ON AN EXTENSION OF A THEOREM OF WOLFF

By YUsAKU KOMATU

Let f(2) be an analytic function regular and with positive real part in the
half-plane %z >0. The main theorem of Julia [1] and Wolff [4] on angular
derivative states that there exists a non-negative real constant ¢ for which the
limit relation f(2)/2 — ¢ holds uniformly as z tends to oo through a Stolz angle
largz|<a<w/2. In a recent paper [3] this result was generalized. Namely,
it was shown that the derivative 97f(2) of any real (not necessarily integral)
order p satisfies the limit relation
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valid uniformly as z tends to co through any Stolz angle in Rz >0. The last
limit relation can be written in the form
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which implies, in particular,
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In these relations the approach z — co is restricted to a Stolz angle in order to
insure the uniformity. However, it was shown by Wolff [5] that the last
relation with »p = —1 holds uniformly even when z approaches oo in an arbi-
trary (i. e., not necessarily non-tangential) manner through Rz > 0.

In the present paper we shall give an alternative proof of Wolff’s last
mentioned theorem. It seems more direct than Wolff’s original proof which
depends on a result previously obtained by himself and de Kok [6]. It will
further be shown, by making use of this theorem, that the limit relation
under consideration and an analogous one hold for any » with p<—1 when z
approaches oo arbitrarily through Rz > 0.

We begin with a proof of Wolff’s theorem.

THEOREM 1 (Wolff). Let f(z) be an analytic function regular and with
positive real part in the half-plane Rz >0. Put

z=x+1y, Slf(Z) dz = ¢(x, y) +i¢(x, y),
x, ¥, ¢ and ¢ being real. Then the limit relation
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holds uniformly as z tends to oo through Rz>0 in an arbitrary manner,
where ¢ denotes the angular derivative of f(z) at oo.

Proof. Together with f(z), the function f(2) —cz — I f(1) is also regular
and with positive real part in Rz >0, unless it reduces identically to zero in
which case the assertion of the theorem follows trivially. The imaginary part
of its integral becomes

3ﬁv&r—%—4&ﬂnmz=ﬂmy%—my—SﬂD%w—D-

Hence, we may suppose ¢ =0 and Jf(1) =0 without loss of generality. Then,
as shown in a previous paper [2], the function admits an integral repre-
sentation
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where A(s) is a real-valued increasing function with finite total variation equal
to RfA) (=f(1)). —This representation holds obviously also for the degenerate
case f(2)=0 by taking A(s) = const.— Integration with respect to z yields

whence follows

d(x, y) = Sﬁf (2)dz = X ((1 + s?) arg%l s(x — 1)> da(s).

Now, in view of the main theorem on angular derivative, we have f(x)=o(x)
as £ — + o and hence

Pz, 0) = o(x?) as x—+ oo,
For any real y, we have

(x, y) — P, 0) = j 1+ s?)arg’ _+_@(y_

%) das)

= j (1+ s arctan—_ dA(s),
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where the arctan denotes the branch attaining the value 0 for y =0 and con-
tinued continuously; in particular, its range is contained in the interval (— =, #).
The integrand of the last integral may be estimated as follows. For |s|>2]y]|
we have
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while for |s|<2|y| we have

1+s?» arctan ?/Z pe =<1+ 8% = O(x? + y?).
Hence we have an estimation
2
—512:—;2 arctanxz—_;cgw =0(1) as #*+y*— oo,

valid uniformly for — co <s< co. On the other hand, the right member of the
last relation can be replaced by o(1) for |s|<S with any fixed S. Hence
we get

s? xY

=o0(1) + 5] o5 TG arctan st da(s).
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Since, as shown above, the integrand of the last integral is estimated by O(1)

uniformly and A(s) is of bounded variation, the value of this integral becomes
arbitrarily near zero for S large enough. Consequently, we obtain

g, y) _ P, 0)
x2 + yz - x2 + y2

This is the result desired.

o(1)=o(1) as 224 y*— oo,

Now, the theorem of Wolff just re-proved can be extended as in the manner
preannounced above.

THEOREM 2. Let f(z) be an analytic function regular and with positive
real part in the half-plane Rz>0. For any real positive number q, let its
(fractional) integral of order q be denoted by

TG Je—orra

where the branch of (z— &) ' =exp((q—1)1g(z—8) is determined by taking
the principal value of logarithm and the integration is supposed to be taken
along the rectilinear segment comnecting 1 with z. Then the limit relation

Df(2)=

( ” zq+1
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holds uniformly, provided q=1, as z tends to o through Rz>0 in an arbi-
trary manner, where ¢ denotes the angular derivative of f(z) at co.

Proof. The particular case ¢ =1 of this theorem is nothing but the Wolff’s
theorem 1 discussed above. Remembering 9% =2?*"1/I'(q +2), we may again
suppose ¢=0. For any ¢ >1, we have

TS @) = 9P @) =y | = O Q

which may be written, by putting £ =1+41¢(z —1) with 0<¢ <1, in the form
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In view of theorem 1, we get
39 fA+tz—1)=o0(z?)
valid uniformly as z — co. Consequently, we obtain the estimation

Df(2)
(z — 1)1+t

Since (2 —1)?*!/z%*1 —1 as z — oo, this is evidently equivalent to our assertion
under the assumption ¢=0.

j (1= 8120 1f (1 + t(z — 1)) dt.

I =o(z?.

As mentioned above, the limit relation in theorem 2 can be replaced by
more precise one without J-sign provided z=2x 41y tends to oo in satisfying
the condition ¥ = O(x). Hence it is an essential matter only when this condi-
tion does not satisfied. In this connection it may be of some interest to state
the following analogous theorem.

THEOREM 3. Under the same assumptions as in theorem 2, the limit
relation

1 cz1tt
- L _
holds also uniformly in the same sense as above.
Proof. Wolft’s theorem 1 is also a particular case ¢ =1 of this theorem.

We suppose here again ¢=0 for the sake of brevity. For any ¢>1, we
again write

DY@ = =y | E— OISO,

Here, for any fixed z, the path of integration may be deformed continuously
within {2z >0. Hence, by putting z =2 + 7y, we take the path consisting offa
horizontal segment from 1 to x and a vertical segment from x to x +7y. Thus
we get

T 1 5 (@t iy —erronseae
q 1
Tla—1)
Since ¢=0, we have 9°'f(§) =0(&?) as & — + o and hence

[riy-errorr@ae=oiz1e

valid uniformly as z—co. On the other hand, in view of theorem 1, we get
D71 f (x + i) = o(x? + »?) and hence

L7 g(y DD (@ + ) .
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sj:<y—7>q-2g>-lf<x+z‘>;>dv= ol 2[4+1)

valid also uniformly as z—oco. Consequently, we obtain the estimation

i P91 f(2) = o(| z|4)

which is evidently equivalent to our assertion with ¢=0.
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