REMARKS CONCERNING TWO QUASI-FROBENIUS RINGS WITH ISOMORPHIC RADICALS

BY SHIGEMOTO ASANO

The purpose of this short note is to make some supplementary remarks to the author's previous work [2] and refine theorem 2 of [2]. Let A and \tilde{A} be two quasi-Frobenius rings and let the radical \tilde{N} of \tilde{A} be isomorphic to the radical N of A; we shall identify \tilde{N} with N and say that A and \tilde{A} have the same radical N. Let

$$A = \sum_{\kappa=1}^{k} \sum_{\iota=1}^{f(\kappa)} A e_{\kappa,\iota}$$

be a decomposition of A into direct sum of indecomposable left ideals; the elements $e_{\kappa,i}$ $(1 \le \kappa \le k, 1 \le i \le f(\kappa))$ are mutually orthogonal primitive idempotents of A such that $Ae_{\kappa,i} \cong Ae_{\lambda,j}$ if and only if $\kappa = \lambda$. We put $e_{\kappa,1} = e_{\kappa}$, $\sum_{i} e_{\kappa,i} = E_{\kappa}$; $E = \sum_{\kappa} E_{\kappa}$ is the unit element of A. Further, let $\tilde{e}_{\kappa,i}$, \tilde{E}_{κ} , etc. have the same meaning to \tilde{A} as $e_{\kappa,i}$, E_{κ} , etc. to A. For a subset S of A we denote the left [right] annihilators of S by $l_A(S)$ $[r_A(S)]$; the notations $l_{\tilde{A}}(*)$, $l_N(*)$ etc. may be defined similarly.

Remembering theorem 1 of [2], we shall assume in this note that both A and \tilde{A} are bound rings and that $M = l_N(N) = r_N(N)$ is contained in N^2 . Then by theorem 2 of [2] $\bar{A} = A/N$ is isomorphic to $\bar{A} = \tilde{A}/N$; moreover, there is a (unique) 1-1 correspondence between the simple constituents of \bar{A} and those of \bar{A} . So that we may assume, after a suitable reordering, that $\bar{A}_{\kappa} = \bar{A}\bar{E}_{\kappa}$ corresponds to $\bar{A}_{\kappa} = \bar{A}\bar{E}_{\kappa}$ in this correspondence $(1 \leq \kappa \leq k)$.

PROPOSITION 1. Let A and \tilde{A} be as above. Let $1 \supset 1'$ be two left A-ideals contained in N and let the factor module 1/1' be simple and isomorphic to Ae_{κ}/Ne_{κ} . Assume moreover that 1 and 1' are left \tilde{A} -ideals. Then 1/1' is also a simple \tilde{A} -module and is isomorphic to $\tilde{A}\tilde{e}_{\kappa}/N\tilde{e}_{\kappa}$. Similarly for right ideals.

Proof. First we assume that $1 \subseteq M = 1' \subseteq M$. Then we must have $1 \subseteq M$ $\supseteq 1' \subseteq M$, and there exists a minimal left A-ideal I_0 in M such that $1 \subseteq M = 1' \subseteq M + I_0$; from this it follows that $1 = 1' + I_0$ and the assumption $1/1' \cong Ae_{\kappa}/Ne_{\kappa}$ shows that $I_0 \cong Ae_{\kappa}/Ne_{\kappa}$. As I_0 is also a left \tilde{A} -ideal, we have that $1/1' \cong I_0 \cong \tilde{A}\tilde{e}_{\kappa}/N\tilde{e}_{\kappa}$ is a simple \tilde{A} -module. Now assume that $1 \subseteq M \supseteq 1' \subseteq M$, we have for a suitable left A-ideal 1* in $M \subseteq M \subseteq 1' \subseteq M + 1^*$, which implies $1 = 1' + 1^*$ since 1/1' is a simple A-module. This contradicts the assumption $1 \subseteq M \supseteq 1' \subseteq M$. Now, note that $1 \subseteq M/1' \subseteq M = 1 \subseteq (1' \subseteq M)/1' \subseteq M \cong 1/1'$ (as A-modules

Received June 8, 1961.

QUASI-FROBENIUS RINGS

and at the same time as \tilde{A} -modules); as $1/\mathfrak{l}' \cong Ae_{\kappa}/Ne_{\kappa}$ (as an A-module), $\mathfrak{l}''M/\mathfrak{l}'$ M is a simple A-module and hence is a simple \tilde{A} -module (by lemma 1 of [2]). Therefore $1/\mathfrak{l}'$ is a simple left \tilde{A} -module. In order to show that $1/\mathfrak{l}'$ is isomorphic to $\tilde{A}\tilde{e}_{\kappa}/N\tilde{e}_{\kappa}$ as an \tilde{A} -module, we take an element $a \ (\neq 0)$ in $r_N(\mathfrak{l}') - r_N(\mathfrak{l})$;¹⁾ the mapping $x \to xa \ (x \in \mathfrak{l})$ is an A-homomorphism of \mathfrak{l} into M, and by our assumptions we have $\mathfrak{l}a \cong Ae_{\kappa}/Ne_{\kappa}$. This mapping, however, is also an \tilde{A} -homomorphism of \mathfrak{l} ; then, since $\mathfrak{l}a \cong \tilde{A}\tilde{e}_{\kappa}/N\tilde{e}_{\kappa}$ (as an \tilde{A} -module) we have $\mathfrak{l}/\mathfrak{l}' \cong \tilde{A}\tilde{e}_{\kappa}/N\tilde{e}_{\kappa}$.

Let the index of N be $\rho: N \supset N^2 \supset \cdots \supset N^{\rho-1} \supset N^{\rho} = 0$. For the ring A we denote by $t_{\epsilon_{\lambda}}^{*}$ the number of simple submodules of the completely reducible module $N^{\tau}e_{\lambda}/N^{\tau+1}e_{\lambda}$ which are isomorphic to the simple module $Ae_{\epsilon}/Ne_{\epsilon}$ $(1 \le \kappa, \lambda \le k, 0 \le \tau \le \rho - 1; N^0 = A)$. The same number for the ring \tilde{A} will be denoted by $\tilde{t}_{\epsilon_{\lambda}}^{*}$. Then the numbers

$$c_{\kappa\lambda} = \sum_{\tau=0}^{
ho-1} t_{\kappa\lambda}^{\tau}$$
 and $\tilde{c}_{\kappa\lambda} = \sum_{\tau=0}^{
ho-1} \tilde{t}_{\kappa\lambda}^{\tau}$

are the left Cartan invariants of A and \tilde{A} , respectively.²⁾

PROPOSITION 2. Let A and \tilde{A} be as above. Then there exists an Nisomorphism between two left N-ideals Ne_{κ} and $N\tilde{e}_{\kappa}$; and, by this isomorphism every left A-subideal of Ne_{κ} is mapped onto a left \tilde{A} -subideal of $N\tilde{e}_{\kappa}$ and conversely. Moreover, let $1 \supset 1'$ be two \tilde{A} -subideals of Ne_{κ} such that $1/1' \cong Ae_{\lambda}/Ne_{\lambda}$; let $\tilde{1}$, $\tilde{1}'$ be the corresponding left \tilde{A} -subideals of $N\tilde{e}_{\kappa}$ (by this isomorphism). Then $\tilde{1}/\tilde{1}' \cong \tilde{A}\tilde{e}_{\lambda}/N\tilde{e}_{\lambda}$. Similarly for right ideals.

Proof. At the outset we observe that the left A-ideal Ne_x has the unique minimal subideal Me_{κ} ; similarly, $N\tilde{e}_{\kappa}$ has the unique minimal subideal $M\tilde{e}_{\kappa}$. We may assume, without loss of generality, that Me_{κ} coincides with $M\tilde{e}_{\kappa}$. Now consider a mapping $\varphi: x \to x\tilde{e}_x$ $(x \in Ne_x)$ and a mapping $\tilde{\varphi}: y \to ye_x$ $(y \in N\tilde{e}_x)$; by the proof of prop. 7 of [2] φ is an N-isomorphism of Ne_x into $N\tilde{e}_x$ and maps every A-subideal of Ne_{ϵ} onto an \tilde{A} -subideal of $N\tilde{e}_{\epsilon}$; similar fact is valid for $\tilde{\varphi}$. Further, φ and $\tilde{\varphi}$ are onto mappings; in fact, the composed mapping $\tilde{\varphi}\varphi$: $x \rightarrow (x_{i_{\kappa}})e_{\kappa}$ is an N-isomorphism of Ne_{κ} into itself and maps every A-subideal of Ne_{s} onto an A-subideal. Therefore, considering the composition length of Ne_{s} , both φ and $\widetilde{\varphi}$ must be onto mappings. We have thus proved our first assertion. Let now $\mathfrak{l} \supset \mathfrak{l}'$ be two A-subideals of $Ne_{\mathfrak{k}}$ such that $\mathfrak{l}/\mathfrak{l}' \cong Ae_{\mathfrak{k}}/Ne_{\mathfrak{k}}$. Then $\varphi(\mathfrak{l})$ and $\varphi(\mathfrak{l}')$ are \widetilde{A} -subideals of $N\widetilde{e}_{\kappa}$ and $\varphi(\mathfrak{l})/\varphi(\mathfrak{l}')$ is a simple \widetilde{A} -module. Assume that $\varphi(\mathfrak{l})/\varphi(\mathfrak{l}')$ is isomorphic to $\widetilde{A}\widetilde{e}_{\mu}/N_{\mu}$, say. As $M\widetilde{e}_{\kappa}$ is the unique minimal \widetilde{A} -subideal of $\varphi(\mathfrak{l})$ (and of $\varphi(\mathfrak{l}')$), there exists an element \tilde{a} of N such that $\varphi(\mathfrak{l})\tilde{a}\neq 0$, $\varphi(\mathfrak{l}')\tilde{\mathfrak{x}}=0$; here, $\varphi(\mathfrak{l})\tilde{\mathfrak{a}}$ is obviously a simple left $\tilde{\mathcal{A}}$ -ideal and $\varphi(\mathfrak{l})\tilde{\mathfrak{a}}\cong\tilde{\mathcal{A}}\tilde{\mathfrak{e}}_{\mu}/N\tilde{\mathfrak{e}}_{\mu}$. But, $\varphi(\mathfrak{l})\tilde{a} = \mathfrak{l} \cdot \tilde{e}_{\kappa}\tilde{a} \quad (\tilde{z}_{\kappa}\tilde{a} \text{ is an element of } N) \text{ and } \varphi(\mathfrak{l}')\tilde{a} = \mathfrak{l}' \cdot \tilde{e}_{\kappa}\tilde{a} = 0 \text{ show that } \mathfrak{l}/\mathfrak{l}' \text{ is }$ isomorphic to $\varphi(\mathfrak{l})\tilde{\alpha} \ (\cong Ae_{\mu}/Ne_{\mu})$ as an A-modoule; we have hence $\mu = \lambda$.

¹⁾ As $\mathfrak{l} \subseteq M \supseteq \mathfrak{l}' \subseteq M$, we must have $r_N(\mathfrak{l}') \supseteq r_N(\mathfrak{l})$.

²⁾ For these notions see Artin-Nesbitt-Thrall [1], Ch. 9.

The following theorem is now immediate.

THEOREM. Let A and \tilde{A} be as above. Then we have $t_{r,\lambda}^{\tau} = \tilde{t}_{r,\lambda}^{\tau}$ $(1 \leq \kappa, \lambda \leq k, 0 \leq \tau \leq \rho - 1)$; in particular, the left Cartan invariants $c_{\kappa\lambda}$ of A coincide with those, $\tilde{c}_{\kappa\lambda}$, of \tilde{A} . The same fact is also valid for the right-hand side invariants.

Refrences

- [1] ARTIN, E., C. J. NESBITT AND R. M. THRALL, Rings with minimum condition. Univ. Michigan Publ. Math., No. 1 (1944).
- [2] ASANO, S., On the radical of quasi-Frobenius algebras. Kodai Math. Sem. Rep. 13 (1961), 135-151.
- [3] NAKAYAMA, T., On Frobeniusean algebras, I. Ann. Math. 40 (1939), 611-633.
- [4] NAKAYAMA, T., On Frobeniusean algebras, II. Ann. Math. 42 (1941), 1-21.

DEPARTMENT OF MATHEMATICS, Tokyo Institute of Technology.