
SOME THEOREMS IN AN EXTENDED RENEWAL THEORY, III

BY HIROHISA HATORI

1. Let Xk, k = 1, 2, , be a sequence of independent, non-negative, identi-
cally distributed random variables and set

(1.1) fl(t) =E{N(t)} = Σ Pr(Sn < t),

where S n = XJϊ=i-Xi;, n = l, 2, •••, and N(t) is the number of sums Si, S2, •••
which are less than t. Then it holds under some restrictions that

(1.2) lim [fl(ί + h) -fl(ί)] = lim fj Pr( ί <Sn^t + h)=—,
t-*oo t->oo n = l W

where m=E(Xk)>0 and /&>0 is a constant. This is known as renewal
theorem and discussed by many authors. Extending (1.2) Smith [6], [7], [8]
has shown for instance that if ( i ) ψ(t) is bounded for ί^O, (ii) ^ G L ( 0 , OO),
(iii) limt-+coψ(t) = 0 and (iv) for some n the n-th. iterated convolution of F{x)
with itself has an absolutely continuous part, where F(x) is the distribution
function of Xkt then it holds that

(1.3) lim fV(ί - u) dH(u) = — [°°ψ(t)dt.
ί->oojθ W JO

If Xkf k — 1, 2, , do not necessarily have the same distribution, (1.2) does
not necessarily hold. But assuming that

(1.4) lim— γ\E{Xk) = m
w->oo n &=i

exists, we can see under some additional restrictions that

(1.5) lim 4r Γ Σ

This was proved by Kawata [4] and extended by the author [1], [2], [3].
Recently Kawata [5] has obtained for Xk, k = l, 2, •••, satisfying (1.4) as the
result coresponding to (1.3) that if ( i ) ak, k = l, 2, •••, is a sequence of non-
negative real numbers satisfying the restrictions that

1 n
(1.6) lim — Σ ak = a

exists and is positive, and (ii) ψ(x) is a non-negative function of bounded
variation over every finite interval and is bounded and integrable over (0, oo),
then it holds that
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(1.7) lim -=- \ dt \ ψ(t — u) dJ(u) = —
T^OO 1 Jo Jo m

u n d e r t h e r e s t r i c t i o n s o n Xk, k = 1,2, •••, u s e d i n [ 3 ] , w h e r e

The purpose of the present paper is to obtain a more extended result of
(1.7). In the following discussion we need only the integrability over (0, oo)
as the restiction on ψ and can show that

( L 8 )

where

n=l

and a is any non-negative integer. Actually we have considered the case
where Xk may take the negative values but for the sake of simplicity we shall
restrict ourselves here with non-negative Xk.

2. To show our statement, we need the known following lemma which is
found as Theorem 1 in [3].

LEMMA. Let Xk, Jc = 1, 2, , be non-negative independent random vari-
ables having finite mean values mk, ft = l, 2, •••, and

(2.1) lim

Λ-+co

holds uniformly regarding n, Fn(x) being the distribution function of Xn. If

1 n

(2.2) lim — Σ mk = m, m> 0,
n->oo n &=i

exists and the sequence ak, k = 1, 2, , of non-negative real numbers
satisfies

1 n

(2.3) lim — Σ αΛ = α, a > 0,
n—>oo n k = l

then

n=l

is convergent for every t where Sn = ^it=1Xk and a = 0, 1, 2, •••, and it
holds that

(2 4) } ^
we shall state the following

THEOREM 1. //, in addition to the assumptions of Lemma, we assume
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that ψ is a Baire function integrable over (0, oo), then we have

(2 5) $ZΊ
Proof. Since ψ(f — u) is absolutely integrable over the two-dimensional set

{{u, t);O^u^t,Q^t^T} with respect to the product measure dK(u) X dt, we
have that

f dt[^{t-
Jo Jo

(2.6) = [dK(u) [ψ(t -u)dt = [dK(u) Γ V w dv
Jθ Ju Jo Jo

=K(T) [°°ψ(v)dv - [TdK(u) ί°° ψ{v) dv.
Jθ Jo jT-u

For any small number ε > 0, we can choose a positive number ξ such that

ΓΊ <Kt>) I dt; < e for τ^ξ.

Then, if T>f, we have

Jθ JT-u

(2.7) = Γ~W(^) f°° ψ(v)dv+[T dK(u)[°° ψ{v)dv
Jθ jΓ-zί JT-ξ JT-u

say,

and

)0

because K(u) is a monotone non-decreasing function of u. So we have

(2 8) 5
On the other hand, we have

and so

(2.9) ΰm - ^ 1 / 1 = 0

by (2.4) in the above Lemma. Suming up (2.4), (2.6), (2.7), (2.8) and (2.9), we
get (2.5) which was to be proved.

Now we shall note to be able to obtain a more extended result in some
sense. We set the following assumptions:
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( i ) Xk (k = 1, 2, .); Y* (* = 1, 2, - •); •; Zk (k = 1, 2, . 0 are non-nega-
tive mutually independent random variables,

(ii) Xk(k = l, 2, - . . ) ; F*(fc = l , 2, •••); •••; Z* (fc = l , 2, •••) have finite
means ak (k = 1, 2, •)>' 6* (ft = 1, 2, •); cA (& = 1, 2, •)» respectively and
there exists a positive constant L such tha t ak^L, bk^L, •••, and ck^L for
fc = l , 2 , . . . ,

(iii) there exists a positive constant i£ such that Var(Xfc) ^ iΓ, Var(F f c)
^ iΓ, . ., V a r ( ^ ) ^K for k = 1, 2, ,

(iv) the limits

lim — γ^ak = a, lim — 2 bk = 6, , lim — ^ek = c
n & % fc W & l

exist,

( v ) 0(ίc, i/, -••,«) is monotone non-decreasing,

(vi) there exists a positive constant γ such tha t

0(a?, 7/, , z) ̂  γ min(α;, y, , z) for sufficient large x,y, ,z

and

(vii) lim —φ(xn, yn, , zw)
n—>oo n

exists for all a?, y, , z and is equal to a continuous function $(#, y, " , z).
Then, setting

, Σ , , Σ
& = l k=l

we have
(2 10) ̂ Ί ^ I

This was proved in Theorem 3 and Theorem 5 of [2]. By making use of
this fact, we get again the following

THEOREM 2. //, in addition to the assumptions (i)~(vii), we assume
that ψ is a Baire function integrable over (0, oo), then we have

(2 n ) 2&-iέ

71 = 1

and a is α ?̂/ non-negative integer.

COROLLARY. Under the assumption of Theorem 2, we have

(2 12) SS



RENEWAL THEORY 223

Qi(t) = Σ n«Pr(Sn ^ t), Sn=f]Xk

and a is any non-negative integer.
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