SOME THEOREMS IN AN EXTENDED RENEWAL THEORY, III

By Hirohisa Hatori

1. Let X_k , $k=1, 2, \cdots$, be a sequence of independent, non-negative, identically distributed random variables and set

(1.1)
$$H(t) = E\{N(t)\} = \sum_{n=1}^{\infty} Pr(S_n < t),$$

where $S_n = \sum_{k=1}^n X_k$, $n = 1, 2, \dots$, and N(t) is the number of sums S_1, S_2, \dots which are less than t. Then it holds under some restrictions that

(1.2)
$$\lim_{t \to \infty} \left[H(t+h) - H(t) \right] = \lim_{t \to \infty} \sum_{n=1}^{\infty} Pr(t < S_n \le t+h) = \frac{h}{m},$$

where $m=E(X_k)>0$ and h>0 is a constant. This is known as renewal theorem and discussed by many authors. Extending (1.2) Smith [6], [7], [8] has shown for instance that if (i) $\psi(t)$ is bounded for $t\geq 0$, (ii) $\psi\in L(0,\infty)$, (iii) $\lim_{t\to\infty}\psi(t)=0$ and (iv) for some n the n-th iterated convolution of F(x) with itself has an absolutely continuous part, where F(x) is the distribution function of X_k , then it holds that

(1.3)
$$\lim_{t\to\infty} \int_0^t \psi(t-u) \, dH(u) = \frac{1}{m} \int_0^\infty \psi(t) \, dt.$$

If X_k , $k = 1, 2, \dots$, do not necessarily have the same distribution, (1.2) does not necessarily hold. But assuming that

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n}E(X_k)=m$$

exists, we can see under some additional restrictions that

(1.5)
$$\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \sum_{n=1}^{\infty} Pr(t < S_n \le t + h) dt = \frac{h}{m}.$$

This was proved by Kawata [4] and extended by the author [1], [2], [3]. Recently Kawata [5] has obtained for X_k , $k = 1, 2, \dots$, satisfying (1.4) as the result coresponding to (1.3) that if (i) a_k , $k = 1, 2, \dots$, is a sequence of nonnegative real numbers satisfying the restrictions that

$$\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n} a_k = a$$

exists and is positive, and (ii) $\psi(x)$ is a non-negative function of bounded variation over every finite interval and is bounded and integrable over $(0, \infty)$, then it holds that

Received May 24, 1961.

(1.7)
$$\lim_{T \to \infty} \frac{1}{T} \int_0^T dt \int_0^t \psi(t-u) \, dJ(u) = \frac{a}{m} \int_0^\infty \psi(t) \, dt$$

under the restrictions on X_k , $k=1, 2, \cdots$, used in [3], where

$$J(t) = \sum_{n=1}^{\infty} a_n Pr(S_n \le t).$$

The purpose of the present paper is to obtain a more extended result of (1.7). In the following discussion we need only the integrability over $(0, \infty)$ as the restiction on ψ and can show that

(1.8)
$$\lim_{T \to \infty} \frac{1}{T^{\alpha+1}} \int_0^T dt \int_0^t \psi(t-u) \, dK(u) = \frac{a}{(\alpha+1)m^{\alpha+1}} \int_0^\infty \psi(t) \, dt,$$

where

$$K(t) = \sum_{n=1}^{\infty} a_n n^{\alpha} Pr(S_n \leq t)$$

and α is any non-negative integer. Actually we have considered the case where X_k may take the negative values but for the sake of simplicity we shall restrict ourselves here with non-negative X_k .

2. To show our statement, we need the known following lemma which is found as Theorem 1 in [3].

LEMMA. Let X_k , $k = 1, 2, \dots$, be non-negative independent random variables having finite mean values m_k , $k = 1, 2, \dots$, and

(2.1)
$$\lim_{\Lambda \to \infty} \int_{\Lambda}^{\infty} x \, dF_n(x) = 0$$

holds uniformly regarding n, $F_n(x)$ being the distribution function of X_n . If

(2.2)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} m_k = m, \quad m > 0,$$

exists and the sequence a_k , $k = 1, 2, \dots$, of non-negative real numbers satisfies

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n a_k=a, \qquad a>0,$$

then

$$K(t) = \sum_{n=1}^{\infty} a_n n^{\alpha} Pr(S_n \leq t)$$

is convergent for every t where $S_n = \sum_{k=1}^n X_k$ and $\alpha = 0, 1, 2, \dots$, and it holds that

(2.4)
$$\lim_{t \to \infty} \frac{1}{t^{\alpha+1}} K(t) = \frac{a}{(\alpha+1)m^{\alpha+1}} \quad \text{for } \alpha = 0, 1, 2, \cdots.$$

we shall state the following

THEOREM 1. If, in addition to the assumptions of Lemma, we assume

that ψ is a Baire function integrable over $(0, \infty)$, then we have

(2.5)
$$\lim_{T \to \infty} \frac{1}{T^{\alpha+1}} \int_0^T dt \int_0^t \psi(t-u) \, dK(u) = \frac{a}{(\alpha+1)m^{\alpha+1}} \int_0^\infty \psi(t) \, dt \quad \text{for } \alpha = 0, 1, 2, \cdots.$$

Proof. Since $\psi(t-u)$ is absolutely integrable over the two-dimensional set $\{(u,t);\, 0\leq u\leq t,\, 0\leq t\leq T\}$ with respect to the product measure $dK(u)\times dt$, we have that

(2.6)
$$\int_0^T dt \int_0^t \psi(t-u) dK(u)$$

$$= \int_0^T dK(u) \int_u^T \psi(t-u) dt = \int_0^T dK(u) \int_0^{T-u} \psi(v) dv$$

$$= K(T) \cdot \int_0^\infty \psi(v) dv - \int_0^T dK(u) \int_{T-u}^\infty \psi(v) dv.$$

For any small number $\varepsilon > 0$, we can choose a positive number ξ such that

$$\int_{\tau}^{\infty} |\psi(v)| \, dv < \varepsilon \qquad \text{for} \quad \tau \ge \xi.$$

Then, if $T > \xi$, we have

(2.7)
$$\int_0^T dK(u) \int_{T-u}^{\infty} \psi(v) dv$$

$$= \int_0^{T-\xi} dK(u) \int_{T-u}^{\infty} \psi(v) dv + \int_{T-\xi}^T dK(u) \int_{T-u}^{\infty} \psi(v) dv$$

$$= I + J, \quad \text{say,}$$

and

$$|I| \le \varepsilon \int_0^{T-\xi} dK(u) = \varepsilon K(T-\xi),$$

because K(u) is a monotone non-decreasing function of u. So we have

(2.8)
$$\overline{\lim}_{T \to \infty} \frac{1}{T^{\alpha+1}} |I| \le \varepsilon \cdot \frac{\alpha}{(\alpha+1)m^{\alpha+1}}.$$

On the other hand, we have

$$|J| \le \int_0^\infty |\psi(v)| dv \cdot [K(T) - K(T - \xi)]$$

and so

$$(2.9) \qquad \qquad \overline{\lim}_{T \to \infty} \frac{1}{T^{\alpha+1}} |J| = 0$$

by (2.4) in the above Lemma. Suming up (2.4), (2.6), (2.7), (2.8) and (2.9), we get (2.5) which was to be proved.

Now we shall note to be able to obtain a more extended result in some sense. We set the following assumptions:

- (i) X_k $(k=1, 2, \cdots)$; Y_k $(k=1, 2, \cdots)$; \cdots ; Z_k $(k=1, 2, \cdots)$ are non-negative mutually independent random variables,
- (ii) X_k $(k=1, 2, \cdots)$; Y_k $(k=1, 2, \cdots)$; \cdots ; Z_k $(k=1, 2, \cdots)$ have finite means a_k $(k=1, 2, \cdots)$; b_k $(k=1, 2, \cdots)$; \cdots ; c_k $(k=1, 2, \cdots)$, respectively and there exists a positive constant L such that $a_k \ge L$, $b_k \ge L$, \cdots , and $c_k \ge L$ for $k=1, 2, \cdots$,
- (iii) there exists a positive constant K such that $Var(X_k) \leq K$, $Var(Y_k) \leq K$, \cdots , $Var(Z_k) \leq K$ for $k = 1, 2, \cdots$,
 - (iv) the limits

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n a_k=a, \qquad \lim_{k\to\infty}\frac{1}{n}\sum_{k=1}^n b_k=b, \qquad \cdots, \qquad \lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n c_k=c$$

exist,

- (v) $\phi(x, y, \dots, z)$ is monotone non-decreasing,
- (vi) there exists a positive constant γ such that

$$\phi(x, y, \dots, z) \ge \gamma \min(x, y, \dots, z)$$
 for sufficient large x, y, \dots, z

and

(vii)
$$\lim_{n\to\infty}\frac{1}{n}\phi(xn,\,yn,\,\cdots,\,zn)$$

exists for all x, y, \dots, z and is equal to a continuous function $\Phi(x, y, \dots, z)$. Then, setting

$$V_n = \phi\left(\sum_{k=1}^n X_k, \sum_{k=1}^n Y_k, \cdots, \sum_{k=1}^n Z_k\right)$$

we have

$$(2.10) \quad \lim_{T \to \infty} \frac{1}{T^{\alpha+1}} \sum_{n=1}^{\infty} n^{\alpha} Pr(V_n \leq T) = \frac{1}{(\alpha+1) \varPhi(a, b, \cdots, c)^{\alpha+1}} \quad \text{for } \alpha = 0, 1, 2, \cdots.$$

This was proved in Theorem 3 and Theorem 5 of [2]. By making use of this fact, we get again the following

THEOREM 2. If, in addition to the assumptions (i) ~ (vii), we assume that ψ is a Baire function integrable over $(0, \infty)$, then we have

$$(2.11) \qquad \lim_{T \to \infty} \frac{1}{T^{\alpha+1}} \int_0^T dt \int_0^t \psi(t-u) \, dQ(t) = \frac{1}{(\alpha+1) \varPhi(a, b, \cdots, c)^{\alpha+1}} \int_0^\infty \psi(t) \, dt$$

where

$$Q(t) = \sum_{n=1}^{\infty} n^{\alpha} Pr(V_n \leq t)$$

and α is any non-negative integer.

COROLLARY. Under the assumption of Theorem 2, we have

(2.12)
$$\lim_{T \to \infty} \frac{1}{T^{\alpha+1}} \int_0^T dt \int_0^t \psi(t-u) \, dQ_1(u) = \frac{1}{(\alpha+1)a^{\alpha+1}} \int_0^\infty \psi(t) \, dt$$

where

$$Q_1(t) = \sum_{n=1}^{\infty} n^{\alpha} Pr(S_n \leq t), \qquad S_n = \sum_{k=1}^{n} X_k$$

and α is any non-negative integer.

REFERENCES

- [1] HATORI, H., Some theorems in an extended renewal theory, I. Kōdai Math. Sem. Rep. 11 (1959), 139-146.
- [2] HATORI, H., Some theorems in an extended renewal theory, II. Kōdai Math. Sem. Rep. 12 (1960), 21-27.
- [3] HATORI, H., A note on a renewal theorem. Kōdai Math. Sem. Rep. 12 (1960), 28-37.
- [4] KAWATA, T., A renewal theorem. Journ. Math. Soc. Japan 8 (1956), 118-126.
- [5] KAWATA, T., A remark on renewal theory. Unpublished.
- [6] SMITH, W. L., Asymptotic renewal theorems. Proc. Royal Soc. Edinburgh, Ser. A 64 (1954), 9-48.
- [7] SMITH, W. L., Regenerative stochastic processes. Proc. Royal Soc. Ser. A 232 (1955), 6-31.
- [8] SMITH, W. L., Renewal theory and its ramifications. Journ. Royal Stat. Soc. Ser. B 20 (1958), 243-302.

TOKYO COLLEGE OF SCIENCE.