
GENERAL CONNECTIONS AΓA AND THE

PARALLELISM OF LEVI-CIVITA

BY TOMINOSUKE OTSUKI

In a previous paper [10], the author showed that for a normal general
connection ΓΌ of an ^-dimensional differentiate manifold 36 we can define
naturally two normal general connections T and "Γ called the contravariant
part and the co variant part of Γ respectively. In the present paper, the
author will show that we can define products of a general connection and
tensor fields of type (1, 1) on 36 satisfying the associative law. According to
this concept, T = QΓ and "Γ = ΓQ, where Q is the inverse of P in the sense
that Q\P(T(X)) = (P\P(T(X))ΓL and Q|P-1(0)=P|P-1(0) at each point of 36. As
an application, he will investigate a normal general connection AΓA, where Γ
is a metric regular general connection with respect to a metric tensor, A is a
projection of T(36) and A(Γ(3£)) and A-1(0) are invariant under P = λ(Γ) respec-
tively. Then, he will show that the well known parallelism of Levi-Civita in
Riemannian geometry can be considered as a parallelism by means of a sort of
general connections.

In this paper, the author will use the notations in [7], [8], [9], [10].

§ 1. Products of a general connection and tensor fields of type (1.1).

Let 36 be a differentiable manifold of dimension n and Γ be a general con-
nection of 36 which is written in terms of local coordinates ul as

(1.1) Γ = duj® (Pi d2u* + ΓίA dul ® duh)

or

(1.2) Γ = duj® (d(Pίduί) +ΛLdul ® duh),

where

ΘP3

(1-3) Λlh=Γίti~^

For each coordinate neighborhood (17, ul), we have two mappings

fu: U-*m2

n = {(a

by

(1.4) ai-fu=Pi, alh
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1) See [8].
2) See [10], § 2 or [7], § 1.
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and

fu: U - Sϊ = {(αί, αί,, pi) αί 1 * 0}3)

by

and the systems {fu} and {fu} satisfy the equations:

(1.6) (<r 9vu)fu=fv9vu

and

(1-7) gvufu =fv(0 9vu),

where

9vui U^ F-» 85 = {(αί, αί,) ! αί | ̂  0}

is given by

(1.8) c

σ: 2Jg->ΛΓί = {(αί)} and S5->Lί = {(αί)| l α l i ^ O } is the homomorphism

tf((α{, α{ft)) = (erf), <r((α{, α{ft, pi)) = (αl)

and Mia TO, SgcSg, putting

(αί) = (αί, 0), (α{, αίft) = (αί, α?Λ, αί).

The two systems of mappings {fu} and {fu} satisfying (1.6) and (1.7) charac-
terize the general connection Γ respectively.

From (1.6), we get

(<r 9vu)(σ 'fu) = (<t fv)(<τ Qvu)9

hence {σ fu} defines a tensor field of type (1.1) with local components P{ de-
noted by

(1.9) P = duj (x) PI dri = Λ(Γ).

Now, Q = dUj®Q3idul be a tensor field on 36. For each coordinate neighbor-
hood (17, u1), we define two mappings

qu: U-+m2

n and qv: U-+ZI

by

(1.10) at qu=Ql, ai^Qu = 0

and

(1.11) aί qu = δl, αίΛ $ιr = 0, pl qu = Ql

They satisfy the equations:

(1.12) (<r gvu)qu = qv(0 gvu) in TO

3) See [10], §2 or [7], §8.
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and

(1.13) ((J gvu)Qu = Qv(σ'gvu) in SS.

By virtue of (1.6) and (1.12), the system {qufu} defines a general connection
which we denote by QΓ. Analogously, by virtue of (1.7) and (1.13), the system
{fuQu} defines a general connection which we denote by ΓQ. They can be
written in terms of local coordinates u" as

(1.14) QΓ = dukQ] (x) (PI d2uτ + Γ{h dul ® duh)

and

ΓQ = θuj ® (d(P3

kQ\duί} +Λ3

khQ*dul <8> duh)

= du3®(PU(Q«duί)+ΓUQ\d

Since we have

(Qϊ, 0)(Pί, ΓJft) - (QiPΪ, QίΓfΛ)

and

PROPOSITION 1.1. The multiplication of general connections and tensor
fields of type (1.1) satisfies the associative law.

This is easily verified from (1.14) and (1.15). According to Proposition 1.1,
we may write the products of a general connection Γ and tensor fields Q, R
of type (1.1) as

R(QΓ)=RQΓ, (ΓQ)R=ΓQR, (QΓ)R = Q(ΓR) = QΓR, etc.

EXAMPLE 1. Let Γ be a normal general connection 5) of 36 and putP = Λ(Γ).
Let Q be the tensor field of type (1.1) on 36 such that

Q\P(T(X)) = (P\P(T(m~ί and Q(P-1(0)) = 0

at each point of X. PQ = QP=A is the projection of T(X) onto P(Γ(X)) accord-
ing to the direct sum decomposition

Γ*(X) sP(Γ*(X)) +P-1(0), a; e 36.

Then, the normal general connections T and "Γ called the contra variant part6)

and the covariant part of Γ can be written as

T = QΓ and "Γ=ΓQ.

Since the tensor field for A analogous to Q for P is A itself, we have
r(T)=AQΓ=QΓ=T,

=Γ' = QΓA,

4) See [10], § 2.

5) See [8], § 2 and § 3.

6) See [10], § 3.
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'("n=Γ"=AΓQ,

"("Γ)=ΓQA=ΓQ = "r.

And so, we have

'(Γ ) =AΓ'=AQΓA = QΓA =Γ,

"(Γ ) =ΓΆ = QΓA2 = QΓA =Γ

and analogously, '(Γ") = "(Γ")=Γ". Thus we see that the operations "'" and
""" are closed and the general connections Γ' and Γ" are stationary with
respect to these operations.

EXAMPLE 2. Let Γ be any general connection. P — λ(Γ) has an integer
r(x) at each x e 36 such that

rank P > rank P2 > > rank Prαr) = rank Pr Cao+1 = .

We have maxr(a0^w. We assume that rankPr —m is constant. Then the
connections p(iΓPr~q~i

ί q = Q, 1, •••, r, are normal general connections.

§2. The general connection AΓA.

Let Γ be a general connection and A be a tensor field of type (1.1). We
denote the co variant differential operators for Γ and Γ=AΓA by D and D
respectively. Putting

Γ = duj ® (P| dzu% +Πh duτ ® cίu71) and f=duj® (Pi d2ul +f{hdtf ® duh),

we have by (1.14) and (1.15) the equations

(2.1) PI =AIPΪAI, ΓL =AU\Aί + Ai

For any contravariant tensor field V=Vίdul, we have7)

=AtfϊAldVi

=Al{Pΐd(AiV

where

Vk = Ak'Vi.

Analogously, for any co variant tensor field W=WidyJi we have

7) See [7], (2.15).
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where

Making use of the homomorphisms A and tA of the tangent tensor bundles of
36 naturally defined from A in [10], 8) the above equations give the formulas

(2.2) DV=cADA(V) and DW=cADA(W\

where

and

THEOREM 2.1. Γ/ιe covariant differential operator D for AΓA can be
written as

D = cADA.

Proof. It is sufficient to show that if for any two tensor fields V and W
we have

ϊ)V=cADA(V) and DW=<ADA(W),

then we get ί)(V®W) = cADA(V®W). In fact, by means of the formula (2.19)
in [7] we have

= ε(tADA(V)®APA(Wy)+APA(V) <8> <ADA(W)

= ιA{ε(DA(V) ®PA(W))+PA(V) ®DA(W)}

= <AD(A(V) ®A(W» = cADA(V®W). q.e.d.

THEOREM 2.2. // Γ is regular, A is a projection of T(%) and A(T(%)) is
invariant under P = λ(Γ), then the general connection AΓA is normal and
proper.^

Proof. When A = l, the theorem is evident. When A=£l, N=l— A is a
projection of T(X). At each point x of 36, we put Ax =A(Tx(Xft and JV, =N(TX(X)),
then

Since P\AX is an isomorphism and A\AX — ~L, we have

APA(Tx(Xj) =AP(AX) =A(AX)) =AX

and APA\AX is an isomorphism. Since TX(H)~AX®NX and APA(NX) = Q, APA

8) See [10], (3.8).
9) For any vector bundle £$ = (3, $>> π} over 35, we denote the vector space consisting

of all cross-sections of $ by 3P(3r).
10) See [8], §5 or [9], 1.
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— λ(AΓA) is normal. Hence, the general connection AΓA is normal.
In the next place, the projection of T(#) onto APA(T(%)) corresponding

to the normal tensor field APA is A itself. By virtue of Proposition 1.1,
we have

N(AΓA) = (NA)ΓA = OΓA = 0.

Hence, the general connection AΓA is proper.

§3. Some properties of AΓA when Γ is a metric general connection.

Let be given a non-singular symmetric tensor field G = gίjdul®duJ. We
say that a general connection Γ is metric with respect to G, if DG = 0.

THEOREM 3.1. // a regular general connection Γ is metric with respect
to G and satisfies the conditions:

£ Δ

where the semi-colon " " denotes the covariant derivative with respect to
the Levi-Civita's connection made by G, then the covariant part "Γ of Γ is
the Levi-Civita's connection.

Proof. Since Γ is regular, we put Q=P~1, P = λ(Γ). Then we have

(3.2) Γfft =

putting /T=ΓQ==duJ®(d2uJ + 'Tlflduτ®du}l). Putting these into (3.1), we
have

\k i ί \ ( // Γ i ~pκ Λ u h \
i "Γ n h I — I L Tci Lh ~\ -- ^— - I

h *

hence

ί ^'Ί
where j . , > are the Christoffel symbols of the second kind made by gί3. Let

us put

yy _ ff-r j __ J 3-

then the above equations can be written as

11) See [9], 2. The condition (iv) of Theorem 2 is written as this.
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In the next place, we have

hence

~ Vζfij f t r l n HlΠl Λ
y ί j \ h — /Λ h y i j *• in yu * jti — ">

ou

where the symbol " | " denotes the basic co variant derivative with respect to
7V2) As is well known, we have

-'"{AH" (AH-
We get immediately from these two equations

gιJXl

lfι + guXjlh = 0.

Putting Xljh — QjkXfhj we obtain

-2Γ.yA+-SΓy<Λ = 0 and XkjhPl=XkJίPl

Now, if we put Yτjh=XιkhP[P*, we get from the above equations

Y . -}~γ.. =o and Y =Y

hence it must be that Yτjh = 0 and so Xljh = 0. Accordingly we have

(3.3)

which shows that the co variant part of Γ is the Levi-Civita's connection made
by G.

REMAKE. In [9], the author showed that the condition (iv) in Theorem 2:

is a generalization of the symmetric condition in the classical case. Theorem
3.1 shows that the condition is very natural.

THEOREM 3.2. Let Γ be a metric regular general connection with respect
to a non-singular symmetric tensor G = gτj dul ® du3 on 36 and A be a projec-
tion of T(36) such that Ax and Nx are invariant under P and orthogonal
with respect to G at each point x of 36, where N=1 — A, Ax — A(Tx(^i))
and NX =N(TX(%)). If Γ satisfies the condition (3.1) in Theorem 3.1, then

Γ=AΓA is a normal, proper general connection which is metric with re-

spect to G and G=A(G) = gtlkAϊAk

jdul®du3 and satisfies the generalized sym-
metric condition:

(3.4) &'ΛAϊ -

12) See [7], (3.7).
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where

SΛ = y(ΓL -fib), P=PίduJ <g> dtf - Λ(f).

Proo/. From the assumption and Theorem 2.2, it is clear that Γ= AΓA is
normal and proper. At first, we prove that Γ — AΓA is metric with respect to
G. By means of Theorem 2.1, it is sufficient to prove that

(3.5) Λ*,ΛAUJ = 0.

Since δl=Al+Nl and Γ is metric with respect to G,

0o - glkAlA] = gί3 - flr^ί - gtkN* + glkNlN«

and

*S) ΓL pfc „ pi™ — n
^Z*Λ ΪΛ^J ~ QlkΓiL jh — U.^'Λ~ du

Now, making use of these equations, we have

- A>Ak _ ί 9(Q,tPlPί) } AAkgtkίhΆiΆ3 — i g^- gstι ιhrk — gstrLι kh>ΆiΆ3

\duh

since we have NίPΪAl = Nl(AhPϊAl) = 0 from the assumption Ax invariant
under P and AN=NA = 0. Since Ax and Nx are orthogonal with respect to
G, the above equation becomes

>P'Λ* S(PIAI} I a N«P*A>d(PίA>}

srkΆj f- gsqι\ t±Ί^

= 0.

Thus, (3.5) is proved. Hence we have

SG-O.
By means of Theorem 2.1 and A2=A, we get

DG = cADA(A(G)) = cADA(G) =DG = 0.

Now, we shall prove (3.4). By means of (2.1), we have
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- ±A' Γr< Γ A" + P< (^ - QAS\\A"
- 2

 Al j/ " l "" h + m\ Quh θu* JJΓ'

Making use of (3.2) and (3.3), the above equations can be written as

-

=y

=y

Since we have

AiNl, ΛPiAΓ = - Aί

-o,
finally we obtain the equations:

q e.d.

§ 4. A geometrical meaning of AΓA when Γ is the Levi-Civita's con-
nection.

Let us consider an ^-dimensional Riemann space 36 with a metric tensor
G = gijdul®duJ and Γ be the Levi-Civita's connection made by G. Let ?):

U3 = UJ(V1, V2, •••, Vm)

be an m-dimensional subspace of 36. Putting

(4.1)

the formulas:

(4.2)

( El = ffguB't, a,β=l,2, ,m,

are well known, where | ., | are the Christoffel symbols of the second kind
ί Ω } W U

made by gi3 and | | are the ones made by gaβ which are the local compo-
\CXY) v
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nents of the metric tensor of ?) induced from G.

Now, we may consider ?) as one of a family of m-dimensional subspaces
of #:

(4.3) uj = uj(v\ v2, , vm, cm+i, -, cn)

such that

% 0, putting cm+1 = vm+1, , cn = vn.

Hence, v1, v2, •••, vn may be considered as local coordinates of #. Then,

(4.4) Al=B'.Bt

are clearly the local components of the orthogonal projection of Tx(%) onto the
tangent space of the subspace of (4.3) through x with respect to local coor-
dinates u* which are independent of va. Denoting this projection of T(#) by
A, let us consider the general connection Γ=AΓA. Since Γ is a classical affine
connection, that is λ(Γ) = 1, we have

(4.5) λ(f) = Aλ(Γ)A =A2 =A

and

Γ = dUj® (Ald2ul +ΓJ

ihdul <g> duh),

where

by virtue of (2.1). Denoting the components in local coordinates v1, •••, vn by
the notations with Greek indices λ, μ, v, we have

« _8
(4 ° a ~

by (4.5). Putting (4.4), (4.6) into (4.7), we have

-^--^1* dv» Jv - B ' g 8V I (ll\ ^
" ~ " ' rdv* \ IMJ „ '

, ^ ,
l

\0» a»*ι
J dv* dv J

Hence, we have

(4.8) Γf, = 0, E = m + l, ,n,
V

and

Γ4 9) f ^ - fl'(4.9) Γλv - B^

13) See [7], (2.27).
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Since Bl

a and BI are invariant under A as tangent vectors and cotangent
vectors of #, we have

ΘAl θu* _ (d(AlAί) 9Bl
s θvr θva j\ dvr * Qvr

hence

On the other hand, the components of G = A(G) and A with respect to local
coordinates vλ are

f
du1 duj fa*1 ft*'-3

v μ IJ dvλ dvμ

n
Δ dvμ

 Δίdul _

especially

(4.12)

Here, we assume that the tangent vectors

θul

are orthogonal to Ax at each point #e£. Then, from (4.9), (4.11), we get

that is

(4.13) ΓL = 0
V

and

(4.14) δEμ = 0, A5 = ft3j.
•y y

Accordingly, with respect to such local coordinates v1, ••-, t;w, the components
with the indices m + 1, , n of a tensor invariant under A vanish. Hence,
the covariant differential of such a tensor field, for example

V = Vμ

Advμ ® dΐ;* = Vί dvβ ® c?vα

is given by
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AidV'Ai +ffζV'Aϊdvv -A»pV
p

σfλ:dv\
V V V V V V

Substituting the above equations into this, we have

that is

[DVί = dVί + {%\ Vidvr-Vtl9} dvr+Γδ

s

EVδ

advE-V$Γa

δ

EdvE,
(4.15) (or) v {aγ} v v v

When V is defined on the subspace (4.3), the first equation can be written as

dvr,
(or)*

which shows that DVβ

a is the covariant differential of Vί with respect to the
Levi-Civita's connection of the subspace. Thus, we obtain the following

THEOREM 4.1. Let Γ be the Levi-Civita9s connection of a Riemann space
with a metric tensor G and ?)(cm+1, •••, cn) be a family of an m-dimensional
subspaces simply covering #. Let A be the orthogonal projection of T(%)
onto the tangent space of the family. The normal general connection AΓA
is identical with the Levi-Civita's connections of the subspaces with the in-
duced metric tensor from G, for the tensor fields defined on the subspaces
which are invariant under A.

This theorem shows us that the parallelism of Levi-Civita on a subspace in
a Euclidean space is understood as a sort of parallelism by means of a metric
general connection of the space.
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