the following way:
[ Mu|elm < | 2| = 0my e |Pmy,
M| e [omet = | | < 0yl € [omes,
D,) e ,
Mlel < |z| <dlelr,
Melpr=|z| =3,

and

3) In case when the assumption (A,) does not hold, we must choose a suitable positive
rational number ¢’ instead of ¢, and bring the equation (E;) into a desired form. As this
is always possible, the assumption (A,;) does not harm any generality of our following
discussions.
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| xz l é Mm I € |P'm,
Om—y|e|Pm1 < | & | = M-y | e|Pm-1,

Dy

....................................

olel = 2| =M |elf,

where the numbers M, are sufficiently large, while the numbers d; are sufficiently
small. Chapter I will be devoted to the determination of those rational numbers
p: which can be done by introducing a convex polygon similar to the Newton’s
polygon in the theory of algebraic functions. In Chapter II we shall discuss reduc-
tion of the order of the equation (E,) in each of the domains (D,). In Chapter III
we shall investigate the solutions of the equation (E;) in each of the domains (D,).
In Chapter IV several examples will be given.

Our theory is based upon the ideas originally due to M. Iwano and simplified
by Y. Sibuya.

I. Characteristic polygon.

§1. Assumptions. We shall consider an #' order linear ordinary differential
equation of the form

(1. 1) 5”"y(”) =e‘”"2)"p2(x, e)y““” 4. +8k"1.'7n—k(51f', E)y(k) _|_ vee _‘_pn(w, e)y,

where ¢ is a positive integer,” x is an independent variable, ¢ is a parameter, and
the coefficients pi are functions holomorphic in (x, ¢) for

1.2 || <0, 0< |e| =7, |arge| =4,
d, 7, and 8, being positive constants. We assume that p, admits for
1.3 [x] =<4,

a uniformly asymptotic expansion in powers of ¢
1. 4) Di(, e):vgoe”m»(x)

as ¢ tends to zero in the domain
1.5) 0<l|e|=n, |arge| =6,

where the coefficients pi. are holomorphic in the domain (1. 3).
We shall further assume that

(i) Pro(x) %0 for some k;
(ii) Pko(O) =0 (k = 2’ 3) R M).

4) As is seen from our discussion in the Introduction, ¢ is generally a positive rational
number. However, replacing e, if necessary, by a suitable fractional power of ¢, ¢ can
always be regarded as an integer.
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Under these assumptions, the algebraic equation in
1.6) A — { Poo(X) A2+ A Prg()} = 0

has only one n-ple root 4 =0 for £ =0, and at least two distinct roots for x=0.
Therefore, x=0 is possibly a turning point of the equation (1. 1).

§ 2. Definition of the characteristic polygon. Let
@1 po(@) = 32" e

be the expansion of pr, in powers of x, where the coefficients pwn are constants.
Suppose

2. 2) D =0 (h < mw)
and
2.3) Den X0 (h = mw).

If pu.(x)=0, we put muw,=-+oo.
In a plane with a rectangular coordinate system (X, Y'). we plot the following
points

R:(O', —1)1 <k=2, 3,.._, n )
Y Mk -
Pku:'(*k—, ‘ki) y:O,l,...
All of the points Pi, are either on the X-axis or in the upper half-plane, while the

point R is in the lower half-plane. A polygon /I, convex downward, can be
constructed in such a way that

@. 4

(i) its vertices are some of the points (2. 4);
(ii) none of the points (2. 4) is located below the polygon.

Hereafter, this will be called the characteristic polygon. 1t is easily seen that the
y point R is a vertex of the characteristic polygon.
On the other hand, the assumptions (i) and (ii)
of §1 imply that there is a vertex Q, on the Y-
axis but Q, is not the origin. We shall denote
the vertices between Q, and R by Q;, Q,, -, Qm—,
successively from the left to the right. We

QQ2 shall also denote R by Qn (See Fig. 2).
§3. Definition of p:. Let
Qm—1 .
1N .. BD Q=) (=01 m.
\R/ Since the point Q, is on the Y-axis, its X-coor-

Fig. 2 dinate must be equal to zero:
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3. 2) a, = 0.
On the other hand, since Q, is not the origin, its Y-coordinate must be positive:
(3.3 By > 0.
Further we have
3.4 Un =0, Pn=—1,
because Qn=R.
Let us put
(3. 5) “2‘%3%f (i=1,2, -, m).
Then p; are positive rational numbers such that
(3.6) Po(=0) < p; < pp < -+ < P

The straight line passing through the points Q; and Q,_, is given by the
equation

@7 (Y — ) + (X — as) =0,
and the straight line passing through the points Q; and Q;,, is given by
3. 8) 0i(Y — ) + (X —a)) = 0.

Now, returning to the expansion (2.1) of the function pi, let us consider a
point (X, Y) with

v h

for some pi,n0. Then, since (2.2) implies A=mu, the point (X, Y) does not lie
below the characteristic polygon. Therefore, we have

3.10) t=p(Y —B)+ X —a) =0
and

(3.11) ' =04 (Y—Bi)+(X—a;) =0.
In particular, we have

3.12) =0

if and only if the point (X, Y) is on the segment
joining Q; to Q;_,, and we have

3.13) 7 =0

if and only if the point (X, Y) is on the segment
joining Q: to Q;4; (See Fig. 3).

Fig. 3
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§4. Properties of the characteristic polygon, I. If we put

Yy

ey’

izayll

4.1

<U
I

e(n—l)ay(n—l)

the equation (1. 1) can be written as

—

,ady ~
. 2) & Az, )y,

where A(x, ¢) is an # by »# matrix of the form

0 1 0 0 0
0 0 1 0 0
“.3) A, ) =
0 0 0o - 0 1
2 e N y2 0
Let us consider a linear transformation
4.9 7 = Ao, P)Z,

where 4 is a diagonal matrix whose components on the principal diagonal are 1,
e“xB, (e°xP)?, -+, (ecxP)"~! respectively, i.e.:

1
eexh

Ala, p)= (s"xf)?

(e*xByr—1

Then the equation (4. 2) will be transformed into

-

daz
dx

4. 5) grmay—B =B(x, ¢)Z,
where

B(x, e)=ex#{ A, B~ A(z, ) A(a, B) — A(a, p)~e° (—151-%;& .
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Therefore we can write

4. 6) Bz, ¢) = B,(x, ) —pfere a1 C,,
where
0 1 0 0 0
0 0 1 0 0
4.7 Byxr,e) =
0 0 0 0 1
(@) Py () Py (X TEPu_y e (eo@B)2p, 0
and
0 \
1 0
4. 8) C, = )
0
n—1

From (1. 4) and (2. 1) it follows that

4.9 (e*2P) ™ pu(, &) = Ehey"‘“ " Pion.
Let us put

(4. 10) t=p(Y ~ )+ (X —0a)

and

(4. 11) =0 Y -p+X—-a),

where 0<p<p’. Then =0 defines a straight line pas-
sing through the point (a, 8), and r=0 means that the
point (X, Y) does not lie below the straight line. The

same is true for * (See Fig. 4).
Substituting Fig. 4

v h

4. 12) X = Y= 5

into (4. 10) and (4. 11), each summand in the expression (4. 9) will be written in a
form

(4' 13) gV—ka ph—kf — (xeap)ln’/(p’—p)(xe—p’)~k7/(p’—p)’

where =0 if and only if the point (v/k, A/k) does not lie below the straight line
defined by o(Y—pB)+(X—a)=0, while /=0 if and only if the point (v/k, h/k) does
not lie below the straight line defined by ¢'(Y—p)+(X—a)=0. In case when those
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two lines do not intersect the characteristic polygon /I, both of = and ¢ are non-
negative.

If both of z and ¢’ are nonnegative, and one of them is positive, then (4. 13)
implies that e’~*«x"* is small when xze is small and xe=' is large. Therefore,
in this case, e* %= g»~* is small in a domain

4. 14 Mlel'=lx|=d]cl,

where M and 1/6 are large positive constants. TFurthermore, in this case, if 4/k=p,
then ' —z=(p’—p)(h/k—p)=0 and &*~*=x"~* can be written as

(4' 15) gV—ka xh—kﬁ_-:-_skT(xe—‘p)k(T,“T)/(p,—P).
On the other hand, if #/k=<p, then t—'=(p—p')(h/k—B)=0 and &%« x"* can be
written as
YA v (4. 16) ev—ha ph—kf—gh7'(pg=p')—k(T=7)/Cp'=p)

The same can be proved for

(4. 17) X=o, Y=-—1.
@ Y From (4. 9) it is easily seen that the linear trans-
. formation (4. 4) effects a change of coordinates
0 X
4.18) X =X —aq, Y=Y-58
Fig. 5

in the (X, Y)-plane. The origin of the new coordinate
system is at the point (a, B) (See Fig. 5).

§5. Properties of the characteristic polygon, II. Now let us consider a trans-
formation of the form

x = erg,
(6.1) _

7 = Ay, 0%,
where p is a positive number. If we write the transformed equation as
(. 2) e”'ﬂ"rj—g = B, €)z,

the matrix B has the following form:

B, o)=e7 Ay, 0)~ A(eE, ©)A(r, 0)

;0 1 0 0 0
0 0 1 w0 0

. 3) =
0 0 0 0 1

\ emp, e @ Dip, . @ Drp, ... gp, 0
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From (1.4) and (2.1) we can derive the following asymptotic expansion:

(5. 4) ek py(erE, €) = VZ’:L evreh=rkEnpy n.

Now let us put
6.5 o =Y + (X —p).

Then ¢’=0 defines a straight line passing through the point (7, 0), and ¢’ =0 means
that the point (X, Y) does not lie below the straight line. In particular, ¢/=0 if
and only if the point (X, Y) is on the straight line.

If we put X=vy/k, Y=h/k in (5. 5), we have

5. 6) evrol—rh = gk’
and if we put X=0, Y=—1 in (5. 5), we have
(5.7 eo T = g7, Y oav

Thus we see that the transformation (5. 1)
effects a change of coordinates

¢’>0
(5.8 X' =pY+(X—7), Y=Y
in the (X, Y)-plane. The Y’-axis is the straight )
line defined by ) ) >X, X'
(5.9 oY +(X—1=0, o=
Fig. 6

and the origin of the new coordinate system is at
the point (7, 0) (See Fig. 6).

II. Reduction of order.

§6. Transformation of the equation (1.1). In this chapter, we shall reduce
the order of the equation (1. 1) in each of the following domains:
Mlelrin= |z =dlels  (G=1,2, -, m—1),
6.1)
Mel = x| =6,

To do this, we shall use transformations of the form

6.2 ¥ = M, Bi)Z.
The equation on Z can be written as

o, G S
6. 3) g xhi ={By(x, ¢)— e’ 27871 Cy}Z,

dx

where B, is given by (4. 7) with a=a; and =g, while C, is given by (4. 8).
Let us put

6. 4) =Y = Bi)+ (X —ay)
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and
(6. 5) ' =0;:(Y —B)+(X—a).

Then we have =0 and «” =0 for (4. 12) as well as
for (4. 17) (See Fig. 7). Therefore in the domain

(6. 6) Myylelrin= 2| =0, e e
the matrix B;—p:e~= 2% 7*C, can be written as
6.7 B(x, &)—piec 278 1Cy=H,+[--],

where [---] indicates the terms small in the domain
(6. 6), and H, is a constant matrix of the form

0 1 0 0 0
0 0 1 0 0
6.8 H, =
0 0 0 0 1
Cn  Cn-y Cn—g  *** C, 0
Furthermore, at least one of the constants ¢, c._1, -+, ¢, is different from zero

(because we have r=t¢'=0 in (4. 13) for some k). Therefore, H, has at least two
distinct characteristic values. Thus the order of the equation (1. 1) can be reduced
in the domain (6. 6) by the use of the lemma which will be given in §7.

ReEMARK. In case when the vertex Qm-: is on the X-axis, we have B,_,=0
(See Fig. 8). Then by the transformation

6.9) y= Aty Pr-D)Z
the equation (4. 2) is reduced to
. 6. 10) eennsgim B2 B (3, 0,
'\, where B, is given by (4. 7) with a=a,,_, and p=3,,_,
\ (=0). Therefore, it is easily seen that, in this case,
Qm-\/ we can reduce the order of the cquation (1.1) in the
' R domain
Fig. 8 6.11) || = Gy |  Jomt

in stead of the domain
Mylelm=|z|=6pn_,|c|m-1 (See (4. 15) and (4. 16)).

§7. Fundamental lemma. Consider a system of linear ordinary differential
equations
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i _

7.1 (xre)ixa +1 ir

E(x, )z,

where p is a positive rational number, ¢ is a positive integer, ¢’ is a nonnegative
integer, and E is an # by » matrix whose components are holomorphic functions
of (x,¢) in a domain
(7. 2) Mle|Vr=|x|=0d, 0<|e|=7, large|=0,
M, 6, » and 6 being positive constants.

Assume that the matrix E admits, for M|e|Y#=<|x|=0d, a uniformly asymptotic
expansion in powers of (z~*e)

7. 3) E(z, ¢) =~ éo (x-re) Ed(x)

as ¢ tends to zero in the domain

7.4 0<|e| =7, |arge| =0,

where the coefficients E. are #» by n matrices whose components are holomorphic
functions of x in the domain

(7.5) |z | =é.

In other words, an inequality

7. 6) E@, 9— %, (079 Ei@)| < Kivlz-ve|*

is satisfied uniformly in the domain (7. 2) for each N, where Ky is a positive con-
stant independent of (x, ¢). The integers ¢ and ¢’ are supposed to satisfy an in-
equality

7.7 q — pg <O.

Let 4, 4,, ---, 4s be distinct characteristic values of E,(0), and let %, be the multi-
plicity of 4,. Then, assuming that E,(0) has the Jordan canonical form, we can
write it as

B
R
(7. 8) E0) = ; ’ \
LR
Es
where
1A 0y 0 0 0 0 0
0 4 46, 0 0 0 0
7.9 B = |
0 0 0 0 0 2 Gmyy |
L0 0 0 0 - 0 0 &

(j=1, 2; ) S),
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d;x being equal either to 1 or to zero.
Let ©,, ©_, 0. and 6_ be positive numbers. A domain

(7. 10) —O_=sargxr=0,, —0_=arge=0,
is said to be proper with respect to the functions
(7. 11) (A5 — A)emapes—a Gk

when we can choose arg(4;—2) in such a way that
, 3r
larg {(4;—Ax)e 7'} | = - T

for (7.10), where 7 is a sufficiently small positive number.

Suppose that the domain (7. 10) is proper with respect to the functions (7. 11).
The existence of such a domain is easily proved. Let P(x, ¢) be an # by # matrix
whose components are holomorphic functions of (x, ¢) for

M|e|Vr=s|x|£d, —O_=argxr=0,,

(7.12)
0<|e|=r, —0_=arge=0b,,

where M, &’ and r’ are positive constants. We shall assume that P admits for
(7.13) M|e|Vr=|lx |20, —O_=argax=0,

a uniformly asymptotic expansion in powers of (x~¢)

=

(7. 14) P(x, ) = 3 (x#e)*Py(x)

k=0
as ¢ tends to zero in the domain
(7. 15) 0<|e|=r!, —f_-=arge=4,,

where the coefficients P are #» by » matrices whose components are holomorphic
functions for |x|=<¢. In particular, P,(x) is supposed to be nonsingular for | x| <4".
Let

(7. 16) (xre)rpa +1 %zF (x, )

be the system of equations which is derived from (7. 1) by the linear transformation

(7.17) Z = P(x, €)b.

Lemma. If we choose the positive numbers M’, & and v’ in a suitable way,
there exists a matrix P satisfying the conditions given above such that the matrix
F of the system (7.16) has the following form:
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[ Fyz,¢)
Fy(x, ¢)
(7.18) F(x, &)=
\ Fs(xi E)

where F, is an n, by n, matvix which has an asymptotic expansion

(7.19) Fyx, &) ~ éo(x-ﬂe)km(x)
with
(7. 20) Fy(0) = é;-

§8. Application of the fundamental lemma. Now we shall consider the equation
I 4 o .
6. 3) er " phi Z';:{Bl(x’ e)—pPie’ P 1C, )2,

where B, is given by (4.7) with e=«a; and f=§;, and C, is given by (4. 8).
According to the facts stated in §4, we can express the matrix of the right-
hand member of (6. 3) as

8. 1) Bi(x, &) — i afi 1Cy~ Zo)o (z2eri+i)/e By(xeri)
k=0
in the domain

8. 2) M, |elrin=s|x|=di|elrs, 0<|e| =7, |arge|=0,,

where v, is a positive integer, and the coefficients By(X) are holomorphic functions
of X for

38.3) [ X | =d:

if we choose v, in a suitable way. Actually, for 70, all of the B are polynomials
of X'.. In particular, we have

0 1 0 0 0 0\
0 0 1 0 0 0
8.4 By0) =H, = ; )
0 0 0 0 0 1
\ € Cny Cn—g Cp-g " [ 0 7/

where some of the constants ¢; are different from zero.
Making a change of the independent variable

(8. 5) xr = ePi g»
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the equation (6. 3) is reduced to

az

i E-Bi =fH; z
(8. 6) ek dE Ei(E, €2,
where
8.7 o= —pi(1+Bo)+(c—ay)
and
8. 8) EAE, &)~ ki (E-terirnes Yo By(E)
in the domain
8.9 M, e lpinre S| E|=0:, 0<] | =7, |arge|=0,.

Since the point R is not on the straight line passing through the points Q,., and
Q: for :<m, we have

(8. 10) 7, >0 =01, m=-1).

Here we put p,=0 so that z,=¢>0.
On the other hand

8. 11) eTo EBi = (Emr &)Ta g ThH,
where

i = 1/(ps1 — p3) > 0,

v = — (1l + f) + (0 — ).

Since the point R is not on the straight line passing through the points Q; and
Qi1 for i<m—1, we have

(8.13) 7./ >0 #=0,1, -, m—2).

(8. 12)

However, we have
(8.14) Ty =0,
because R=Qm.

Thus (8. 6) is given the form

. 15) Erieyann +lj—§ —E(, 9%,
where we have the asymptotic expansion
(8. 16) Ei§, &)= kz%) (Erie)floirimey 2o Py(€).

Finally, put
(8 17) é' = 7)P’ & = sp’
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where p is a positive integer. Then (8. 15) is given the form

8. 18) et S5 —pEGp, a2,

where

@.19) Ein?, 89)= 3, (1 ) einnmes Buly?)

for

(8. 20) My Mg Ve Z| g | S0P, 0<| 8| =P, |arg €| =0,/p.

Here we remark that
(8.21) pr pi—pripi=—p(1+ ) <0.

Therefore, if we choose p in a suitable way, the equation (8. 18) satisfies all of the
assumptions imposed on the equation (7.1) in the lemma of §7.

Since B,(0) has at least two distinct characteristic values, the order of the
equation (1. 1) is reduced by the use of the lemma.

§9. Sketch of the proof. We shall give here only a sketch of the proof of
our fundamental lemma. The details of the proof will be given in a forthcoming
paper by M. Iwano for more general cases. The proof is quite similar to that of
a theorem of Sibuya [3] concerned with the perturbation of irregular singular
points of linear ordinary differential equations.

A lemma due to Sibuya [3] says that there exists a nonsingular matrix P,(x)
whose components are holomorphic functions of x for | x|=d’, ¢ being a sufficiently
small positive number, such that

E®(x)
E%x)

.1 Py(x) Ey(x)Py(x) = ) ,

. .

E®(x)

where E®(z) is an n, by #, matrix and
©.2) EQO)=E, (j=1,2, ).
Let us denote the matrix (9. 1) by Ey(x). Making a change of variables
. 3) Z = Py(x)%,
we have
. 4) (x—re)1py +! % =E(x, ¢)it,

where
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Bz, 9=Py(o)"| Bz, P n)—(o-reyran A0 |
Therefore £ admits an asymptotic expansion in powers of (z—+¢)

©. 5) Bz, o= E(z) + gl(x-ﬂs)kEk(x),

Ei(x) being # by # matrices whose components are holomorphic for |z |=<4'.

Let us consider now a linear transformation

9. 6) n=Q(zx, &)V
and let (7.16) be the equation on 3. Then
- e AQ 4
9.7 (x~re)axe “EzE(x, )Q—QF(x, ¢).

We shall determine @ in such a way that the matrix
9.8 P(z, ¢) = Py(x) Qx, ¢)

and the matrix F(zx, €) of (7. 16) satisfy all of the conditions stated in our funda-
mental lemma.
To do this, we put

E(x, e)=E(x)+H(x, ),
9.9 F(x, &) =E,(2)+ Kz, ¢),
Q(x) €)= 17L+ T(xx 5))

where 1, is the # by # unit-matrix. Then the equation (9.7) can be written as

9. 10) (x—re)axa +t ‘;—ngoT—— TE,+HT—TK+H-K.
Put
[ Tu - T {‘Hu o Hyy ) K, - Ky |
9. 11) T=| « o |, H= , K= e ,
Ty o Tis Hy, - Hsy | K, - Ky |

where T, Hu, and Kj are n, by #n; matrices. Then (9. 10) can be given the form

(z—re)1x?’ “% =EP Tyj—TiE®
9. 12)
+h§1 (Hjh, Thk‘— Tjh. th)+ij_Kjk-

Now let us put
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Kz, ) =0  (j = k),
Ti(z, ) =0  (j=k).
Firstly from the equations (9. 12) for j=k we can derive
0=h§] Hy, Twi+Hj;—K;;  (j=1,2,-,9)

9.13)

or
(9' ]-4) ij = ’é Hjh Th] + ij (j:]-a 2y ) S)'
7

Secondly from (9. 12) with j=Z% and (9. 14) we can derive

dT;

7 k o
(.Z‘_"E)qxq +1 T =F® Tjk'_ TjkE(k)

9. 15)
+ 2 Hipn Tre— Tl 2 Hon Tie+Hi) +Hie (G=FR).
Bk Rk

We shall determine T (j>k) by (9.15) in such a way that they admit uni-
formly asymptotic expansions in powers of (x~#e)

. 16) Tz, €) :lg (z-re) Tya()

in the domain (7. 12), where the coefficients T are n, by #; matrices whose com-
ponents are holomorphic for [z |=d’. Kj; will then be determined by (9. 14). This
will complete the proof of our fundamental lemma.

§10. Problem of nonlinear differential equations. Now we know that, in order
to prove our fundamental lemma, it is sufficient to find a suitable solution of the
equations (9.15). The following facts should be remarked:

(1) Hplm, &) = O(|zre|);

(ii) E9(0) = E, G=12-9);
(i) 24, — A % 0;

(iv) the equations (9.15) are nonlinear.

Therefore the problem of solving the equations (9. 15) is reduced to the following
problem of nonlinear ordinary differential equations:
We consider a system of nonlinear ordinary differential equations

oy @ .
0.1 (@reae ™ S g gy @, 6 1y ) (=102, m),

where we suppose that
1) p is a positive rational number;

2) q is a positive integer and ¢’ is a nonnegative integer;
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3 ¢ —ra<o;
4) k&, is a constant different from zero, and v, is equal to 1 or 0;
5) f, are holomorphic functions of (x, ¢, n) for
Mie|Ve=|x|=0, 0<| | =7, |arge|=0,, |m|=r, (k=1,2, -, m)

and admitting uniformly convergent expansions in powers of 7.
Sz, e, 77) =f](.’1f, e) -+ kglfjk(x’ )7k

Sitytom (T, 95 -+ Pt

Fite oy 22
6) the coefficients f, fie and fixy.x,, are holomorphic for
10. 2) M|e|Ve=s|z|=d, 0<|e|=w, |large|=0,

and expressible in uniformly asymptotic series in powers of (x~+¢) as ¢ tends to 0 in
the domain

0<lel=r, large|=0;
7) the following inequalities
| fie(, &) | = Ll 2 | + | 27 ]),
| fit, 9] = K | e |
hold for (10. 2), where L and K are positive constants independent of (x, ¢).

It should be remarked that the equations (9. 15) satisfy all of these assumptions.
For example, among the four facts (i), (ii), (iii) and (iv) which were mentioned
above, the third corresponds to the assumption 4), while the first and the second
correspond to the assumption 7).

Let

—0O_=argx =0, —0_=arge=40,

be a domain proper with respect to the functions

z E , .
(#Q—Q')S W;dx:me‘qx#q"q (j=1,2, -, m).

Then we can prove the following:
The equations (10.1) admit a solution u,=pix, e) holomorphic for
{M’Ie]”f‘élxlgé’, —6O_=argr=06,,
0< el =7y, —0_=arge=0.

and expressible in uniformly asymptotic series in powers of (x~*e):

pi@,©) = 3 (@) pula)
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as ¢ tends to 0 in the domain
0<le| =, —0_=<arge=4,,

where pji are holomorphic for | x |=d', and M’, &' and r,” are suitably chosen positive
constants.

This will be proved by M. Iwano in his succeeding paper. Relying on this
result, we can complete the proof of our fundamental lemma.

III. Behavior of solutions in intermediate domains.

§11. Transformation of the equation (1.1). In this chapter, we shall study the
behavior of solutions of the equation (1. 1) in a domain between any two of the
domains (6.1). Such a domain is given by

51[ € [M élx 1§M1| € i'ni (l=17 2’ RE) m_l)
or
|| = Mn|elem.

Let (71, 0) be the point at which the straight line passing through the points
Q;-; and Q; intersects the X-axis (See Fig. 9).

Y
Q
Q1
~ Q2
~_V%
\*.lq Qi1
\
0 7, 0 \T I > x
\‘\k\ ~~:
Fig. 9

Then we consider a transformation
(11. 1) T = ¢eri§, 7 = A(ys, 0)2.

If we write the equation on Z as

(1L 2) R j—g — BE, o),
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the matrix B is given by (5. 3) with p=p; and y=7:. In order to investigate the
behavior of solutions of the equation (4. 2) in the domain

11.3) dilelri=|z|=M|el,
it is sufficient to study the behavior of solutions of the equation (11. 2) in the domain
(11. 9 =& =M.
Let us put
(11. 5) 0. =0— pi — 7i.
Then we have
(11. 6) 6, >0 =12, m—1)
and
117 om =0,

because the point R=Q, is not on the straight line passing through the points
Qi—, and Q; for i<m, while it lies on this line for i=m (See Figs. 10 and 11).

eR ¢ R=Qn
(i<<m)
Fig. 10 Fig. 11

Therefore, for i=m, we shall consider the corresponding equation (11.2) in the
domain

(11. 8) [ €] = Mn.
The domain (11. 8) corresponds to the domain

(11. 9) |1,‘} §Mm|g|ﬂm,
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ReMARK. In certain cases, it might be more reasonable to study the behavior
of the equation (11.2) in the larger domain

(11.10) €1 = M,.
At the present moment, we shall not go into these details.
§12. Study of behavior of solutions. Since none of the points R and Ps, lies

below the straight line passing through the points Q,_, and Q; (See Fig. 12), the
matrix B(&, €) does not contain any negative powers of e.

Y4

P
. S
%V/ AN > - X
(o] ~\\ A\
AN R
AN
Fig. 12

Now the equation (11. 2) with i=m is of the form

dz o
(12. 1) %—-B(s, 6‘)2.
It is easy to study the behavior of solutions of (12. 1) in the domain (11.8). There-
fore, we shall consider the equation (11.2) only for i<m.

The equation (11.2) can be written as

dz

12. 2) €% @ =B(§, ¢)Z,

where o, is given by (11.5). It should be remarked that

(12. 3) 0<ao <o =12, -, m—1).
We can write the matrix B as

(12. 4) B(§, &) = Ko(§) + [-],

where [---] indicates the terms which are small in the domain

(12. 5) [El =M, 0<|le|=r, large|=4,

and
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0 1 0 w00

0 0 1 00 1
12. 6) K8 = ’

0 0 0 01

(=]

() Cna(®) Cn-a(§) 0 c(8) /

The functions cx(é) are polynomials of &, and at least one of them is not identically
equal to zero. In particular, if ¢;%0, then at least one of the points P,, lies on the
segment joining Q;_, to Q;, and ¢, is of the following form:

(12.7)  ci(&)=E%1 {cyotCpé+-Fcpeisi},

where cj; are constants and

(12. 8) €100, €0,
12.9) 0=r,=j(Bi-1—P), 0, Zjpi
(See Fig. 13).

]A ------- Qi-1=(ai-1, fi-1)
J

j. ..................... (12. 10)

Let us consider the algebraic equation
At —{cy(§)A" - cy(5) A8
4+ teu(£)} =0.

Fig. 13 This equation may have multiple roots
somewhere in the domain (11. 4), but the number of those points are at most finite.
They are possibly turning points of the equation (12.2).

The domain (11. 4) can be covered by a finite number of open sets, each con-
taining at most a single point where all of the roots of (12.10) are equal to zero,
such that, if there is not such a point in one of them, at least two roots of (12.10)
do not coincide with each other all over this open set. In the latter case, the order
of the equation (1.1) is reduced in the open set by the use of a theorem due to
Sibuya [2].

Now assume that all roots of (12.10) are equal to zero at a point £=¢, in one
of the open sets. Then, making a change of the independent variable

(12.11) E=x+¢&,

we go back to the same situation as what we were in at the start of our discus-
sions. We construct again a characteristic polygon as in §2. This polygon has the
following properties:

(i) o is less than that of the original equation (1.1);

(ii) the point Q, does not lie above the corresponding point of the original equation
1. 1.

Therefore, after repeating a finite number of transformations similar to those given
above, we shall be led to the situation with ¢=0.
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IV. Examples.

§13. Second order equations. Consider a second order linear ordinary differ-
ential equation of the form

d%y

13.1) 52%?: {x1+-ep(z, )} v,

where ¢ is a positive integer, and ¢ is a holomorphic function of (x,¢) in a domain
(13.2) x| =0, 0<|e|=r, |arge|=0,.

x=0 is possibly a turning point. Assume that ¢ has the following form:

(13.3) P, &)=po(x)+0(| ¢ ]),

where ¢, is a holomorphic function of x for

13.4) |z | = 0,

Let m, be the order of zero of ¢, at £=0. If ¢,(0)x0 we put m,=0, and if @,(x)
=0 we put m,=-o0.
Let us construct a characteristic polygon as in §2. Put

R = (1’ '—‘l)y
(13.5) Qu=Py= (0 ) %), (See (2. 4)).
_p _ i iy
P0=P21—( 9 7)

Then, it is easily seen that, if the point P, lies below the straight line passing
through the points Q, and R, the point P, is a vertex of the polygon. If it does

b Y
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not lie below the straight line, then
Figs. 14 and 15).

In case when there is no vertex
(13. 1) can be reduced in the domain

there is no vertex between Q, and R (See

between Q, and R, the order of the equation

(13. 6) Mlelr=|x| =0,

where M is a positive constant, and

(13.7) o=

2
qg+2°

On the other hand, to investigate the solution in the domain |x |=M]e|r, we put

(13.8) x

= ef€,

Then the equation (13.1) can be written as

d*y
der

13.9)

Fig. 16

= {§04-e17r1g(ers, e)}y,

and the function

(13. 10) el=reg(eré, €)

is bounded in the domain

(13.11) €=M, 0<|¢e|=r,, |arge|=4,.

Here it is to be remarked that pq=2-—2p
=2q/(q+2). Thus the expressions of solutions
of (13.1) can be obtained in each of the do-
mains

(13.12) Mle|r=|x|=d, and |z |=M|c|
(See Fig. 16).

The expressions of solutions of (13.1) in the
domain (13.6) correspond to the classical
asymptotic expansions of solutions of (13. 1).

In case when the point P, is a vertex between Q, and R, we must consider the

following domains:

|2 | =M, e,

SFIETANS

dleln = |x|=M el

M |eln =|x =0,

M| ¢ |
(13.13)
where
1
(13. 14) 0y = ) 02

q—my T met2

1 (See Figs. 15 and 17).



REDUCTION OF ORDER OF DIFFERENTTAL EQUATION 25

|2 |=M|e|™

|z|=Mz]e|™

Fig. 17

In each of the domains
(13. 15) M, el =|x|=0,|e|rr and M|e | =| x| =0,,
the order of the equation (13.1) is reduced. In the domain
(13. 16) | x| =M, e,
if we put
13.17) X = e &,
then the equation (13.1) can be written as

dy m
(13.18) Ve {egm™ + -1}y,

where ¢ is a constant different from zero, and [---] indicates the terms which are
small in the domain

(13.19) [E1=M,, 0<|e|=r, large|=4,.
On the other hand, in the domain

(13. 20) dilelr =l | =M el

if we put

(13. 21) X = el 5,
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the equation (13.1) can be written as

, d* )
(13. 22) e 312 = {&a4-cgmo 4 [---]}y,
&
where
(13. 23) o'=1—"L1 50,

0,

and [---] indicates the terms which are small in the domain
(13. 24) [El=M, 0<|e|=r, large|=0,.

The points é=0 and £=(—c)» are possibly turning points of the equation (13. 22).

In case when there is no vertex between Q, and R, the equation (13.1) can be
simplified by a linear transformation with coefficients holomorphic in a sector whose
vertex is the origin and whose radius is independent of e. Both domains (13.12)
can be patched together by the use of this sector. Such results were obtained by
several authors. See, for example, Sibuya [4].

In case when P, is a vertex between Q, and R, such results have not been
obtained yet, although the equation (13. 1) can be formally simplified by a linear
transformation whose coefficients are formal power series of x and ¢; [4].

In order that the point P, is not a vertex, it is necessary and sufficient to have

the inequality

v (13. 25) m= 12
satisfied. This inequality means that the point
@ P, does not lie below the straight line passing
through the points Q, and R. This is always
satisfied if g=1 or 2 (See Fig. 18).
‘ Remark. If P, is a vertex on the X-axis,
(31@-2) then we have m,=0. Therefore, £=0 is not
a turning point of (13.22). Thus we can
5 >y reduce the order of the equation (13.22) in
\ the domain
R (13. 26) [€] =d.
. This corresponds to the domain
Fig. 18
13.27) lz| =0, ]ely

Hence we can reduce the order of the equation (13.1) in each of the domain
(13. 28) |x|=0,el+ and M| ¢l =| x| =0,

instead of the domains (13. 15).
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§14. n' order equations. Consider now an #** order equation of the form
4.1 oy = (@ega, DY+ L 0@, W,

where ¢, g,, -+, gm are holomorphic functions of (x, ¢) in a domain

(14. 2) | & | =0, 0<le =7, larg e | =0,
Assume that
(14. 3) n—2z=m=0.
Let us construct a characteristic polygon as in §2. Put

1 .
(14. 4) R=(, —1), Q=Py,= (O, 7) (See (2. 4)),
where
(14. 5) p=n—m.

Y'/\

Then it is easily seen that there is no ver-
tex between Q, and R. However, the point

1

(14. 6) P,= (m, 0)
is on the straight line passing through the — _._.._] Q
points Q, and R (See Fig. 19), and it coin- [ \
cides with the point P,.,, if and only if o
9:(0, 0)=0.

Therefore, the order of the equation
(14. 1) is reduced in the domain

14.7) M|elP=|x|=3d,, “ 1F?19
where

(14.8) o= %.

On the other hand, if we put

(14. 9) x = ¢,

the equation (14. 1) can be written as

(14.10) e 2R R SR A A
where E,, ---, En are quantities small in the domain

(14.11) [§1=M, 0<]e|=r,, larg ¢ | =0,,

and ¢ is a constant.
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Roughly speaking, in the domain (14.7), the equation (14.1) is reduced to a
system of (p+1) equations. One of the equations is of the m' order, while the
others are of the first order. Thus we can construct expressions of solutions of
(14. 1) in the domain (14.7). These expressions correspond to the classical asymp-
totic expansions of solutions of (14.1). On the other hand, by the use of (14. 10),
we can construct expressions of solutions in the domain

(14. 12) lz|=Mle|r.

In order to find the relations between the expressions of solutions in (14.7)
and those in (14. 12), we may try to simplify the equation (14.1) in a sector whose
vertex is the origin and whose radius is independent of e. Actually, in the domain
(14. 2), the equation (14.1) can be formally simplified by a linear transformation
whose coefficients are formal power series of ¢ with coefficients holomorphic in .
Simplification of the equation (14.1) by a transformation with analytic coefficients
in such a sector as mentioned above was also proved for the cases when m=0 and
m=1. See, for example, Okubo [1] and Sibuya [4, 5].
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