GENERAL CONNECTIONS Ar4 AND THE
PARALLELISM OF LEVI-CIVITA

By ToMINOSUKE OTSUKI

In a previous paper [10], the author showed that for a normal general
connection I'Y of an n-dimensional differentiable manifold X we can define
naturally two normal general connections 'I" and ”I" called the contravariant
part and the covariant part of I" respectively. In the present paper, the
author will show that we can define products of a general connection and
tensor fields of type (1, 1) on X satisfying the associative law. According to
this concept, 'I"=QI" and "I'=I"Q, where Q is the inverse of P in the sense
that Q|P(T(X))=(P|P(T(X)))™* and Q|P4(0)=P|P'(0) at each point of X. As
an application, he will investigate a normal general connection AI'A, where I"
is a metric regular general connection with respect to a metric tensor, A is a
projection of T'(X) and A(T(X)) and A *(0) are invariant under P=A(I") respec-
tively. Then, he will show that the well known parallelism of Levi-Civita in
Riemannian geometry can be considered as a parallelism by means of a sort of
general connections.

In this paper, the author will use the notations in [7], [8], [9], [10].

§1. Products of a general connection and tensor fields of type (1.1).

Let ¥ be a differentiable manifold of dimension % and I" be a general con-
nection of ¥ which is written in terms of local coordinates u* as

(1.1) I' =0u, ® (Pid*u* + Il du' ® du”)
or
1.2) I' = 0u, @ (d(Pdu’) + AL du* ® du™),
where

)
1.3) L, =I— E

For each coordinate neighborhood (U, u'), we have two mappings

fur U= ={(a}, aln)}?
by
1.4) al-fv=Pi, alfo=I
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1) See [8].
2) See [10], §2 or [7], §1.
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and
For U= ={(a, alu, p))| ai| 50}

by
(1.5) al-fuv=0, ahfo=4h, pi-Fv=—"n)
and the systems {fv} and {f,} satisfy the equations:
(1.6) (o-gvo)fu=Frvgvu
and
1.7 gVUfU ZfV(U'gVU),
where

gvr: U~V—->L8={(a, alx)| |al|# 0}
is given by

0V’ 0’

(1.8 al-gvy = u’ Al gyvy = o

o M2 — ML= {(a})} and &—Li={(a))| |al|x 0} is the homomorphism
o((al, alw) =(ad),  o((ai, als, P))=(al)
and M:c 92, ¢2c &, putting
(a)=(a}, 0), (al, aln) =(al, ai, ai).

The two systems of mappings {fy} and {f,} satisfying (1.6) and (1.7) charac-
terize the general connection I' respectively.

From (1.6), we get
(o-gvu)o-fv)=(o-fr)o-gvv),
hence {o-fy} defines a tensor field of type (1.1) with local components P] de-
noted by
1.9) P =0u; ®Pidu = AI").

Now, @ =0u, ® Q!du* be a tensor field on X. For each coordinate neighbor-
hood (U, u'), we define two mappings

qu: U»MM2  and gy U

by

(1.10) al-qu=Ql, ahqu=0
and

(1.11) al-Gy=0!, ahqu=0, pl-Gv=@Q%L

They satisfy the equations:
1.12) (o-gvo)qu=qv(oc-gvy) in M

3) See [10], §2 or [7], §8.
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and

(1.13) (0-gv0)iv =Gr(c-gvy) in &

By virtue of (1.6) and (1.12), the system {qufv} defines a general connection
which we denote by QI". Analogously, by virtue of (1.7) and (1.13), the system

{fv@y} defines a general connection which we denote by I'Q. They can be
written in terms of local coordinates u' as

(1.14) QI = 0u,.Q' ® (Pl d*u* + I, du* @ du™)

and

11 I'Q = 0u, ® (d(PiQ} du’) + A1 Q% du* ® du”)

@19 = Ou, ® (PLA(Q du’) + [Mu(Q5 du’) ® duh).

Since we have
(Q, 0)(Pi, I'h) = (QLP%, QLI
and
(0%, A, — P, 0, Q) = (0, 4:Q%, —PiQ%).»

ProposITION 1.1. The multiplication of general commections and temsor
fields of type (L.1) satisfies the associative law.

This is easily verified from (1.14) and (1.15). According to Proposition 1.1,
we may write the products of a general connection I' and tensor fields @, R
of type (1.1) as

RQI)=RQI', (I'QR=I'QR, (QINR=QUI'R)=QI'R, etc.

ExAMPLE 1. Let I" be a normal general connection® of ¥ and put P=A(I").
Let @ be the tensor field of type (1.1) on X such that

QIP(TX)=(P|P(TE))™* and QP '(0)=0

at each point of X. PQ=QP=A is the projection of T'(X) onto P(T(X)) accord-
ing to the direct sum decomposition
T.(X) = P(T.(X)) +P~1(0), x X,

Then, the normal general connections 1" and "I" called the contravariant part®
and the covariant part of I' can be written as

"T'=QI' and "I' =I'Q.
Since the tensor field for A analogous to @ for P is A itself, we have
(M=AQl'=QI'="T,
"I =I"=QrIA,

4) See [10], §2.
5) See [8], §2 and §3.
6) See [10], §3.
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(') =I"=AT'Q,
"r)=T'QA=TQ="T.
And so, we have
M =A"=AQI'A=QI'A=I",
"ry=I"A=QrA2=QrA=I"
and analogously, '(I"")="(I"")=I""". Thus we see that the operations ‘'’ and

“n qre closed and the gemeral conmections I and I’ are stationary with
respect to these operations.

ExAMPLE 2. Let I' be any general connection. P=A(I") has an integer
r(x) at each x X such that

rank P>rank P>>..->rank P"® =rank P"®*l =...,

We have max r(x) <n. We assume that rank P"=m is constant. Then the
connections P I"P"9°1, ¢q=0,1, ---, , are normal general connections.

§2. The general connection AI'A.

Let I" be a general connection and A be a tensor field of type (1.1). We
denote the covariant differential operators for I" and I'=Al'A by D and D
respectively. Putting

I' =ou;® (Pid*u* +Ihduw @du”) and I’ =ou, ® (Pid*u* +Idu ® du®),

we have by (1.14) and (1.15) the equations

@1 Bi=A{PIA;,  Th=AiThAl+a4iPt 240

For any contravariant tensor field V =V‘0u,, we have?

DVi=P1dVi+I},Vidu"

= ayPratav + ai(rnas+ PO
=Ai{P;d(A V) +THAV  du}
=AIDV?,

> Vidu

where
VE=AV,
Analogously, for any covariant tensor field W=W,;du* we have
DW, = d(W,;P}) — W[}, du”

l
=d(W,AiPtA) — W, A; <I"{‘nA£ + P} g;l,: ) du”

7 7) See [7], (2.15). "




44 TOMINOSUKE OTSUKI

={d(W,ADP}) — (W, ADI . du'} A

=A|DW,,
where

W.=W,AL
Making use of the homomorphisms A and ¢4 of the tangent tensor bundles of
X naturally defined from A in [10],® the above equations give the formulas
2.2) DV =DA(V) and DW= DAW),
where
Vel(T(X) and Wel(T+X)).”

THEOREM 2.1. The covariant differential operator D for AI'A can be
written as

~

D =DA.
Proof. It is sufficient to show that if for any two tensor fields V and W

we have

DV=¢,DA(V) and DW= .DAW),
then we get f?(V@W) =, DA(V®W). In fact, by means of the formula (2.19)
in [7] we have

D(VQW)=eDV®P(W))+P(V)QDW

= e(eaDA(V) Q APA(W))+APA(V) ® cADA(W)

=, {e(DA(V)Q®PA(W))+PA(V)R®DAW)}

= DA(V)RA(W)) = cuDA(VOW). q.e.d.

THEOREM 2.2. If I' is regular, A is a projection of T(X) and A(T(X)) is
wnvariant under P=A(I"), then the gemeral connection AI'A is normal and
proper.t”

Proof. When A =1, the theorem is evident. When A#1, N=1—4 is a
projection of T'(X). At each point 2 of X, we put A, =A(T.(¥X)) and N, =N(T.(%X)),
then

Az ~ N, =0.
Since P|A. is an isomorphism and A|A,=1, we have
APA(T(X)) =AP(A:) =A(4.) =As
and APA|A. is an isomorphism. Since T,(X¥)=A,® N, and APA(N,)=0, APA

8) See [10], (3.8).

9) For any vector bundle § = (38, %, n) over £, we denote the vector space consisting
of all cross-sections of & by ¥(%).

10) See [8], §5 or [9], 1.
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= A(AI'A) is normal. Hence, the general connection AI'A is normal.

In the next place, the projection of 7'(X) onto APA(T(¥)) corresponding
to the normal tensor field APA is A itself. By virtue of Proposition 1.1,
we have

N(ATA)=(NA)'A=0I'A=0.

Hence, the general connection AI'A is proper.

§3. Some properties of AI’'A when I' is a metric general connection.

Let be given a non-singular symmetric tensor field G =g;;du'®du’. We
say that a general connection I' is metric with respect to G, if DG =0.

THEOREM 3.1. If a regular general connection I is metric with respect
to G and satisfies the conditions:

(3.1) S{h = %(FZIL _Fit) = %(Pl;h - sz;i)ru)

where the semi-colon ‘‘;”’ denotes the covariant derivative with respect to
the Levi-Civita’s commection made by G, then the covariant part "I of I' is
the Levi-Civita’s connection.

Proof. Since I' is regular, we put @ =P~!, P=A{"). Then we have

0P

ou’

putting "I'=I'Q = 0w, @ (d*u’ +"I'l,duw* @ du™). Putting these into (8.1), we
have

3.2) i ="TP} +

oP: 0P, \
ou” ou® /

(0P (Ve (Do) (OPh [ p |1
—(W +{zh}P”{ih}P§> (aw' +{zi}Ph‘{hi}”)’

(ru= {2 pr= (= {7} s

where {iJh} are the Christoffel symbols of the second kind made by g;. Let

(f'r,f,,,Pf + ) - <"miPz +

hence

us put
X="Th— {7}
th)’
then the above equations can be written as
X, Py =X{, P},

11) See [9], 2. The condition (iv) of Theorem 2 is written as this.
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In the next place, we have
9isn =P{Psgun =0,
hence

09
Gijin= _6—1;1’{_ — 9" h— 94" T =0,

where the symbol ‘‘|’’ denotes the basic covariant derivative with respect to
I'''» As is well known, we have

09; l l
Giyn= —a'?;,f* — 0ij {ih} — g”{jh} =0.

We get immediately from these two equations
9u,Xh+ 9uX = 0.
Putting X, ;, = ¢9;+X.*1, we obtain
Xojn +X;in=0 and X Pf=X.;P}.
Now, if we put Y,;, =X P!P¥, we get from the above equations
Yjn+Y;,=0 and Y=Y,

hence it must be that Y, =0 and so X,;»=0. Accordingly we have
nri = j
(3.3) T, {i h}

which shows that the covariant part of I' is the Levi-Civita’s connection made
by G.

REMAKR. In [9], the author showed that the condition (iv) in Theorem 2:
ShAr= 3 Ai(PL,— P Al

is a generalization of the symmetric condition in the classical case. Theorem
3.1 shows that the condition is very natural.

THEOREM 3.2. Let I' be a metric regular general conmection with respect
to a non-singular symmetric tensor G =g,,du' @du’ on X and A be a projec-
tion of T(X) such that A, and N, are invariant under P and orthogonal
with respect to G at each point x of X, where N=1—A, A,= A(T.(X))
and N,=N(T.(X)). If I' satisfies the condition (3.1) in Theorem 3.1, then
I' =ATA is a normal, proper gemeral conmmection which is metric with re-
spect to G and G =A(G) = g ArAsdw' ® du’ and satisfies the generalized sym-
metric condition:

3.4) St = o AiPL — Pl oAl

12) See [7], ).
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where

Syn= %(ffcn —‘f;jm)y 15=P{6’u, Qdut = Z(f)

Proof. From the assumption and Theorem 2.2, it is clear that ['=ATA is
normal and proper. At first, we prove that I' =AI'A is metric with respect to
G. By means of Theorem 2.1, it is sufficient to prove that
3.5) glk,hAiA,Jc =0.

Since 0{=A!+ N/ and I" is metric with respect to G,
Gi; = guAlAY =g, — gi; N — guN* + 9NN}
and

0(g.P:P¥
gion =L g 14 Ps — g PR =0,
Now, making use of these equations, we have

0(9s. PiPY)

s = 0ThPL— 0PI} ALY

i, nALAY = {

0
= {W((gsl = 9uN? — 9:eNt+ 9,]NINY)PP})
—(gst — gptNg - gsqN(l + gqung)th :
— (Ger — 90eN? — 9N+ 0, N? NP } ALAF

ON? ON?
{ <gpt 6u" +gsq a ;,,>P§P1tc

+ g, NI P + g, NP } ALAY,

since we have NiPiA'=Ni(ALP*A)=0 from the assumption A, invariant
under P and AN=NA=0. Since A, and N, are orthogonal with respect to
@G, the above equation becomes

0er Al =— (0,000 PLAIPLAS +0., 5 PLATPIA)
S AL K
= 0, N2Piay 2O g, Nipra O
=0.
Thus, (8.5) is proved. Hence we have
DG =o.

By means of Theorem 2.1 and A=A, we get
DG = c4DA(A(G)) = ¢, DA(G) =DG = 0.

Now, we shall prove (8.4). By means of (2.1), we have
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ou™ ou
=?A{[r,ah~r:nkAz+P;(aAi" _ o4 )}Af.

S At = [(Afrs,,hAm +4ip1, 04% ) - (A{rﬁnkA;f + 4,247 )}Af

ou” ou

Making use of (3.2) and (3.3), the above equations can be written as

L m
S A IA[{l}Pt 9P} {l}Pm P, Am+Pl<aAk_aAn>]A§

th 0wt \tk ou’ our  ou*
1 D po gp o OPRAD) (1) by O(PRAR)
=54 [{th}P AF ou {tk}P Al = ]
_1,

Al[(PhAR);n — (PRAR), k] AY

—AI[AIPLAR). n — (AP AR),  — AL Pr AL + AL PLAT] A

l—‘l\')i—lN

= 2 AlPhy—PL)A 4 AINEPLAT — N PLATAD).
Since we have
AN PLAT = — AL W(N{PLAT)
=0,
finally we obtain the equations:

S Ar = —;—A{(ﬁz; o — P )AL, ged.

§4. A geometrical meaning of AI'4d when I" is the Levi-Civita’s con-
nection.

Let us consider an wm-dimensional Riemann space X with a metric tensor
G=g¢;;dw @du’ and I' be the Levi-Civita’s connection made by G. Let 9:

w = w (v, V3, e e, V™)
be an m-dimensional subspace of ¥. Putting

ow’
{ Bl 6’0" y gaﬁ = gi]'B::B?J’

@1
Bg:gaﬁgijBﬂr &, B:‘:l’ 2’ e, M,

the formulas:

“2 et =25 BB )

are well known, where {zjh} are the Christoffel symbols of the second kind

v

made by g, and {06)’} are the ones made by g.s which are the local compo-
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nents of the metric tensor of ) induced from G.
Now, we may consider 9 as one of a family of m-dimensional subspaces
of X:

(4-3) w _—_u/(vl, 1)2’ cee, V™, c’”“‘l, cee, c”)
such that
6’“] 3 M+l — e+l T T
W#O, putting ¢™*l=9"" , " =9"
Hence, 2%, v% -+, v" may be considered as local coordinates of X. Then,
(4.4) A!=B!B;

are clearly the local components of the orthogonal projection of 7,(X) onto the
tangent space of the subspace of (4.3) through 2 with respect to local coor-
dinates #* which are independent of v*. Denoting this projection of T'(X) by
A, let us consider the general connection I'=AI'A. Since I' is a classical affine
connection, that is A(I") =1, we have

4.5) A =ANIMA=A*=A
and
I = ou, ® (Ald2u* + I du’ @ du®),

where
. k DAY
4.6) i =A,z({l h} At u—)
by virtue of (2.1). Denoting the components in local coordinates v?, ---, ¥" by

the notations with Greek indices 4, u, v, we have

ove [, 0% 5 0wt out\®
W<A‘ goovt TGt )

by (4.5). Putting (4.4), (4.6) into (4.7), we have

= 2,10 . . .
F§p=EBiB;'|: ) +<{l} AF 4 aAz)@% 671,:!

4.7 s =

ou v o kh our | vt v
_ supa|  OW J 4., OAl >aw ou
"&Bf[av»avz +<{kh}u‘4‘+ our ) 0v* v }
Hence, we have
(4.8) ffyz()’ E=m+1, .-+, n,
and
~ 0*u’ J 041\ ow odu”
P — BBl " 13
(4.9) =8 ’[ dvont T <{kh}uA’+ ou* ) our v J

13) See [7], (2.27).
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Since B! and By are invariant under A as tangent vectors and cotangent
vectors of X, we have

04! ow 0(AlAY 0B:
8 —Re — Al
Tovr ow B"( ovr A 61}7>
0B 0B
=ps 92« _ps 90« _
B; ovr B: gor = O
hence
~ 0B! J B
) sB B! -
(4.10) It =B +B,B¢,B,{ih}u {ar}v.

On the other hand, the components of G =A(G) and A with respect to local
coordinates v? are

_ 0wt 0w ouw' 0w’
Gin=0irgr gor = I AIATGy o
(4.11) P out
” —L 1_uz — D= .,_7!’__
‘;1‘ - Gu’A’ vt B“B‘avl’
especially
Jup = ghkA’ilBiAfoa = gthZB:; =Japy
4.12 v
“.12) Ar=¢r.
Here, we assume that the tangent vectors
ou'
0’ E=m+1,:--,n,

are orthogonal to A, at each point x =X. Then, from (4.9), (4.11), we get

- Pul DAl ow
P — BB —— i 77
=8 ( dvov T v W)

0%u’ o*u'
= B* —BtAS =
B; 000V BiA: v ovE 0,

that is
(4.13) I, =0
and
(4.14) 95, =0, A4 = 0405.
Accordingly, with respect to such local coordinates v!, ---, v", the components
with the indices m + 1, ---, » of a tensor invariant under A vanish. Hence,

the covariant differential of such a tensor field, for example
V=V4v,®dv* =Viovs ® dv*
is given by
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DV =6v,®dv*®DV3,
Dve= AdV:A; +1;,g Vedsdo —.zisz{“}; dv.
Substituting the above equations into this, we have
DVi=61dVios +{7,¢ Vesdv — oy ng;i: dv*,
that is
DVi=dvi+ { £ } Vido — Vs {jr}vdvr + TV — Vil v,
Dvi=0, Dvi=o.
When V is defined on the subspace (4.3), the first equation can be written as

B
or

which shows that DV# is the covariant differential of V2 with respect to the
Levi-Civita’s connection of the subspace. Thus, we obtain the following

(4.15)

ﬁv5=dvg+{ } V:dvr—Vg{jr} dor,

THEOREM 4.1. Let I' be the Levi-Civita’s conmection of a Riemann space
with a metric tensor G and Y(c™*?, ---, c®) be a family of an m-dimensional
subspaces simply covering X. Let A be the orthogonal projection of T(¥X)
onto the tangent space of the family. The normal genmeral connection AI'A
18 identical with the Levi-Civita’s connections of the subspaces with the in-
duced metric tensor from G, for the tensor fields defined on the subspaces
which are invariant under A.

This theorem shows us that the parallelism of Levi-Civita on a subspace in
a Euclidean space is understood as a sort of parallelism by means of a metric
general connection of the space.
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