
ON THE APPROXIMATIONS TO SOME LIMITING
DISTRIBUTIONS WITH SOME APPLICATIONS

BY HAJIME MAKABE

§ 1. Introduction

The Poisson approximations to the Poisson binomial distribution are recently
discussed by Hodges and Le Cam [5] and Le Cam [7]. The purposes of this
paper are to evaluate the error term more precisely than those obtained in [5]
and [7] by making use of the theory of characteristic functions and also to
remark some of its applications to statistics. This paper is the continuation of
our previous paper [12] and may be regarded as the Part II of it.

Let Xjc (fc=l,2, •) be independently distributed random variables such that
P(Xk = l) = pkf P(Xk = 0) = l-pk, we then call the distribution of S = S?«iX*
the Poisson binomial distribution Q. The applications and the probability theore-
tical meaning of the Poisson approximation to the Poisson binomial distribution
are described in [5] and [7].

Put

a = max{pk}, μ=
k fc

and

~

We can state the previous results as follows:
( 1 ) Kolmogorov [6]:

(1.1) D = sup I Σ P(S = k) - Σ P(k; λ)
I \k=Q &=0

^ Ca1/5,

where C is a constant independent of n and pk(k = 1,2, •••)•

( 2 ) Hodges and Le Cam [5] :

(1.2) D ^ 3<21/3.

( 3 ) Le Cam [7] :

(1.3) D ^ 9a

and more strongly

(1.4) D'=f
k
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and also

(1.40 D' ^ lβeπ.

As pointed out in [7], the above evaluations of the error term D of the ap-
proximation have an only theoretical meaning that it depends only on a and
not on n and pk or λ in dispite of our experience in the case as usual Poisson
approximation. It is meaningful that the power of a in the above evaluations
can be made 1, but in [7] in order to deduce the excellent result (1.4), one must
use the semi-group theoretical method. While in [5] only an elementary pro-
bability theoretical discussions are used to deduce (1.2).

In the proceeding paper, it is shown that those results can be improved for
not necessarily small a: a ^1/4. For the proof of (1.4), in [7] the condition
a ^ 1/4 was necessary and it was remarked that the constant factor 9 can be
reduced for more small a. And also Le Cam [7] suggested the inquiry about
the existence of the bound lower than 9a or 16m. This paper was written
motivated by Hodges and Le Cam's work. Using the similar method as we
have adopted in [11], [8] and [12] and Esseen [1], we can prove that

(1.5) D^S.Ίa or S.Ίzΰ

and

D ^ 0.5a

or

+ 0.25s52/(Ίr - mY+ 1.7am /(1 - 2a - - |
I \ O / / \ Δ 6

where in the first term, we can say that 0.5a and 0.5m are the best possible
ones in this form.

§ 2. Poisson approximations to Poisson binomial distribution.

In this parapraph, we can state the theorems in our previous paper [12],
substituting the word "Poisson binomial" in the place of the word "binomial",
and then express the absolute error of the approximation in term of α: or ΠJ.

Characteristic function (c.f.) of the Poisson binomial distributed random
variable S is

(2.1) /»(«)

and c.f. of X is

(2.2) flr«(ί)=β*< "-«.

For simplicity we divide the proof in several steps.

1° fn(t) in (2.1) can be calculated as follows:

(2.3) fn(t) = Π (P*e« + qk) = Π {1 + P*(fiu ~ 1)}.

Taking logarithm of the both sides of (2.3), we get
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logf/„(*) = Σ log {1 + pk(eu -1)}
fc=l

(2.4)

J ~ 1) " \ %f^U ~ I)8

where

and
n 1 ΌZ

lΘl~Sil-2pk Ύ

Hence it follows that

/„(*) = exp{log/n(ί)}

(2.5) =Pιx*=iPk> <**'-».(

where

^ = Σί>λ;, ^ = Σ 2

From (2.5), final expression for fn{t) follows:

fn(t) = βΛ(β«-i)_ l .

2 \ 2

(2.6) + ^ | θ | .e

= J + / i + J Γ i + J 2 = / + /i + Λ, say,

where ?9 are unspecified complex-valued quantities such that | ϋ \ <. 1.

2°.
THEOREM 1. For random variable S of Poisson binomial distribution and

X of Poisson distribution defined in § 1, we have the following evaluations

v v i
Σ P(S = k)- Σ P(k;λ) + -

k=l+ί k—ί + 1 2ι

(2.7)

where

A2P(k) = {{P{k 4- 2; λ) - P(k + 1; λ)) - (P(fc 4-1; λ) - PQc; λ))}

and Ri, R2 are in the following expressions (2.10) and (2.11).

Proof. We now proceed to the proof of the above inequality following the
same way as we have taken for the proof of the Theorem 2 of our previous
paper [12].
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Partial sum of Poisson binomial probabilities can be expressed as follows:

(2.8)
Jc=l+1

=k)=:±\π fn(t)

= i l > ) ί r i α + ί ' + i

dt

sin t/2
dt.

Substitute I + Ji + J i + J2 obtained in (2.6) in the place of fjf) in (2.8), we get
then

Σ i ^f7" "
& z +

(2.9)
2 Lfcί

27ΓJ-,
, sin (I — V

sin t/2

= Σ

The proof of our Theorem 1 can be accomplished by the evaluation of R in
(2.9):

= 2ττ I J - f f I sin

= Rί + R2, say.

sin t/2

. 1
J-π I sin/ί/2|

-dί

For Ru we have

Rl~Ίΐ

(2.10) 8 π U

dt

I sin ί/21

dt

8/i2

where

τr2

We next evaluate the second error term R2 as follows: we have

2 = = 2;T I J-7Γ UIA
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(2.11)

λ Jo

= BB'2 _
~~ λ ~~ 2

where

j B = S l - 2 p f c Ί Γ ~ l - 2 α r ' ¥ = 3 ( 1 - 2 ^ ) ' ^
and

Thus Theorem 1 is proved.

3°. Now we prove the following theorem which can be seen as a corollary
of Theorem 1.

THEOREM 2. If a~ max^ PA; ^S Zess ί/iα^ 1/4, we have

(2.12)

(2.13) ^ * ' ' i . - - « N-ii 4

z' z' i
>τi p / Q 1Λ V^ P/1Γ ΊA Λ-
/ i JΓ ̂ O — n/J / i JΓ \y\. — ti/J ~\ ~

k — ί + 1 k = ί + l Δ'

2 •* 3 ( 1 - 2

Proof. For our proof, we need to evaluate Ri and R2 in terms of <*.
can be majorated easily: Noting

we have

n n in

= ΊΪ±vlΊ±VicS maxpk =

4 \-2
- I T — or

and next as for R2 term, we have from (2.11)

7") ~D ~D f

R2-BBj

^2 1

( 1 - :

4 α
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Complements to theorem 2.

The evaluation of R2 given by the above inequality can be deformed as
follows:

2 2 1 ^ 2 π2 a2

3 n o ^ 4 4^2 \ = 3 4 7Γ 2 π2 4
\ π2 3(1 — 2α?) / 4 4 3

(2.14)

a<
4.2

and for a ^ 1/5 one may take

(2.15) R2 ^ 10a2

while by the evaluation of Rίf we can take as

Here the constant factor A in (2.12) is majorated by 16 that is right hand side
of (2.12), Dta

2 can be replaced by 16a2 if αr^ l/5 .
Concerning the evaluation in term of m, one may find another discussion

in §3.

4°.
THEOREM 3. Under the same condition as in the above, we have

(2.17) ^O.Sa + Dta2, 0.5© + 0.25δ32

or

(2.170 =0.5a + O(a2), 0.5s? + 0.25m2-

For the proo/ we need the following

LEMMA.

—μ\ A2P(X= k:λ) I ̂ 0.5a or O.δtσ

for all k and pit

Proof. From the fact μ^λa, we have
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λk+1 λk \
M "; + !)! " f tΓΛ

or

2 '

This value attains its maximum value for fixed k when

hence we have
1

max (* + ! )!* '2
-I \ (U I -j\fc + l "I
x _i_ hΛ I c /Λ \ . v l ί/ ^ ^ ^,-(Λ; + i ) . _
- ^ π - e ^ y ( f t + 1 ) , β" -2".

To evaluate (k +1) ! from the below, use the generalization of the Stirling's
formula (c.f. Feller [2]), we then easily see that the maximum term is majorat-
ed by 0.5a. Or otherwise one may use the way of Hodges and Le Cam [5]
who have evaluated the maximum term of the Poisson distribution P(k;λ).

This completes the proof of our lemma. Thus the inequalities (2.17) and
(2.170 are proved.

5°. For the proof of the following Theorem which is analogue to the
Theorem 3, we need only by far simpler calculations in sacrisfy of the fineness
of the result of evaluation. I think one may utilize this one page proof as an
example for the text book in probability theory.

THEOREM

(2.18)

or

(2.180

4. For a < 1/5, we have
V

\a(l - 2a)~

5 n
4 1 -

J aπ
\ 4 ( 1 -

5 d 5

2α V 2

f P(k:λ)
l+l
2 Γ<-
2a) J =

m \-

l-2a)

1.

1 —

1

3a

4.5a

Proof. We quote the formula for the expression of fn(t) as in the following
simpler form:

where
n 1

k=l 1 — Δpk

Hence we have
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fn(t) = e*<*u-V{l + ϋ I Θ"\ e\®n

and from the inversion formula

where

Γ |β"|βlβ'
sin ί/2

= 2π 2(1 - 2a)

< ^ r
= 2(1 -2a) Jo

2 l - 2 α j 2

τ2 \ - l

4(1-2.)

Thus our theorem has been proved.

§ 3. On further considerations of the Theorems in the previous sections.

As a complements to the above Theorems we mention the following pro-
positions.

1) The fact that the results (2.17) and (2.170 can be replaced by the follow-
ing estimates will be shown easily from the above discussions.

D ̂  O.δsJ + 0.2δf-7^^ V + l.Ίaml(l -Za-%
\ (2/5) — m J I \ 2

where
1 2

(3.2) a < —, ?σ < — and

One may wish to have the form

(3.3) D ^ 0.5ατ + Crΰ2

for this estimation of the error term, but by our method this try was failed.
We have only the following propositions.

2) For a ^ 1/5, the evaluations so far obtained give the results:

jD^2.5αJ + 0.25tπ2/Y|--ί
/ \5

^ 2.5δJ + 6.3m2.
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This fact may be replaced in terms of a:

D ^ 0.5a + 16a2

( 8 ' 4 ) ^3.7a or 3.7m.

This evaluation is a partial improvement of Le Cam's result [7].
3) In proposition 1), the form of the right hand side of inequality (3.1) is

complicated. But only by this evaluation we can give the refined upper bound
for smaller a or m, and if it is necessary, we can easily reach to simpler form
from (3.1) under the some restrictions on a and ΌS. Here it is also be seen that
in leading to (3.1) the conditions were complicated but not restrictive.

As an example for this discussion we have the following proposition.
4) Result of Theorem 3 shows when a = 1/4 but txs = 1/100 (the same values

which were taken up by Le Cam [7], p. 1156, Remark 1 as an illustration) that
we have

and from the result of Theorem 4 we have

while by Le Cam, D'^8&. Note that to compare with the Le Cam's result,
one must double the upper bound in general, because Le Cam's upper bound
was calculated for Df and not for D.

5) We can say the first term of the evaluation in Theorem 3, 0.5# and
O.δtσ is best possible in this form. This can also be recognized by Prohorov's
result [13], which concerns with the approximation to binomial distribution, as
pointed out by Le Cam [7]. We can also say from Theorem 1 and 2, the
main terms for the evaluation of \Q — P\ are influenced by that of | B — P \. That
is 0.5a: or 0.5aτ is the main term of evaluations for both \Q — P\ and \B — P\.
This fact was noted by Le Cam [7], and will be seen easily from our results
[12], [10], In the forthcoming paper similar result may be noted [9].

6) The evaluation of the error term in Theorem 4 is inferior to that of the
Theorem 3, but the derivation is simpler, we used only Taylor expansion.

§ 4. Applications to some problems.

1°. A production model.

When sampling, each fraction defectives is decided as a sample from some
population with mean proportional to the time passed from the first sampling,
where population distribution is not indicated. If necessary, we may suppose it
is beta-distributed or gamma-distributed as we experience in practice.

To obtain the probability for the occurrence of k defectives (define X=k,
where X is a random variable) in ^-samples, we must calculate the charac-
teristic function of X as follows:
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n Λ l

Φχ(t) = Π (P*#u + qk)fk(Pk) dpk

(4.D r°
= 11®*" + ?*)

where pk is mean fraction defective which may be assumed to be proportional to
k and qk = 1 — pk (in this discussion, proportionality is not essential).

This means that distribution of X is Poisson binomial with pk substituted
by pk. Hence i) when pk are all small, we can apply the results of § 2, and
ii) when variation of pk is small, results of [9] are useful.

As an example we also consider the other one type of the production model.
We assume two values p and p -h Ap for the fraction defectives (f .d.), and p
and Ap are both small as indicated in the following.

At the first sampling the probability that f.d. is p is 1 — a, and at the
second sampling the probability that f .d. is still p is 1 — a and so on. Assume
also when f.d. become p •+- Ap, f.d. continues to be p + Ap till sampling ends
at n-th sampling. Concering these models, we will give the full discussions in
the forthcoming paper [10].

2°. A type of the conditional probability.
Let Xί9 X2 be independently distributed random variables obeying to the

binomial distribution:

= k) = b(k; nu PO, P(X2 = k') = b(k'; n2, p2)

respectively. Problem is to investigate the conditional probability

(4.2) fk

Approximation formula for this probability fk were obtained by Hannan and
Harkness [3] under the conditions such as to facilitate the normal approxima-
tion to fa.

In this note, under the conditions niPi~λx for w$—>oo (i = l,2), it is shown
that

Its proof can be proceeded as follows:

(4.4)

and when the random variables were Xi X2, X3, we have under the similar
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conditions

(4.5)

Hannan and Harkness' object is to apply their results to calculate the power

function of the test of the independency in 2 x 2 contingency tables. In the

forthcoming paper [10] we also consider the applicability of our results.
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