SOME THEOREMS IN AN EXTENDED RENEWAL THEORY, III

By Hirohisa Hatori

1. Let $X_{k}, k=1,2, \cdots$, be a sequence of independent, non-negative, identically distributed random variables and set

$$
\begin{equation*}
H(t)=E\{N(t)\}=\sum_{n=1}^{\infty} \operatorname{Pr}\left(S_{n}<t\right), \tag{1.1}
\end{equation*}
$$

where $S_{n}=\sum_{k=1}^{n} X_{k}, n=1,2, \cdots$, and $N(t)$ is the number of sums S_{1}, S_{2}, \cdots which are less than t. Then it holds under some restrictions that

$$
\begin{equation*}
\lim _{t \rightarrow \infty}[H(t+h)-H(t)]=\lim _{t \rightarrow \infty} \sum_{n=1}^{\infty} \operatorname{Pr}\left(t<S_{n} \leqq t+h\right)=\frac{h}{m}, \tag{1.2}
\end{equation*}
$$

where $m=E\left(X_{k}\right)>0$ and $h>0$ is a constant. This is known as renewal theorem and discussed by many authors. Extending (1.2) Smith [6], [7], [8] has shown for instance that if (i) $\psi(t)$ is bounded for $t \geqq 0$, (ii) $\psi \in L(0, \infty)$, (iii) $\lim _{t \rightarrow \infty} \psi(t)=0$ and (iv) for some n the n-th iterated convolution of $F(x)$ with itself has an absolutely continuous part, where $F(x)$ is the distribution function of X_{k}, then it holds that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{0}^{t} \psi(t-u) d H(u)=\frac{1}{m} \int_{0}^{\infty} \psi(t) d t . \tag{1.3}
\end{equation*}
$$

If $X_{k}, k=1,2, \cdots$, do not necessarily have the same distribution, (1.2) does not necessarily hold. But assuming that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} E\left(X_{k}\right)=m \tag{1.4}
\end{equation*}
$$

exists, we can see under some additional restrictions that

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \sum_{n=1}^{\infty} \operatorname{Pr}\left(t<S_{n} \leqq t+h\right) d t=\frac{h}{m} . \tag{1.5}
\end{equation*}
$$

This was proved by Kawata [4] and extended by the author [1], [2], [3]. Recently Kawata [5] has obtained for $X_{k}, k=1,2, \cdots$, satisfying (1.4) as the result coresponding to (1.3) that if (i) $a_{k}, k=1,2, \cdots$, is a sequence of nonnegative real numbers satisfying the restrictions that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} a_{k}=a \tag{1.6}
\end{equation*}
$$

exists and is positive, and (ii) $\psi(x)$ is a non-negative function of bounded variation over every finite interval and is bounded and integrable over ($0, \infty$), then it holds that

Received May 24, 1961.

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t \int_{0}^{t} \psi(t-u) d J(u)=\frac{a}{m} \int_{0}^{\infty} \psi(t) d t \tag{1.7}
\end{equation*}
$$

under the restrictions on $X_{k}, k=1,2, \cdots$, used in [3], where

$$
J(t)=\sum_{n=1}^{\infty} a_{n} \operatorname{Pr}\left(S_{n} \leqq t\right) .
$$

The purpose of the present paper is to obtain a more extended result of (1.7). In the following discussion we need only the integrability over ($0, \infty$) as the restiction on ψ and can show that

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T^{\alpha+1}} \int_{0}^{T} d t \int_{0}^{t} \psi(t-u) d K(u)=\frac{a}{(\alpha+1) m^{\alpha+1}} \int_{0}^{\infty} \psi(t) d t \tag{1.8}
\end{equation*}
$$

where

$$
K(t)=\sum_{n=1}^{\infty} a_{n} n^{\alpha} P r\left(S_{n} \leqq t\right)
$$

and α is any non-negative integer. Actually we have considered the case where X_{k} may take the negative values but for the sake of simplicity we shall restrict ourselves here with non-negative X_{k}.
2. To show our statement, we need the known following lemma which is found as Theorem 1 in [3].

Lemma. Let $X_{k}, k=1,2, \cdots$, be non-negative independent random variables having finite mean values $m_{k}, k=1,2, \cdots$, and

$$
\begin{equation*}
\lim _{\Lambda \rightarrow \infty} \int_{\Lambda}^{\infty} x d F_{n}(x)=0 \tag{2.1}
\end{equation*}
$$

holds uniformly regarding $n, F_{n}(x)$ being the distribution function of X_{n}. If

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} m_{k}=m, \quad m>0, \tag{2.2}
\end{equation*}
$$

exists and the sequence $a_{k}, k=1,2, \cdots$, of non-negative real numbers satisfies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} a_{k}=a, \quad a>0 \tag{2.3}
\end{equation*}
$$

then

$$
K(t)=\sum_{n=1}^{\infty} a_{n} n^{\alpha} \operatorname{Pr}\left(S_{n} \leqq t\right)
$$

is convergent for every t where $S_{n}=\sum_{k=1}^{n} X_{k}$ and $\alpha=0,1,2, \cdots$, and it holds that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t^{\alpha+1}} K(t)=\frac{a}{(\alpha+1) m^{\alpha+1}} \quad \text { for } \quad \alpha=0,1,2, \cdots \tag{2.4}
\end{equation*}
$$

we shall state the following
Theorem 1. If, in addition to the assumptions of Lemma, we assume
that ψ is a Baire function integrable over ($0, \infty$), then we have
(2.5) $\lim _{T \rightarrow \infty} \frac{1}{T^{\alpha+1}} \int_{0}^{T} d t \int_{0}^{t} \psi(t-u) d K(u)=\frac{a}{(\alpha+1) m^{\alpha+1}} \int_{0}^{\infty} \psi(t) d t$ for $\alpha=0,1,2, \cdots$.

Proof. Since $\psi(t-u)$ is absolutely integrable over the two-dimensional set $\{(u, t) ; 0 \leqq u \leqq t, 0 \leqq t \leqq T\}$ with respect to the product measure $d K(u) \times d t$, we have that

$$
\begin{align*}
& \int_{0}^{T} d t \int_{0}^{t} \psi(t-u) d K(u) \\
= & \int_{0}^{T} d K(u) \int_{u}^{T} \psi(t-u) d t=\int_{0}^{T} d K(u) \int_{0}^{T-u} \psi(v) d v \tag{2.6}\\
= & K(T) \cdot \int_{0}^{\infty} \psi(v) d v-\int_{0}^{T} d K(u) \int_{T-u}^{\infty} \psi(v) d v .
\end{align*}
$$

For any small number $\varepsilon>0$, we can choose a positive number ξ such that

$$
\int_{\tau}^{\infty}|\psi(v)| d v<\varepsilon \quad \text { for } \quad \tau \geqq \xi .
$$

Then, if $T>\xi$, we have

$$
\begin{align*}
& \int_{0}^{T} d K(u) \int_{T-u}^{\infty} \psi(v) d v \\
= & \int_{0}^{T-\xi} d K(u) \int_{T-u}^{\infty} \psi(v) d v+\int_{T-\xi}^{T} d K(u) \int_{T-u}^{\infty} \psi(v) d v \tag{2.7}\\
= & I+J, \quad \text { say, }
\end{align*}
$$

and

$$
|I| \leqq \varepsilon \int_{0}^{T-\xi} d K(u)=\varepsilon K(T-\xi)
$$

because $K(u)$ is a monotone non-decreasing function of u. So we have

$$
\begin{equation*}
\varlimsup_{T \rightarrow \infty} \frac{1}{T^{\alpha+1}}|I| \leqq \varepsilon \cdot \frac{a}{(\alpha+1) m^{\alpha+1}} \tag{2.8}
\end{equation*}
$$

On the other hand, we have

$$
|J| \leqq \int_{0}^{\infty}|\psi(v)| d v \cdot[K(T)-K(T-\xi)]
$$

and so

$$
\begin{equation*}
\varlimsup_{T \rightarrow \infty} \frac{1}{T^{\alpha+1}}|J|=0 \tag{2.9}
\end{equation*}
$$

by (2.4) in the above Lemma. Suming up (2.4), (2.6), (2.7), (2.8) and (2.9), we get (2.5) which was to be proved.

Now we shall note to be able to obtain a more extended result in some sense. We set the following assumptions:
(i) $\quad X_{k}(k=1,2, \cdots) ; Y_{k}(k=1,2, \cdots) ; \cdots ; Z_{k}(k=1,2, \cdots)$ are non-negative mutually independent random variables,
(ii) $X_{k}(k=1,2, \cdots) ; Y_{k}(k=1,2, \cdots) ; \cdots ; Z_{k}(k=1,2, \cdots)$ have finite means $a_{k}(k=1,2, \cdots) ; b_{k}(k=1,2, \cdots) ; \cdots ; c_{k}(k=1,2, \cdots)$, respectively and there exists a positive constant L such that $a_{k} \geqq L, b_{k} \geqq L, \cdots$, and $c_{k} \geqq L$ for $k=1,2, \cdots$,
(iii) there exists a positive constant K such that $\operatorname{Var}\left(X_{k}\right) \leqq K, \operatorname{Var}\left(Y_{k}\right)$ $\leqq K, \cdots, \operatorname{Var}\left(Z_{k}\right) \leqq K$ for $k=1,2, \cdots$,
(iv) the limits

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} a_{k}=a, \quad \lim _{k \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} b_{k}=b, \quad \cdots, \quad \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} c_{k}=c
$$

exist,
(v) $\phi(x, y, \cdots, z)$ is monotone non-decreasing,
(vi) there exists a positive constant γ such that

$$
\phi(x, y, \cdots, z) \geqq r \min (x, y, \cdots, z) \text { for sufficient large } x, y, \cdots, z
$$

and
(vii)

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \phi(x n, y n, \cdots, z n)
$$

exists for all x, y, \cdots, z and is equal to a continuous function $\Phi(x, y, \cdots, z)$.
Then, setting

$$
V_{n}=\phi\left(\sum_{k=1}^{n} X_{k}, \sum_{k=1}^{n} Y_{k}, \cdots, \sum_{k=1}^{n} Z_{k}\right)
$$

we have

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T^{\alpha+1}} \sum_{n=1}^{\infty} n^{\alpha} \operatorname{Pr}\left(V_{n} \leqq T\right)=\frac{1}{(\alpha+1) \Phi(a, b, \cdots, c)^{\alpha+1}} \quad \text { for } \alpha=0,1,2, \cdots \tag{2.10}
\end{equation*}
$$

This was proved in Theorem 3 and Theorem 5 of [2]. By making use of this fact, we get again the following

Theorem 2. If, in addition to the assumptions (i)~(vii), we assume that ψ is a Baire function integrable over $(0, \infty)$, then we have

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T^{\alpha+1}} \int_{0}^{T} d t \int_{0}^{t} \psi(t-u) d Q(t)=\frac{1}{(\alpha+1) \Phi(a, b, \cdots, c)^{\alpha+1}} \int_{0}^{\infty} \psi(t) d t \tag{2.11}
\end{equation*}
$$

where

$$
Q(t)=\sum_{n=1}^{\infty} n^{\alpha} \operatorname{Pr}\left(V_{n} \leqq t\right)
$$

and α is any non-negative integer.
Corollary. Under the assumption of Theorem 2, we have

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T^{\alpha+1}} \int_{0}^{T} d t \int_{0}^{t} \psi(t-u) d Q_{1}(u)=\frac{1}{(\alpha+1) a^{\alpha+1}} \int_{0}^{\infty} \psi(t) d t \tag{2.12}
\end{equation*}
$$

where

$$
Q_{1}(t)=\sum_{n=1}^{\infty} n^{\alpha} \operatorname{Pr}\left(S_{n} \leqq t\right), \quad S_{n}=\sum_{k=1}^{n} X_{k}
$$

and α is any non-negative integer.

References

[1] Hatori, H., Some theorems in an extended renewal theory, I. Kōdai Math. Sem. Rep. 11 (1959), 139-146.
[2] Hatori, H., Some theorems in an extended renewal theory, II. Kōdai Math. Sem. Rep. 12 (1960), 21-27.
[3] Hatori, H., A note on a renewal theorem. Kōdai Math. Sem. Rep. 12 (1960), 28-37.
[4] Kawata, T., A renewal theorem. Journ. Math. Soc. Japan 8 (1956), 118-126.
[5] Kawata, T., A remark on renewal theory. Unpublished.
[6] Smith, W. L., Asymptotic renewal theorems. Proc. Royal Soc. Edinburgh, Ser. A 64 (1954), 9-48.
[7] Smith, W. L., Regenerative stochastic processes. Proc. Royal Soc. Ser. A 232 (1955), 6-31.
[8] Smith, W. L., Renewal theory and its ramifications. Journ. Royal Stat. Soc. Ser. B 20 (1958), 243-302.

Tokyo College of Science.

